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ASYMPTOTIC RESULTS FOR SUPER-BROWNIAN MOTIONS AND
SEMILINEAR DIFFERENTIAL EQUATIONS

By Tzong-Yow Lee

University of Maryland

Limit laws for three-dimensional super-Brownian motion are derived,
conditioned on survival up to a large time. A large deviation principle is
proved for the joint behavior of occupation times and their difference. These
are done via analyzing the generating function and exploiting a connection
between probability and differential–integral equations.

1. Introduction and statement of results. We study occupation time
limit theorems for the three-dimensional super-Brownian motions (super-BM)
and related processes. This is done by analyzing cumulant generating func-
tions which satisfy some integral equations. In the case of super-BM the
integral equation is equivalent to a semilinear PDE.
A sample path, �µt�dx�� t ≥ 0�, of the super-BM, is a path of nonnegative

Radon measures on Rd. When the initial µ0�dx� is µ0 = ν we denote by Pν and
Eν the corresponding probability measure and expectation, respectively. We
will omit writing the initial measure in the subscript when it is the Lebesgue
measure. For a construction of the processes see, for example, [3, 7, 8].
We now state a property of the process P that is particularly important

to our study. For a nonpositive integrable function ϕ define the ϕ-occupation
time Dϕ
T (a random variable), by

Dϕ
T =
∫ T

0

∫
Rd

ϕ�x�µt�dx�dt�(1.1)

The following connection with differential equations and integral equations is
known for the cumulant generating function:

logEν�expDϕ
T� =
∫
Rd

v�T
x�ϕ� ν�dx�
 T ≥ 0
(1.2)

where v�t
 x�ϕ� is the solution of

∂v�t
 x�

∂t
= �v+ v2 + ϕ
 in t > 0
 x ∈ Rd


v�0
 x� = 0
 x ∈ Rd�

(1.3)

Note that the use of the Laplacian, as opposed to half of the Laplacian,
indicates that the underlying Brownian motion is being run at twice the
standard speed.
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In order to introduce integral equations let us define the heat kernel and
associated operators:

p�t
 x� = �4πt�−3/2e−�x�2/4t
∫
=

∫
R3



�Au��t
 x� =
∫ t

0

∫
p�t− s
 x− y�u�s
 y�dyds

�Bh��x� =
∫ ( ∫ ∞

0
p�s
 x− y�ds

)
h�y�dy


�f� = �f�2 =
( ∫

f�x�2 dx
)1/2

�

Formally, operator A is inverse to the heat operator ∂t − � and B is inverse
to −� in suitable spaces of functions u�t
 x� and h�x�. The function v in (1.2)
is also the solution of the integral equation

v = A�v2 + ϕ��(1.4)

The lack of interaction in the super-BM makes formula (1.2) easy to under-
stand. The building block is the case when the initial is a Dirac delta δx mea-
sure at x. For this case the shorthands Px for the probability measure and
Ex for the expectation will be used. That the cumulant generating function in
(1.2) depends linearly on ν follows easily from the independence property, the
lack of interaction, of the super-BM.
For three or higher dimensions, Iscoe has proved (Theorem 1 in [4]) the

strong law that, as T → ∞
 the empirical measure �1/T� ∫ T
0 µs�dx�ds con-

verges (in the vague topology) with P-probability 1 to the Lebesgue measure.
When the space dimension is 2 or less, the law of large numbers fails. For
critical branching Brownian motions, which is a particle analogue, Cox and
Griffeath [2] investigate the large deviations from this central tendency. Their
results show exponential decay of (large deviation) tail probabilities in five or
more space dimensions and slower than exponential decay of tail probabilities
in three and four space dimensions. Large deviation behaviors have been stud-
ied further [6, 10, 12]. In the present article we continue to investigate some
fine behaviors of the three dimensional case. The problem will be approached
by estimating the cumulant generating function, in contrast with estimating
cumulants [2, 6].
It is known that a unique mild solution v�t
 x� δ0� of (1.4), with ϕ replaced

by δ0, exists up to a positive blowup time t∗ [10]. The solution is a classical
solution of (1.3), with ϕ replaced by δ0, at t < t∗ and all x, except the origin. It
will be proved in Proposition 3.1 that near the origin, v�t
 x� δ0� behaves like
the Green function �x�−1.
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Suppose ϕ is continuous with a compact support, and
∫
ϕdx = 1. It is

worked out in [10, 12] that

c2v�c2t
 cx� c−1ϕ� → v�t
 x� δ0�
as c → ∞.
In the above pointwise convergence, it is adequate to consider x as not the

origin and before the blow-up time t∗. Such a convention, adopted throughout
the paper, saves us from speaking of convergence to infinity.
One major result in this note is a refined limit.

Theorem 1.1. Let ϕ
 ξ be continuous with compact supports and∫
ξ�x�dx = 0. Let

z =
∫
ϕdx+ �Bξ�2�

Then, for d = 3


lim
c→∞ c2v

(
c2t
 cx� c−1ϕ+ c−1/2ξ

) = v�t
 x� zδ0��

A probabilistic basis for Theorem 1.1 is as follows. Fix t > 0 and x when not
the origin and consider large parameter c. A super-BM, initially the Dirac δcx
measure, will charge the unit ball with probability of order c−2. More precisely,
the probability is asymptotically 2�c�x��−2 for all bounded domains, not just for
the unit ball. Conditioned on charging, the total charge (occupation time) up
to time c2t is of order c. Furthermore, the difference of charge to the right half
of the unit ball (the first coordinate x1 > 0) and to the left half (x1 < 0) is of
order c1/2. So, we use the correct normalization of dividing the total occupation
time by c and the difference by c1/2. From such probabilistic thinking (see [11]
for example), we anticipate the weak convergence result as follows:

Conditioned with charging the unit ball, the normalized occupation time
and the difference (between the right half and the left half ball) converges in
distribution to a nondegenerate random vector as c tends to infinity.
Moreover, the normalized difference, conditioned that the normalized total

occupation time equals a > 0, converges in distribution to a normal distribution
with mean 0 and a variance proportion to a (as can be guessed from the central
limit theorem).

The above probabilistic reasoning uses the Brownian scaling and the central
limit theorem. The choice of the particular ϕ
 ξ (the indicator of the unit ball
and the difference of the indicator of the right half ball and the left half ball)
is used only as an easy-to-visualize example and can be arbitrary.
Our Theorem 1.1 is motivated by the above weak convergence result. More

precisely, Theorem 1.1 states that the moment generating function converges
which is sufficient, but not necessary at all for weak convergence. The stronger
statement of Theorem 1.1 is, however, crucial for deriving the large deviation
result. Let us state the weak convergence result as follows.
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Corollary 1.2. Consider Pcx
 x not the origin. Let the supports of ϕ ≥ 0
and ξ be contained in a compact set K. Let

∫
ϕdx > 0. Then the following

holds as c → ∞.
Conditioned that the super-BM charges K, the normalized random vector

�c−1Dϕ
c2t
 c
−1/2Dξ
 c2t� converges to the probability distribution on

�0
∞�×R whose moment generating function g is given by

g�α
β� = v�t
 x� zδ0�
�x�2
2

+ 1


where z = �∫ ϕdx�α+ ��Bξ�2�β2.

Proof. Let t
 x be fixed and qc be the probability that the super-BM
Pcx charges K. Let gc be the conditional moment generating function of
�c−1Dϕ
c2t
 c

−1/2Dξ
 c2t�. That is, letting K∗ be the event of charging K,

gc�α
β� = Ecx

[
exp

(
α�c−1Dϕ
c2t� + β�c−1/2Dξ
 c2t�

)�K∗]�
We need to establish

gc�α
β� → g�α
β��
Consider whether the super-BM charges K or not, and use (1.2) and (1.3).

We have

exp�v�c2t
 cx�α�c−1ϕ� + β�c−1/2ξ��� = qcgc�α
β� + �1− qc� × 1�
Thus,

gc�α
β� =
[(
exp�v�c2t
 cx�α�c−1ϕ� + β�c−1/2ξ��� − 1)/qc]+ 1�

The proof is completed by applying Theorem 1.1 and the fact that c2qc →
2�x�−2, as c → ∞, independent of K (see, for example, [11]).
Notice that the generating function g�α
β� is a function of c1α+c2β

2, where
c1 =

∫
ϕdx
 c2 = �Bξ�2. It can then be derived that, conditioned on c−1Dϕ
c2t =

a > 0, the normalized c−1/2Dξ
 c2t converges to a normal distribution of mean
0 and variance 2c2a/c1 = 2�Bξ�2a/�∫ ϕdx�.
Theorem 1.1, together with the connection (1.2) with cumulant generating

functions then enables us to apply the Gärtner–Ellis theorem (see, for example,
[5]) to establish a large deviation theorem. We now give the rate function and
then state the large deviation result,




(3�θ� ≡


∫
R3

v�1
 x� θδ0�dx
 if −∞ < θ < �t∗�1/2

+∞
 otherwise,

K3�a
 b� ≡ sup
α
β∈R

[
aα+ bβ− (3

(
α
∫
ϕdx+ β2�Bξ�2

)]
.

(1.5)
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Theorem 1.3. Consider the three-dimensional super-BM process P (i.e.,
initially the Lebesgue measure). Suppose that ϕ
 ξ are continuous with compact
supports and

∫
ξ dx = 0. Let Wϕ
T be the average occupation time

Wϕ
T = 1
T
Dϕ
T


and Wξ
T be similarly defined. Then ��Wϕ
T
T
1/4Wξ
T�
T1/2� is a large

deviation system with rate function K3.

We are thankful to the anonymous referee for rendering the rate function
K3 more explicit (as shown next) and suggesting that we give a probabilistic
interpretation. This much improves the exposition. Assume for simplicity that∫
ϕdx = 1 and �Bξ�2 = 1. Let a > 0 [otherwise K3�a
 b� = ∞], then

K3�a
 b� = sup
α
β∈R

�αa− (3�α� + bβ− aβ2� = (∗
3�a� +

b2

4a
�

Note that (∗
3�a� is the large-deviation rate for Wϕ
T being near a (see [10]).

Now, from the probabilistic picture discussed following Theorem 1.1 we indeed
anticipate that, given Wϕ
T = a, the rate to see T1/4Wξ
T close to b is b2/4a,
based on the normal distribution. This gives the rate function K3 a proba-
bilistic explanation which has motivated the research.
As long as the connection, such as (1.2)–(1.4), exists between integral–

differential equations and the probability theory, it is clear that various tech-
niques from these fields can be brought together to attack the problem. The
analytic result for equations is interesting in its own right. Our proof method is
based mostly on the comparison principle (maximum principle) for equations.
The method reveals that the mathematical result goes somewhat beyond prob-
ability interpretations known currently. For example, no probabilistic interpre-
tation is known at present for some of the integral–differential equations that
are subject to the same technique. As an example, let us replace the quadratic
nonlinearity v2 by �v�p
p > 1. The problem yields to the same technique of
proof. There is however no simple probabilistic meaning to the case p > 2.
In order to understand the result better one can look at fractional dimen-

sions as well. This can be done by replacing the Laplacian with the Bessel
operator. With the quadratic nonlinearity v2, we then can see that qualita-
tively similar results (as in Theorems 1.1 and 1.3) hold for 2 < d < 4. So the
investigated phenomenon is common to an interval of dimensions, as opposed
to an isolated dimension. Another generalization is to replace BM with stable
processes.
As the results apply to general ϕ
 ξ functions, they can be extended to

a functional level. In the case of weak convergence this is ensured by the
Cramer-Wold theorem. In the case of large deviations, such higher level results
can be obtained by, for example, the Dawson–Gärtner projection theorem [4].
The large deviation principle for the difference of occupation times alone
was already carefully established at a functional level in [6] by analyzing
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cumulants. Extension from Brownian motion to stable processes is also treated
there.
In order to help interested readers pursue this further, we will prove

Theorems 1.1 and 1.3 in a manner readily applicable to various general-
izations. For example, suppose the nonlinear term v2 in (1.3) is replaced by
�v�p
p > 1. Then, in the regime

2
p− 1 < d <

2
p− 1 + 2

of dimensions, our method will establish the qualitatively same results as
Theorem 1.1 and 1.3. The correct normalizing constants depend, of course, on
p
d. The following counterpart of Theorem 1.1 can be obtained.

Theorem 1.4. Let u�t
 x�ψ� be the solution of

∂u�t
 x�

∂t
= ∂2u

∂x2
+ d− 1

x

∂u

∂x
+ �u�p + ψ
 in t > 0
 x > 0,

u�0
 x� = 0
 x > 0�
(1.6)

Let ϕ
 ξ be continuous with compact supports and
∫∞
0 ξ�x�xd−1 dx = 0.

Let Bd be the inverse of the Bessel operator ∂2

∂x2
+ d−1

x
∂
∂x

 and Z = ∫∞

0 �ϕ +
��Bdξ��x��p�xd−1 dx. Then, for 2

p−1 < d < 2
p−1 + 2,

lim
c→∞ c

2
p−1u

(
c2t
 cx� cd− 2p

p−1ϕ+ c�
d
p− 2

p−1 �ξ
)
= u�t
 x�kdZδ0�


where kd is a positive constant depending on dimension d. For example, k3 =
4π
 the surface area of the unit sphere in R3.

When 1 < p ≤ 2 a connection between cumulant generating functions
associated with super-Bessel process and differential equations (1.6) exists.
Theorem 1.4 translates into a large deviation principle like Theorem 1.3. The
exponent 1/4 of T1/4 in Theorem 1.3 now becomes 1 − d�p−1�

2p . The exponent

1/2 of T1/2 should be d
2 − 1

p−1 . If one is only interested in integer dimensions,
notice that all except p = 1 + 2

m
, with positive integer m, admit two integer

values of dimension d. Theorem 1.3, for example, concerns the case p = 2, that
is, m = 2. Thus, d = 3 is the only integer dimension. The exponent p = 7/4
(then 223 < d < 423 ) represents the typical values p which admit two integer
dimensions.
A challenging problem is to prove the counterpart of Theorem 1.3 for the

three-dimensional voter model. It is proved that the normalizing constants are
the same for occupation times [1]. One naturally anticipates that same (as the
super-BM) normalization constants hold also for the difference of occupation
times and that a large deviation principle like Theorem 1.3 holds. This remains
to be done. Preliminary calculation reveals that such crucial ingredients as
Theorem 1.1 can be extended to d ≤ 4-dimensional super-Brownian motions
as well; many details, however, need be worked out.



ASYMPTOTICS OF SUPER-BROWNIAN MOTIONS 1053

2. Proof of Theorems 1.1 and 1.3. For an integrable function u and
a positive number c, denote by uc the function x �→ c3u�cx�. Recall from
Theorem 1.1 the definition of v�t
 x�c� and fix arbitrary ϕ
 ξ. A simple rescaling
yields

v�t
 x�c� = c2v�c2t
 cx� c−1ϕ+ c−1/2ξ� = v�t
 x�ϕc + c1/2ξc��(2.1)

Comparing Theorem 1.1 with the known result [10] that

v�t
 x�ϕc� → v
(
t
 x�

( ∫
ϕ�x�dx

)
δ0

)
(2.2)

as c → ∞, we observe that the c1/2ξc term in the right-hand side of (2.1)
contributes to the limit by �Bξ�2, added to �∫ ϕ�x�dx� to account for the
number z in Theorem 1.1.
This observation motivates us to use

w�t
 x�c� = v�t
 x�c� − c1/2Aξc�(2.3)

Why? First, the equation satisfied by w will no longer have the c1/2ξc term.
Precisely, the equation of w is

w = A
[
w2 + 2w�c1/2Aξc� + �c1/2Aξc�2 + ϕc

]
�(2.4)

Second, the resulting integral equation (2.4) clearly shows a way in which
Theorem 1.1 can be proved: a heat-kernel calculation gives us that, for t > 0,∫

�c1/2Aξc��t
 x�2 dx = ��Aξ��c2t
 ·��2 → �Bξ�2
(2.5)

which is exactly the contribution we anticipated from ξ. So all we really need
prove is

lim
c→∞

∫ (
wc1/2Aξc

)�t
 x�dx = 0�(2.6)

Let α = w�t
 x�
 β = �c1/2Aξc��t
 x�. We will establish the crucial limit
result (2.6) via the estimate

�2αβ� ≤ εαr + bβq
(2.7)

where q
 r is a pair of conjugate exponents (1/q + 1/r = 1), and ε > 0, b =
b�ε
 r� = 2qq−1�rε�−q/r.
Motivated by (2.4), (2.6) and (2.7), let g�t
 x� ε
 c� be the solution of of the

equation

g = A
[
g2 + ε�g�r + b�(c1/2Aξc

)�t
 x��q + (
c1/2Aξc

)2 + ϕc

]
�(2.8)

The existence of the solution g will be proved in Lemma 2.2 below. Granted
its existence for now, which values of q can be used? A heat-kernel calculation
yields

lim
c→∞

∫
��c1/2Aξc��t
 x��q dx = 0
(2.9)

if 32 < q < 2. So we will use an arbitrary, but fixed 3
2 < q < 2; thus 3 > r > 2.
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In view of (2.4), (2.7) and (2.8), the comparison principle implies that

w�t
 x�c� ≤ g�t
 x� ε
 c��(2.10)

We now state Lemmas 2.1 and 2.2, which are natural steps and have
elementary proofs. However, in order to make manifest the main ideas, we’ll
postpone their proofs until the Appendix.

Lemma 2.1. Let s > 0 be less than the blow-up time of v�t
 x� zδ0�. There
exists ε∗ = ε∗s
 r such that for all ε < ε∗, the solution f�t
 x� ε� of

f = A
[
f2 + ε�f�r + �z+ ε�δ0

]
(2.11)

exists and satisfies

lim
ε→0

f�t
 ·� ε� = v�t
 ·� zδ0�
 0 ≤ t ≤ s
(2.12)

pointwise. Furthermore, the integrals (on the whole space R3) of the two
functions f
 v satisfy the same limit equality.

Lemma 2.2. For sufficiently large c, the solution g�t
 x� ε
 c� of (2.8) exists
and satisfies

lim sup
c→∞

g�t
 ·� ε
 c� ≤ f�t
 ·� ε�
0 ≤ t ≤ s
(2.13)

pointwise. Furthermore, the integrals (on the whole space R3) of the two
functions g
f satisfy the same limit inequality.

We are now in a position to finish the proof. Taking note of (2.3), and the
fact that

lim sup
c→∞

c1/2�Aξc��t
 x� = 0(2.14)

pointwise and (2.10), we conclude

lim sup
c→∞

v�t
 x�c� ≤ lim sup
c→∞

g�t
 x� ε
 c��

Applying (2.13), and then letting ε tend to 0, the limit result (2.12) implies

lim sup
c→∞

v�t
 x�c� ≤ v�t
 x� zδ0��(2.15)

The space integral version in the end of Lemmas 2.1, 2.2 and the fact that∫ �Aξc��t
 x�dx = 0 due to
∫
ξ�x�dx = 0 imply

lim sup
c→∞

∫
v�t
 x�c�dx ≤

∫
v�t
 x� zδ0�dx = (3�z��(2.16)

The other direction of inequality is similarly proved; it is in fact easier
because instead of (2.11) we look at

f = A
[
f2 − ε�f�r + �z− ε�δ0

]
�(2.17)



ASYMPTOTICS OF SUPER-BROWNIAN MOTIONS 1055

The difference is in the sign in front of the two ε’s. The existence of the solu-
tion of (2.17) follows immediately from that of v�s
 x� zδ0� by the comparison
principle, while the existence for f of (2.11) requires some work as will be seen
in the Appendix.
Result (2.15) and the easier counterpart inequality going the opposite

direction imply Theorem 1.1. Result (2.16), the easier counterpart inequal-
ity going the opposite direction and the Gärtner–Ellis theorem (see, e.g., [5])
imply Theorem 1.3. In more detail, the probability-PDE connection given in
(1.2), (1.3) and (1.4) translates the limit equality into a limit result for the
cumulant generating function of the occupation times. The limit (3 explodes,
thus steepness is required and shown in [10]. So the Gärtner–Ellis theorem
concludes that the large deviation rate is the Legendre transform of the limit
of the cumulant generating function, ending Theorem 1.3.

APPENDIX

We should point out that the operator A is monotonic. This is responsible
for the theorems in this article and has already been utilized in Section 2. In
this Appendix we will continue to take advantage of it by repeatedly using the
comparison principle, also known as the supersolution–subsolution method.
Let

h�x� = e−1�x�−1
 �x� ≤ 1� e−�x�
 �x� > 1


and

k�x� = θ�x�−r
 �x� ≤ 1� θ�x�−β
 �x� > 1


where 3 > r > 2 is as in (2.9), β > 3, so that the function k is integrable, and
θ > 0 is such that

∫
k�x�dx = 1. Clearly, positive M1
M2 exists so that

hr ≤ M1k
(A.1)

�h ∗ k�r ≤ M2k�(A.2)

We need the following proposition.

Proposition A.1. Let s be less than the blow-up time of v�t
 x� z∗δ0�
 z∗ > 0.
Then there exists a constant M3, depending on z∗
 s, such that

v�s
 x� z∗δ0� ≤ M3h�x��(A.3)

Proof. The function v�t
 x� z∗δ0� is the solution of
v = A�v2 + z∗δ0��(A.4)

It is known (see [10]) that v�t
 x� z∗δ0�
 z∗ > 0, is increasing in time, and is a
radial function decreasing in radius �x�. Also, it blows up at a finite time at the
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origin, and before the blow-up time it is square integrable. Let G�x� = �x�−1
and note that the inverse operator B of −� is given by

�Bh� = cG ∗ h
for some positive constant c. Therefore,

v�t
 x� z∗δ0� ≤ A
(
v�s
 ·� z∗δ0�2 + z∗δ0

)
≤ B

(
v�s
 ·� z∗δ0�2 + z∗δ0

)
= cG ∗ (v�s
 ·� z∗δ0�2 + z∗δ0

)
= cG ∗ v(s
 ·� z∗δ0)2 + cz∗G


for 0 ≤ t ≤ s, where s is less than the blow-up time. Let

q�x� = v�s
 x� z∗δ0�2�
From the inequality above, it remains to show that, near the origin, x = 0,
the function �G ∗ q��x� is bounded by a constant multiple of Green’s function
�x�−1.
Since the function q�x� is a radial function decreasing in radius �x� and is

integrable,
∫
q�x�dx = I < ∞, we can split R3 into the ball M of radius �x�

2 ,
centering at x and its complement and estimate being as follows:

�G ∗ q��x� ≤
∫
M
�x− y�−1q�y�dy+ I

( �x�
2

)−1

≤ q

(
x

2

) ∫
M
�x− y�−1 dy+ 2I�x�−1

= q

(
x

2

)
L�x�2 + 2I�x�−1

=
[
Lq

(
x

2

)
�x�3 + 2I

]
�x�−1


where L is a constant whose exact value is not important. Since function q
is integrable, radial and decreasing in �x�, the function q�x2 ��x�3 tends to 0 as
x → 0. The desired property near the origin is established.
Now it remains to verify the faster-than-exponential-decay behavior near

the infinity. Look at (A.4) only for �x� > 1, the exterior of the unit ball, and only
up to time s. Let K = v�s
 �1
0
0�� z∗δ0�. That is, the v function is evaluated
at the maximal (for the present purpose) time argument s and at x = �1
0
0�.
Since v is increasing in time, radial and decreasing in x, the boundary (�x� =
1
0 ≤ t ≤ s) value is bounded by K, and the nonlinear term v2 in the right-
hand side of (A.4) is bounded by Kv. Let T be the hitting time of the unit
ball centered at the origin. By the Feynman–Kac representation for initial-
boundary value problems,

v�s
 x� z∗δ0� ≤ KeKsPx�T ≤ s��
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Since the probability Px�T ≤ s� decays faster than exponentially as x tends
to infinity, the proof is complete. ✷

Proof of Lemma 2.1. Compare the defining equation (2.11) of f�t
 x� ε�
with that of v�t
 x� zδ0�. By the monotonicity of operator A, clearly

f�t
 x� ε� ≥ v�t
 x� zδ0��
It remains to prove the opposite direction of the lemma. Consider z > 0,

otherwise the lemma is easy. By scaling, there exists λ > 0 such that
v�t
 x� �2λ+ z�δ0� exists past time s, that is, s is less than the blow-up time of
v�t
 x� �2λ+ z�δ0�. Define the function

v = v�t
 x� �2λ+ z�δ0�

and the probability measure

m =
(

λ

2λ+ z
k+ λ+ z

2λ+ z
δ0

)
�

Then define

F�t
 x�λ� = F = v ∗m�(A.5)

Here the convolution of function v, and probability measure m, is given by
�v ∗m��x� = ∫

v�x− y�m�dy�
 x ∈ R3.
Why defining F? Because the equation satisfied by v and the convexity of

the square function v → v2 imply

v ∗m = (
A�v2 + �2λ+ z�δ0�

) ∗m ≥ A
[�v ∗m�2 + �2λ+ z�δ0 ∗m

]
�

Thus,

F ≥ A
[
F2 + �2λ+ z�δ0 ∗m

] = A
[
F2 + λk+ �λ+ z�δ0

]
�(A.6)

In what follows we’ll see that, by Proposition 3.1, λk bounds from above a
multiple of Fr, so F can bound f from above. Then, by the definition of F, the
desired bound of f by v is obtained. Such an idea will be used again in the
proof of Lemma 2.2.
Applying (A.3) to z∗ = 2λ+ z, and by (A.1),

�v�s
 · � �2λ+ z�δ0��r ≤ M1M
r
3k�(A.7)

Since v is increasing in the time parameter,

F�t
 x�r ≤
(

λ

2λ+ z
v�s
 ·� �2λ+ z�δ0� ∗ k+ λ+ z

2λ+ z
v�s
 ·� �2λ+ z�δ0�

)r

�

Due to the convexity of the function v → vr for positive v, Jensen’s inequality
implies

F�t
 x�r ≤ λ

2λ+ z
�v�s
 ·� �2λ+ z�δ0� ∗ k�r +

λ+ z

2λ+ z

(
v�s
 ·� �2λ+ z�δ0�

)r
�
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Then (A.3), (A.2), and (A.7) imply

F�t
 x�r ≤ Mk


where M ≥ �M2M
r
3 +M1M

r
3� = �M2 +M1�Mr

3 is a constant. Choose M > 1.
Then (A.6) implies

F ≥ A

[
F2 + λ

M
Fr +

(
λ

M
+ z

)
δ0

]
�(A.8)

This integral inequality, together with the comparison principle implies that
the solution f to (2.11) exists, and satisfies

f

(
t
 · � λ

M

)
≤ F�t
 · �λ�
 0 ≤ t ≤ s�(A.9)

The proof is complete upon letting λ tend to 0 in (A.9) and using the definition
(A.5) of F�t
 x�λ�.

Proof of Lemma 2.2. Let

h�t
 x� = h�t
 x� ε
 c� = b ��c1/2Aξc��t
 x��q + �c1/2Aξc�2 + ϕc
(A.10)

which is the source term of (2.8) for g. Notice that our goal is to bound g from
above by f. To achieve the goal we use the idea depicted in the paragraphs
containing (A.5), (A.6). This time, we use the convexity of the function g →
g2 + ε�g�r. Decompose h as the sum of two terms: first,

H�t
 x� = H�t
 x� ε
 c� = h�t
 x� −
( ∫

h�t
 x�dx
)
δ0


which has zero mass, and second,
( ∫

h�t
 x�dx
)
δ0�

We need only to understand the contribution from each of these two kinds of
source terms.
The contribution from the second term has been satisfactorily bounded from

above in Lemma 2.1. What remains is why the first term makes no contribu-
tion at all in the limit. A short answer is that it has zero mass. A quick glance
at (2.8), with the above decomposition, may give a false impression that we
face again our original problem for function v which also has a positive func-
tion ϕc and a function c1/2ξc of zero mass. It is not so because H�t
 x� ε
 c� is
more like ξc than c1/2ξc. That is, there is no c1/2 factor. As c → ∞, the lack of
the c1/2 factor makes our task rather easy. The task is to prove the solution
V�t
 x� ε�c� of the equation

V = A�V2 + ε�V�r +H�t
 x� ε
 c��(A.11)
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tends to 0 as c → ∞. As in treating the original problem, we define
W�t
 x� ε
 c� = V−AH


which satisfies

W = A
[�W+AH�2 + ε�W+AH�r]�(A.12)

Now, due to the lack of the c1/2 factor, there is no need to use the more delicate
estimates (2.6), (2.7) and subsequent steps. Such alternatives as

�W+AH�2 ≤ 2W2 + 2�AH�2

�W+AH�r ≤ 2r−1�W�r + 2r−1�AH�r

suffice. It can be checked that∫
�AH��t
 x� ε
 c�2 dx → 0


∫
��AH��t
 x� ε
 c��rdx → 0


as c → 0 for 0 ≤ t ≤ s; we omit its proof. This implies that the zero mass term
H indeed makes no contribution. Thus the proof of the lemma is complete. ✷
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