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THE FIRST EXIT TIME OF PLANAR BROWNIAN MOTION
FROM THE INTERIOR OF A PARABOLA

By Rodrigo Bañuelos,1 R. Dante DeBlassie and Robert Smits

Purdue University, Texas A&M University and Towson University

Let D be the interior of a parabola in �2 and τD the first exit time
of Brownian motion from D. We show − logP�τD > t� behaves like t1/3 as
t→ ∞.

1. Introduction. For x ∈ �n\�0	, we let θ�x� be the angle between x and
the point �1
0
 � � � 
0�. The right circular cone of angle 0 < ξ < π is the domain
�ξ = �x ∈ �n� θ�x� < ξ	. Let �Bt� t ≥ 0	 be the n-dimensional Brownian motion
and denote by Ex and Px the expectation and probability associated with this
motion starting at x and denote by τξ = inf�t > 0� Bt /∈ �ξ	 its first exit time
from �ξ. The following result was proved by Burkholder (1977).

Theorem A. There is a number p�ξ
 n�, defined in terms of the smallest
zero of a certain hypergeometric function, such that

Ex�τpξ � <∞
 x ∈ �ξ
(1.1)

if and only if p < p�ξ
 n�.

For n = 2 the result reduces to

Exτ
p
ξ <∞(1.2)

if and only if p < π/2ξ.
We should mention here that in �2, formulas for Px�τξ > t	 have existed

for many years. Indeed, Spitzer (1958) in his study of the winding of two-
dimensional Brownian motion derives an expression forPx�τξ > t	 from which
the two-dimensional case (1.2) follows. In DeBlassie (1987), Burkholder’s
result and techniques from partial differential equations are used to find
an exact formula for Px�τξ > t	 as an infinite series involving confluent
hypergeometric functions. From this formula the exact asymptotics in t for
Px�τξ > t	 follow. Furthermore, his result is also true for more general cones
in �n. Recently, Davis and Zhang (1994) proved an analogue of Burkholder’s
result for conditioned Brownian motion in �ξ. A uniform treatment of all the
above results, with several extensions, is presented in Bañuelos and Smits
(1997) where explicit formulas are found for the distributions and expecta-
tions of both the conditioned and unconditioned Brownian motion in very
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general cones. Such formulas are derived from the skew product decompo-
sition of Brownian motion and some formulas of Yor (1980) related to the
Hartman–Watson distribution. The particular geometric structure of the cone
(scale invariance) is essential for these results. The cone (in two dimensions)
can be thought of as the domain above the graph of a function of the form
y = αx. The question then arises: are there other unbounded domains above
graphs of functions for which one can determine the exact order of integrabil-
ity of the exit time? To our surprise, this seems to be a nontrivial question.
Here we shall deal with the case of parabolas and find information on the
asymptotics for the distribution of their exit time. The techniques, based on
elementary principles of large deviations, are completely different from those
used in the study of cones. Also, the information we obtained is not as pre-
cise as that given in DeBlassie (1987) or Bañuelos and Smits (1997) for cones.
Finally, before we state our result precisely we note that the tail distribution
for one piece of a hyperbola is the same as that of the smallest cone containing
it since this cone can be translated into the interior of the hyperbola. Thus,
we have a characterization for the tail distribution for all conic sections.

Set D = ��x1
 x2�� x2 > ax21	 and denote the exit time of Bt from D by τD.
Since for each ξ ∈ �0
 π� there is some cone �ξ with D ⊆ �ξ,

Exτ
p
D <∞ for all p > 0�

On the other hand, sinceD contains arbitrarily large squares, it is clear thatD
has no exponential moments:

Exe
λτD = ∞ for all λ > 0�

It seems then natural to conjecture that as t→ ∞, − logPx�τD > t� is of the
form tpf�t� for some p > 0 and f�t� = o�tp�. We will show p = 1/3. Our main
result is the next theorem.

Theorem 1.1. Fix x ∈ D. There are two positive constants A1 and A2 such
that

−A1 < lim inf
t→∞

t−1/3 logPx�τD > t� ≤ lim sup
t→∞

t−1/3 logPx�τD > t� < −A2�

Here is an outline of the article. Using a conformal transformation, in
Section 2, the problem is changed to the study of the exit time of a diffusion,
with singular generator from a strip. We state upper and lower bounds on the
tail distribution of the exit time in terms of infinite series involving certain
Feynman–Kac functionals, deferring the proof to Section 3. Taking for granted
the long-time asymptotics of the functionals, the first term of each series is
shown to dominate and the desired bounds follow. In Section 4, bounds on the
Feynman–Kac functionals are given in terms of Bessel process expectations. In
Section 5, we derive asymptotics of the Bessel expectations. For upper bounds
we use the theory of large deviations and for lower bounds we make an ad hoc
argument inspired by techniques from the theory of large deviations. This
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will yield the long-time asymptotics of the Feynman–Kac functionals used in
Section 2.

2. Change of coordinates and bounds via infinite series. In this
section, we change the problem to the study of the exit time of a degener-
ate diffusion from an infinite strip. Then we obtain upper and lower bounds
by infinite series.

For simplicity, we will assume the starting point x is not the focus of the
parabola. Rotate and translate D so its focus is at the origin, its axis of sym-
metry is along the x1-axis and it opens to the left. Next cut along the x1-axis
and keep the upper half H of D. By symmetry, it is enough to study the first
exit time of Brownian motion from H, with normal reflection at the x1-axis.
Change coordinates u + iv = √

x1 + ix2 (parabolic coordinates), so that for
some k > 0, H gets transformed into the strip

S̃ = ��u
 v�� 0 < u < k
 v > 0	�
Moreover, the part of the positive x1-axis bounding H gets mapped to ∂1S̃ �=
��u
 v�� 0 < u < k
 v = 0	 and the negative x1-axis is mapped to ∂2S̃ =
��u
 v�� u = 0
 v > 0	. By conformality, the normal reflection at the x1-axis
becomes normal reflection at ∂1S̃ and ∂2S̃. Half the Laplacian in the �u
 v�-
coordinates is

L = 1
8

1
u2 + v2

(
∂2

∂u2
+ ∂2

∂v2

)
�(2.1)

Thus it is enough to study the first exit time from S̃ of the diffusion corre-
sponding to L, with normal reflection at ∂1S̃ and ∂2S̃. By symmetry, this is
equivalent to studying the first exit time from

S = ��u
 v�� − k < u < k	
of the diffusion Wt corresponding to L. Note that since we are assuming the
original Brownian motion does not start at the focus of x2 = ax21,

W0 �= 0�(2.2)

Then it is clear from the form of L in (2.1) that Wt never hits 0.
Denoting

τS = inf�t > 0� Wt /∈ S	

Theorem 1.1 immediately follows from the next theorem.

Theorem 2.1. For each w = �u
 v� ∈ S\�0	 with u
 v ≥ 0,

−A1 < lim inf
t→∞

t−1/3 logPw�τS > t� ≤ lim sup
t→∞

t−1/3 logPw�τS > t� < −A2


for some positive constants A1 and A2.
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The first step in the proof is the next lemma, which gives bounds in terms
of infinite series. Let Z be the diffusion in �2 corresponding to

LZ = 1
8

1
v2 + ξ2 + k2

[
∂2

∂v2
+ ∂2

∂ξ2

]

 �v
 ξ� ∈ �2(2.3)

and let R be the diffusion in �, defined up to the first time it hits zero, corre-
sponding to

LR = 1
8
1
v2

∂2

∂v2

 v > 0�(2.4)

Define

cn = 4
π�2n+ 1� 


Hn�u� = sin
( �2n+ 1�π

2k
�u+ k�

)

(2.5)

λn = �2n+ 1�2π2

4k2
�

Lemma 2.2. For any w = �u
 v� ∈ S\�0	 with v > 0 and t > 0,

∞∑
n=0

cnHn�u�Ev

[
I
(
τ0�R� > t) exp(−λn

8

∫ t
0

ds

R2
s

)]
≤ Pw�τS > t�

≤
∞∑
n=0

cnHn�u�E�v
0�

[
exp

(
−λn

8

∫ t
0

ds

Zs2 + k2
)]



where τ0�R� = inf�t > 0� Rt = 0	.

We will give the proof in Section 3. We need asymptotics as t→ ∞ for the
Feynman–Kac functionals appearing in the terms of the series in Lemma 2.2.
The results are in the next theorem, whose proof is given in Sections 4 and 5.

Theorem 2.3. For each v > 0 there exist positive A1 and A2 such that for
each λ > 0,

−A1 ≤ lim inf
t→∞

λ−2/3t−1/3 logEv

[
I
(
τ0�R� > t) exp(−λ

8

∫ t
0

ds

R2
s

)]

≤ lim sup
t→∞

λ−2/3t−1/3 logEv

[
I
(
τ0�R� > t) exp(−λ

8

∫ t
0

ds

R2
s

)]
≤ −A2

and the same inequalities hold for

Ev

[
I
(
τ0�R� > t) exp(−λ

8

∫ t
0

ds

R2
s

)]
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replaced by

E�v
0�

[
exp

(
−λ
8

∫ t
0

ds

Zs2 + k2
)]
�

Proof of Theorem 2.1. The rough idea is that each series appearing in
Lemma 2.2 is asymptotic to its first term and, by Theorem 2.3, the first terms
have asymptotics of the desired form. We concentrate on the series bounding
Pw�τS > t� from above, the argument for the other series being similar.

For notational convenience set

Fn�z
 t� =
4

π�2n+ 1�Ez

[
exp

(
−λn

8

∫ t
0

ds

Zs2 + k2
)]

 z = �v
 ξ� ∈ �2�

Then by Lemma 2.2, for w = �u
 v� ∈ S\�0	 with v > 0,

Pw�τS>t� ≤
∞∑
n=0
Fn

(�v
0�
t)Hn�u�

= F0
(�v
0�
t)H0�u�

[
1+

{ ∞∑
n=1
cnHn�u�

Fn��v
0�
t�/cn
F0��v
0�
t�

}/
H0�u�

]
�

Note that u < k,H0�u� �= 0, so the division is allowed. We show that the last
summation converges to 0 as t→ ∞, by Theorem 2.3,

lim sup
t→∞

t−1/3 logPw�τS > t� < −A2λ
2/3
0 
(2.6)

giving the desired upper bound in Theorem 2.1. Since
∑∞
n=1 cnHn�u� converges

for each u ∈ �−k
 k�, by Abel’s test, it is enough to prove for each v > 0, for
some T > 0,

sup
n≥1
t>T

∣∣∣∣Fn��v
0�
 t�/cn
F0��v
0�
 t�

∣∣∣∣ <∞�(2.7)

for each t > T, the sequence{
Fn��v
0�
 t�/cn
F0��v
0�
 t�

� n ≥ 1
}

(2.8)

is decreasing (in n), and for each n ≥ 1 and v > 0,

lim
t→∞

Fn��v
0�
 t�/cn
F0��v
0�
 t�

= 0�(2.9)

To this end, choose p > 1 so close to 1 that for 1
p
+ 1

q
= 1 and A1
A2 from

Theorem 2.3,

A2

2

[(
λ1 −

λ0
p

)
q

]2/3
>

(
A1 +

A2

2

)
λ
2/3
0 �(2.10)
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By Theorem 2.3, there exists T > 0 such that for λ ∈ ��λ1 − λ0/p�q
 λ0	,

exp
(
−
[
A1 +

A2

2

]
λ2/3t2/3

)
≤ E�v
0�

[
exp

(
−λ
8

∫ t
0

ds

Zs2 + k2
)]

≤ exp
(
−A2

2
λ2/3t1/3

)

 t ≥ T�

(2.11)

Then for n ≥ 1 and t ≥ T,

Fn

(�v
0�
t)/cn = E�v
0�

[
exp

(
−λn

8

∫ t
0

ds

Zs2+k2
)]

≤ E�v
0�

[
exp

(
−λ1

8

∫ t
0

ds

Zs2+k2
)]

= E�v
0�

[
exp

(
− λ0
8p

∫ t
0

ds

Zs2+k2
− 1
8

(
λ1−

λ0
p

)∫ t
0

ds

Zs2+k2
)]

≤
{
E�v
0�

[
exp

(
−λ0

8

∫ t
0

ds

Zs2+k2
)]}1/p

×
{
E�v
0�

[
exp

(
−q
8

(
λ1−

λ0
p

)∫ t
0

ds

Zs2+k2
)]}1/q

=
{E�v
0�

[
exp�−q

8 �λ1− λ0
p
�∫ t0 ds

Zs2+k2 �
]

E�v
0�
[
exp�−λ0

8

∫ t
0

ds
Zs2+k2 �

] }1/q

×E�v
0�

[
exp

(
−λ0

8

∫ t
0

ds

Zs2+k2
)]

≤
{exp(−A2

2 �q�λ1− λ0
p
��2/3t1/3)

exp
(−�A1+ A2

2 �λ2/30 t1/3
) }1/q π

4
F0��v
0�
t�

≤ exp�−A3t
1/3�π

4
F0

(�v
0�
t)

where A3 > 0 is independent of t ≥ T. [The second to the last line follows
from (2.11) and the last line from (2.10).] Thus (2.9) holds. Since (2.7) and (2.8)
are clear, the proof of (2.6) is complete. ✷

3. Proof of the infinite series bounds. In this section we prove
Lemma 2.2. For w = �u
 v� ∈ �S\�0	, define

g�w
 t� = Pw�τS > t��
Then g satisfies [for L from (2.1)]


�L− ∂

∂t
�g = 0
 w ∈ S\�0	
 t > 0,

g = 0
 u = ±k
 v > 0
 t > 0,
g = 1
 t = 0
 w ∈ S\�0	.

(3.1)
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Consider the operators,

L1 = 1
8

1
v2 + ξ2 + k2

[
∂2

∂u2
+ ∂2

∂v2
+ ∂2

∂ξ2

]



L2 = 1
8
1
v2

[
∂2

∂u2
+ ∂2

∂v2

]

and let W1�t� ∈ �3
 W2�t� ∈ �2 denote the diffusions associated with L1 and
L2, respectively. Of course W2 is only defined up to the first time it hits the
line v = 0.

Let

η1 = η1�W1� = inf�t > 0� W1�t� /∈ S× �	

and denote the second coordinate of W2 by W�2�

2 . For ε > 0 set

η2
 ε = η2
 ε�W2� = inf�t > 0� W2�t� /∈ S or W�2�
2 �t� = ε	�

The latter is the first exit time of W2 from the one-sided strip ��u
 v�� − k <
u < k
 v > ε	. Then for w = �u
 v� with v ≥ ε, define

g1�w
ξ
 t� = P�w
ξ��η1 > t�

g2�w
 t� = Pw�η2
 ε > t�

and observe 

�L1 −

∂

∂t
�g1 = 0
 w ∈ S
 ξ ∈ �
 t > 0,

g1 = 0
 u = ±k
 t > 0,
g1 = 1
 t = 0
 w ∈ S
 ξ ∈ �

(3.2)

and 

�L2 −

∂

∂t
�g2 = 0
 u < k
 v > ε
 t > 0,

g2 = 0
 u = ±k
 v > ε
 t > 0,
g2 = 0
 u < k
 v = ε
 t > 0,
g2 = 1
 t = 0
 u < k
 v > ε.

(3.3)

Lemma 3.1. For w = �u
 v� ∈ �S\�0	 with v ≥ ε and t > 0,

g2�w
 t� ≤ g�w
 t� ≤ g1�w
0
 t��

Proof. We prove the second inequality, the first being similar. Extend g
to S× �× �0
∞� by

g�w
ξ
 t� �= g�w
 t��
For w ∈ S\�0	
 ξ ∈ � and t > 0,(

L1 −
∂

∂t

)
�g − g1� =

(
L1 −

∂

∂t

)
g = �L1 −L�g

= 1
8
u2 − ξ2 − k2
v2 + ξ2 + k2Lg = 1

8
u2 − ξ2 − k2
v2 + ξ2 + k2

∂g

∂t
≥ 0


(3.4)
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since u < k and ∂g
∂t

≤ 0. Moreover,

g − g1 = 0 for u = ±k
 �v
 ξ� ∈ �2 and t > 0
(3.5)

g − g1 = 0 for t = 0
 w ∈ �S\�0	 and ξ ∈ ��(3.6)

The next natural step would be to apply the maximum principle to conclude
g ≤ g1. However, L1 is not uniformly elliptic, and the smoothness of g at
w = 0 is not known. Thus the maximum principle does not apply, at least not
directly. We get around this by using Itô’s formula. Write

W1 = (
W

�1�
1 
W

�2�
1 
W

�3�
1 �


ζ1 = inf
{
t > 0� (W�1�

1 �t�
W�2�
1 �t�) /∈ S}


ζ2 = inf
{
t > 0� (W�1�

1 �t�
W�2�
1 �t�) = δ

}



ζ3 = inf
{
t > 0� W1�t� =M

}



ζ = ζ1 ∧ ζ2 ∧ ζ3�
Then for T > 0
 w ∈ S\�0	
 ξ ∈ � with �w
ξ� < M and w > δ, by Itô’s
formula and optional stopping applied to f�w
ξ
 t� = �g − g1��w
ξ
T− t�,

E�w
ξ�
[
f
(
W1�T ∧ ζ�
T ∧ ζ)]

= f�w
ξ
0� +E�w
ξ�

[∫ T∧ζ
0

[
L1f+ ∂f

∂s

](
W1�s�
 s

)
ds

]
�

(3.7)

Then by (3.4)–(3.6),

�g − g1��w
ξ
T� ≤ �g − g1��w
ξ
T�

+E�w
ξ�

{∫ T∧ζ
0

[(
L1 −

∂

∂s

)
�g − g1�

(
W1�s�
T− s)]ds}

= E�w
ξ�
[
f
(
W1�T ∧ ζ�)
T ∧ ζ)] [by (3.7)]

= E�w
ξ�
[�g − g1�

(
W1�T�
0

)
I�T < ζ�]

+E�w
ξ�
[�g − g1�

(
W1�ζ1�
T− ζ1

)
I�ζ1 < T ∧ ζ2 ∧ ζ3�

]
+E�w
ξ�

[�g − g1�
(
W1�ζ2�
T− ζ2

)
I�ζ2 < T ∧ ζ1 ∧ ζ3�

]
+E�w
ξ�

[�g − g1�
(
W1�ζ3�
T− ζ3

)
I�ζ3 < T ∧ ζ1 ∧ ζ2�

]
≤ 0+ 0+P�w
ξ��ζ2 < T� +P�w
ξ��ζ3 < T��

These last two quantities also go to zero as δ → 0 and M → ∞, since W1
neither explodes nor hits ��u
 v
 ξ� ∈ �3� �u
 v� = 0	. Hence

�g − g1��w
ξ
T� ≤ 0


as desired. ✷
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The reason for introducing g1 and g2 is that they have eigenfunction expan-
sions. Such expansions follow exactly as in DeBlassie (1987). For w = �u
 v� ∈
S\�0	,

g1�w
ξ
 t� =
∞∑
n=0

Fn�v
 ξ
 t�Hn�u�
(3.8)

g2�w
 t� =
∞∑
n=0

Gn�v
 t�Hn�u�
(3.9)

where

Hn�u� = sin
( �2n+ 1�π

2k
�u+ k�

)

 u < k


Fn�v
 ξ
 t� =
1
k

∫ k
−k
g1�w
ξ
 t�Hn�u�du


Gn�v
 t� =
1
k

∫ k
−k
g2�w
 t�Hn�u�du�

Using (3.2) and (3.3), it is easy to check that for λn = ��2n+1�π2k �2, Fn and Gn

satisfy

1
8

1
v2+ξ2+k2

[
∂2

∂v2
+ ∂2

∂ξ2
−λn

]
Fn=

∂Fn

∂t

 for �v
ξ�∈�2 and t>0,

Fn�v
ξ
0�=
4

π�2n+1� 
 for �v
ξ�∈�2

(3.10)

and 


1
8
1
v2

[
∂2

∂v2
− λn

]
Gn = ∂Gn

∂t

 for t > 0
 v > ε,

Gn�ε
 t� = 0
 for t > 0,

Gn�v
0� =
4

π�2n+ 1� 
 for v > ε.

(3.11)

With Z and R being the diffusions in �2 and � corresponding to the opera-
tors LZ from (2.3) and LR from (2.4), respectively, (as in Section 2) and define

τε�R� �= inf�t > 0� Rt = ε	�
By the Feynman–Kac formula,

Fn�v
ξ
t�=
4

π�2n+1�E�v
ξ�

[
exp

(
−λn

8

∫ t
0

ds

Zs2+k2
)]

 �v
ξ�∈�2(3.12)

and

Gn�v
t�=
4

π�2n+1�Ev

[
I
(
τε�R�>t)exp(−λn

8

∫ t
0

ds

R2
s

)]

 v>ε�(3.13)

Hence by Lemma 3.1, the conclusion of Lemma 2.2 holds with I�τ0�R� > t�
replaced by I�τε�R� > t�. By Abel’s test we can let ε → 0 and replace τε�R�
by τ0�R�, giving the conclusion of Lemma 2.2. ✷
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4. Bounds on the Feynman–Kac functionals via Bessel processes.
In this section, estimates in terms of Bessel processes are derived for the
Feynman–Kac functionals,

Ev

[
I
(
τ0�R� > t) exp(−λn

8

∫ t
0

ds

R2
s

)]



E�v
0�

[
exp

(
−λn

8

∫ t
0

ds

Zs2 + k2
)]
�

The first step is a comparison lemma.

Lemma 4.1. For v > 0 and t > 0,

Ev

[
I
(
τ0�R� > t) exp(−λn

8

∫ t
0

ds

R2
s

)]
≤ E�v
0�

[
exp

(
−λn

8

∫ t
0

ds

Zs2 + k2
)]
�

Proof. By (3.12) and (3.13), it is enough to show

Gn�v
 t� ≤ Fn�v
0
 t� for v > ε
 t > 0.(4.1)

By (3.10) and (3.11), since Gn is independent of ξ,{
1
8

1
v2 + ξ2 + k2

[
∂2

∂v2
+ ∂2

∂ξ2
− λn

]
− ∂

∂t

}(
Gn�v
 t� −Fn�v
 ξ
 t�

)

=
{
1
8

1
v2 + ξ2 + k2

[
∂2

∂v2
+ ∂2

∂ξ2
− λn

]
− ∂

∂t

}
Gn�v
 t�

=
{
1
8

1
v2 + ξ2 + k2

[
∂2

∂v2
− λn

]
− 1

8
1
v2

[
∂2

∂v2
− λn

]}
Gn�v
 t�

= −1
8

ξ2 + k2
v2 + ξ2 + k2

1
v2

[
∂2

∂v2
− λn

]
Gn�v
 t�

= − ξ2 + k2
v2 + ξ2 + k2

∂Gn

∂t

≥ 0�

(4.2)

Moreover, {
Gn�v
0� −Fn�v
 ξ
0� = 0
 for v > ε
 ξ ∈ �,
Gn�ε
 t� −Fn�ε
 ξ
 t� ≤ 0
 for t > 0
 ξ ∈ �.(4.3)

Define for z = �v
 ξ�,
f�z
 t� = Gn�v
 t� −Fn�v
 ξ
 t�

and set

β1 �= inf�t > 0� Z�1�
t = ε	


β2 �= inf�t > 0� Zt =M	 and

β = β1 ∧ β2�
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By Itô’s formula and optional stopping we have, for �v
 ξ� <M and v > ε,

E�v
ξ�

[
f�ZT∧β
T−T∧β�exp

(
−λn

8

∫ T∧β
0

ds

Zs2+k2
)]

=f�z
T�+E�v
ξ�

[∫ T∧β
0

{
1
8

1
Zs2+k2

[
∂2

∂v2
+ ∂2

∂ξ2
−λn

]
f− ∂f

∂t

}
�Zs
T−s�ds

]
≥f�z
T�


by (4.2). Moreover, if T ≤ β,
f�ZT∧β
T−T ∧ β� = f�ZT
0� = 0 by (4.3).

Also, if β1 = T ∧ β,
f�ZT∧β
T−T ∧ β� = f�Zβ1


T− β1� ≤ 0

and if β2 = T ∧ β,

f�ZT∧β
T−T ∧ β� = f�Zβ2

T− β2� ≤

4
�2n+ 1�π

by (3.13). Hence

f�z
T� ≤ 4
�2n+ 1�πP�v
 ξ��β2 < T��

Since β2 → ∞ as M→ ∞, this yields f�z
T� ≤ 0 for T > 0 and v > ε. Thus
Gn�v
 t� ≤ Fn�v
 ξ
 t� for v > ε
 t > 0 and ξ ∈ �, giving (4.1). ✷

Remark 4.2. The lemma is true for λn replaced by any λ > 0.
Next we bound from below the Feynman–Kac functional involving R.

Lemma 4.3. Let Bt be a one-dimensional Brownian motion. Then for v > 0
and λ > 0,

Ev2

[
I
(
τ0�B� > t) exp(−λ ∫ t

0

ds

Bs
)]

≤ Ev

[
I
(
τ0�R� > t) exp(−λ ∫ t

0

ds

R2
s

)]
�

Proof. Up to time τ0�R�
R solves the stochastic differential equation

dRt =
1

2Rt

dβt


R0 = v


where β is a one-dimensional Brownian motion. Then by Itô’s formula, R4
t

is a squared Bessel process of dimension 3/2. Since B2
t is a squared Bessel

process with dimension 1, if B0 = v2 then by the Ikeda–Watanabe comparison
theorem [see Rogers and Williams (1987), Theorem 43, 1 on page 269], the
conclusion of the lemma holds. ✷

Now, we look for an upper bound of the functional involving Z.
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Theorem 4.4. For each A > 0 there is an integer p = p�A� ≥ 3 such that
if γt is a squared Bessel process with dimension p, for λ > 0 and v ∈ �0
A1/2�,

E�v
0�

[
exp

(
−λ

∫ t
0

ds

Zs2 + k2
)]

≤ Ev4

[
exp

(
−λ

∫ t
0

ds

γ
1/2
s + k2

)]
�

Proof. The process Zt satisfies the stochastic differential equation

dZt = 1
2�Zt2 + k2�−1/2dβt


Z0 = �v
0�

where now βt is two-dimensional Brownian motion. Set

Yt = Zt4�
By Itô’s formula,

dYt =
2Zt3√
Zt2 + k2

[
Zt

Zt
· dβt

]
+ 2

Zt2
Zt2 + k2

dt

= 2Y3/4
t√

Y
1/2
t + k2

dMt +
2Y1/2

t

Y
1/2
t + k2

dt


where dMt = Zt

Zt · dβt is one-dimensional Brownian motion [note since Z0 =
�v
0� �= 0, Zt never hits 0]. Thus,

dYt = σ1�Yt�dMt +
2Y1/2

t

Y
1/2
t + k2

dt


Y0 = v4


(4.4)

where

σ1�y� = 2
[

y3/2

y1/2 + k2
]1/2

�(4.5)

Let γt be the square of a Bessel process with integer dimension p ≥ 3 to be
chosen later,

dγt = σ2�γt�dMt + pdt

γ0 = v4


(4.6)

where

σ2�y� = 2
√
y�(4.7)

We use an idea of O’Brien (1980). Define for y > 0,

A1�y� =
2y1/2 + k2

4y1/4�y1/2 + k2�3/2(4.8)
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and

A2�y� =
p− 1
2
√
y
�(4.9)

Then [
A1�y� +

1
2
σ ′
1�y�

]
σ1�y� =

2y1/2

y1/2 + k2(4.10)

and [
A2�y� +

1
2
σ ′
2�y�

]
σ2�y� = p�(4.11)

Finally, for i = 1
2 define

Fi�y� =
∫ y
v4

1
σi�u�

du
 y ≥ 0�

Note

F−1
2 �x� = �x+ v2�2�(4.12)

We now need a technical lemma which we prove at the end of this section.

Lemma 4.5. There is an integer p ≥ 3 such that

F1�y� + v2
p− 1

≤ 2y1/4�y1/2 + k2�3/2
2y1/2 + k2 
 y > 0�

This lemma and (4.12) imply

A2 ◦F−1
2 ◦F1�y� = A2

([
F1�y� + v2

]2) = p− 1
2�F1�y� + v2�

≥ 2y1/2 + k2
4y1/4�y1/2 + k2�3/2 = A1�y��

(4.13)

Writing

U1�t� = F1�Yt�

U2�t� = F2�γt�

by Itô’s formula, by (4.4) and (4.6), and by the fact that Yt and γt never hit 0,

dU1�t� = F′
1�Yt�

[
σ1�Yt�dMt +

2Y1/2
t

Y
1/2
t + k2

dt

]
+ 1

2
F′′

1�Yt�σ1�Yt�2 dt

= dMt +
[

1
σ1�Yt�

· 2Y1/2
t

Y
1/2
t + k2

− 1
2
σ ′
1�Yt�

]
dt

= dMt +A1�Yt�dt [by (4.10)]

= dMt +A1 ◦F−1
1

(
U1�t�

)
dt
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and similarly, using (4.11),

dU2�t� = dMt +A2 ◦F−1
2

(
U2�t�

)
dt�

Since Ui�0� = Fi�v4� = 0, by (4.13) and the Ikeda–Watanabe comparison
theorem cited above,

U1�t� ≤ U2�t��
That is, ∫ Yt

v4
σ1�u�−1du ≤

∫ γt
v4
σ2�u�−1du�(4.14)

From (4.5),

σ1�y� = 2y1/2
[

y1/2

y1/2 + k2
]1/2

≤ 2y1/2 = σ2�y�


so we have ∫ y
v4
σ1�u�−1 du ≥

∫ y
v4
σ2�u�−1du�

Combined with (4.14), it follows that

Yt ≤ γt
(this is O’Brien’s idea), and hence

E�v
0�

[
exp

(
−λ

∫ t
0

ds

Zs2 + k2
)]

= Ev4

[
exp

(
−λ

∫ t
0

ds

Y
1/2
s + k2

)]

≤ Ev4

[
exp

(
−λ

∫ t
0

ds

γ
1/2
s + k2

)]

as desired.
We close this section with the proof of Lemma 4.5. Performing the integra-

tion (which can easily be done using MAPLE) we find that

F1�y� = y1/4�y1/2 + k2�1/2 − v�v2 + k2�1/2

+k2 ln(y1/4 + �y1/2 + k2�1/2)− k2 ln(v+ �v2 + k2�1/2)�
Then

F1�y�+v2 ≤ y1/4�y1/2+k2�1/2−v�v2+k2�1/2+k2ln(y1/4+�y1/2+k2�1/2)
−k2lnk+v2(4.15)

≤ y1/4�y1/2+k2�1/2+k2lny
1/4+�y1/2+k2�1/2

k
�

Now for RHS = right-hand side,

lim
y→0+

y−1/4 RHS (4.15) = 2k
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and

lim
y→0+

y−1/4 · 2y
1/4�y1/2 + k2�3/2
2y1/2 + k2 = 2k�

Hence for some δ > 0 we have for 0 < y < δ,

1
2

[
y1/4�y1/2+k2�1/2+k2lny

1/4+�y1/2+k2�1/2
k

]
≤ 2y1/4�y1/2+k2�3/2

2y1/2+k2 �(4.16)

By (4.15), for p ≥ 3, this yields

F1�y� + v2
p− 1

≤ 2y1/4�y1/2 + k2�3/2
2y1/2 + k2 
 0 ≤ y ≤ δ�(4.17)

Also,

lim
y→∞y

−1/2
[
y1/4�y1/2 + k2�1/2 + k2 ln y

1/4 + �y1/2 + k2�1/2
k

]
= 1

and

lim
y→∞y

−1/2 · 2y
1/4�y1/2 + k2�3/2
2y1/2 + k2 = 1�

So for some M > 0, (4.16) holds for y ≥ M, and therefore by (4.15), (4.17)
also holds for y ≥M and p ≥ 3. Notice that both δ andM are independent of
p ≥ 3.

Now choose the integer p ≥ 3 so large that

inf
δ≤y≤M

2y1/4�y1/2 + k2�3/2
2y1/2 + k2 ≥ 1

p− 1
sup
δ≤y≤M

RHS (4.15).

Then (4.17) holds for δ ≤ y ≤M. In any event, we have shown for this choice
of p, (4.17) holds for all y ≥ 0. This proves the lemma. ✷

5. Bounds on the Bessel expectations and proof of Theorem 2.3. By
Lemma 4.1, Remark 4.2, Lemma 4.3 and Theorem 4.4, Theorem 2.3 is an
immediate consequence of the following theorem.

Theorem 5.1. For each v > 0 there exist positive constants A1 and A2 such
that for any λ > 0,

−A1 ≤ lim inf
t→∞

λ−2/3t−1/3 log
(
Ev

[
I
(
τ0�B� > t) exp(−λ ∫ t

0

ds

Bs
)])

(5.1)

and

lim sup
t→∞

λ−2/3t−1/3 log
(
Ev

[
exp

(
−λ

∫ t
0

ds

γ
1/2
s + k2

)])
≤ −A2
(5.2)

where Bt is one-dimensional Brownian motion and γt is the square of a Bessel
process with integer dimension p ≥ 3.
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Proof. For d = 1 or p, let βt be d-dimensional Brownian motion starting
from 0. Let Pε be the law of

√
εβt on C0��0
1�
�d�, the space of continuous

functions on [0,1] which vanish at 0. First we consider (5.1), so take d = 1.
For typographical simplicity, write P = P1� Then for v > 0, changing variables
s = ut and using scaling in the third line,

Ev

[
I
(
τ0�B� > t) exp(−λ ∫ t

0

ds

Bs
)]

= Ev

[
exp

(
−λ

∫ t
0

1
Bs

ds

)]

= E

[
exp

(
−λ

∫ t
0

1
βs + v

ds

)]

= E

[
exp

(
−λ√t

∫ 1

0

1

βu + v/
√
tdu

)]

= E

[
exp

(
−λ√tε

∫ 1

0

1
√ε βu + v

√
ε/t du

)]
�

(5.3)

Let α ∈ �1/2
1� and define

g�u� = uα�

Set

η = inf�u > 0� √εβu + v
√
ε/t ≤ g�u�	

and

ζ = inf�u > 0� βu ≤ −v√t	�
The right-hand side of (5.3) is greater than or equal to

E

[
I�η > 1� exp

(
−λ√tε

∫ 1

0

du

g�u�
)]



and if Qε is the law of β�t� − g�t�√
ε
, then the last expectation is

exp
(
−λ√tε

∫ 1

0

du

g�u�
)
Qε�ζ > 1��

Thus (5.3) becomes

Ev

[
I�τ0 > t� exp

(
−λ

∫ t
0

ds

Bs
)]

≥ exp
(
−λ√tε

∫ 1

0

du

g�u�
)
Qε�ζ > 1��

(5.4)

By the Cameron–Martin–Girsanov formula, Qε is absolutely continuous
with respect to P and the Radon–Nikodym derivative is

dQε

dP
= exp

(
− 1√

ε

∫ 1

0
g′�t�dβt −

1
2ε

∫ t
0

[
g′�t�]2dt)�
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Although g′ is singular at 0

∫ 1
0 �g′�t��2 <∞, so this is well defined. Hence

Qε�ζ>1� = E

[
I�ζ>1�exp

(
− 1√

ε

∫ 1

0
g′�u�dβu−

1
2ε

∫ 1

0

[
g′�u�]2du)]

= exp
(
− 1
2ε

∫ 1

0

[
g′�u�]2du)E[

I�ζ>1�exp
(
−1
ε

∫ 1

0
g′�u�dβu

)]
�

(5.5)

For any δ > 0,

E

[
I�ζ > 1� exp

(
− 1√

ε

∫ 1

0
g′�u�dβu

)]

≥ E
[
I�ζ > 1�e−δ/εI

(∫ 1

0
g′�u�dβu ≤ δ/√ε

)]

= e−δ/ε
[
P�ζ > 1� −P

(
ζ > 1


∫ 1

0
g′�u�dβu > δ/

√
ε

)]
�

(5.6)

Since P is the law of one-dimensional Brownian motion started at 0, it is
well known that

P�ζ > 1� = 2√
2π

∫ v/√t
−∞

e−u
2/2du− 1

= 2√
2π

∫ v/√t
0

e−u
2/2 du

∼
√

2
π
�v/√t� as t→ ∞

(5.7)

(here f ∼ h as t→ ∞ means limt→∞
f
h
= 1). Also,

P

(
ζ > 1


∫ 1

0
g′�u�dβu > δ/

√
ε

)
≤ e−δ/

√
εE

[
exp

(∫ 1

0
g′�u�dβu

)]
= Ce−δ/

√
ε


since
∫ 1
0 g

′�u�dβu is Gaussian with variance
∫ 1
0 �g′�u��2 du under P. Taking

ε = λ−2/3t−1/3
(5.8)

we get

P

(
ζ > 1


∫ 1

0
g′�u�dβu > δ/

√
ε

)
= o

(
P�ζ > 1�) as t→ ∞�(5.9)

Using (5.4)–(5.6) and (5.8),

ε logEv

[
I�τ0 > t� exp

(
−λ

∫ t
0

ds

Bs
)]

≥ −λ
√
tε3

∫ 1

0

du

g�u� −
1
2

∫ 1

0
�g′�u��2 du

− δ+ ε log
[
P�ζ > 1� −P

(
ζ > 1


∫ 1

0
g′�u�dβu > δ/

√
ε

)]
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= −
∫ 1

0

du

g�u� −
1
2

∫ 1

0

[
g′�u�]2du− δ+ ε logP�ζ > 1�

+ ε log
[
1− P�ζ > 1


∫ 1
0 g

′�u�dβu > δ/
√
ε�

P�ζ > 1�
]
�

By (5.7)–(5.9), this yields

lim inf
t→∞

λ−2/3t−1/3 logEv

[
I�τ0 > t� exp

(
−λ

∫ t
0

ds

Bs
)]

≥ −
∫ 1

0

du

g�u� −
1
2

∫ 1

0

[
g′�u�]2 du− δ�

Since δ > 0 was arbitrary, (5.1) holds with

A1 =
∫ 1

0

du

g�u� +
1
2

∫ 1

0

[
g′�u�]2 du�

Now for (5.2). This time d = p ≥ 3. Changing variables s = ut and using
scaling of γt,

Ev

[
exp

(
−λ

∫ t
0

ds

γ
1/2
s + k2

)]
= Ev

[
exp

(
−λ

∫ 1

0

t du

γ
1/2
ut + k2

)]

= Ev/t

[
exp

(
−λ

∫ 1

0

t du

t1/2γ
1/2
u + k2

)]

= Ev/t

[
exp

(
−λt1/2

∫ 1

0

du

γ
1/2
u + k2/t1/2

)]
�

Writing

ε = λ−2/3t−1/3

and denoting by ωu the coordinate process on C0��0
1�
�d�, this becomes

Ev/t

[
exp

(
−λt1/2ε3/2 1

ε

∫ 1

0

du

�εγu�1/2 + k2�ε/t�1/2
)]

= Ev/t

[
exp

(
−1
ε

∫ 1

0

du

�εγu�1/2 + k2�ε/t�1/2
)]

= E

[
exp

(
−1
ε

∫ 1

0

du√
εβu + �v/t�1/2 + k2�ε/t�1/2

)]

≤ E
[
exp

(
−1
ε

∫ 1

0

du√
εβu + �εv/t�1/2 + k2�ε/t�1/2

)]

= EPε
[
exp

(
−1
ε

∫ 1

0

du

ωu + �εv/t�1/2 + k2�ε/t�1/2
)]

= EPε
[
exp

(
−1
ε
Fε�ω�

)]



(5.10)
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where

Fε�ω� =
∫ 1

0

du

ωu + �vε/t�1/2 + k2�ε/t�1/2 �(5.11)

Define

F�ω� =


∫ 1
0
du

ωu

 if integral exists,

∞
 otherwise.

Then F is nonnegative, and by Fatou’s lemma it is lower semicontinuous on
C0��0
1�
�p�. Also, as ωn → ω in C0��0
1�
�p� and ε→ 0, by Fatou’s lemma,

F�ω� ≤ lim inf
ε→0
n→∞

Fε�ωn��

Application of Theorem 2.3 on page 4 of Varadhan (1984) gives

lim sup
ε→0

ε logEPε
[
exp

(
−1
ε
Fε�ω�

)]
≤ − inf

ω∈C0

[
F�ω� + I�ω�]

where C0 = C0��0
1�
�p� and I�ω� = 1
2

∫ 1
0 ω′�t�2 dt if ω is absolutely continu-

ous with square integrable derivative ω′ and I�ω� = ∞ otherwise. Expression
(5.2) follows from this and (5.10) with

A2 = inf
ω∈C0

[
F�ω� + I�ω�]


once we show the infimum is positive and finite.
To this end, let �e1
 � � � 
 ep	 be the natural basis of �p and let ω�u� = u2/3e1.

Clearly, the infimum is finite. To show positivity, assume the contrary. Then
there is a sequence ωn ∈ C0 such that

F�ωn� + I�ωn� → 0 as n→ ∞�
In particular, ∫ 1

0
ω′

n�u�2 du = 2I�ωn� → 0 and F�ωn� → 0�

Then for each n there is a set In ⊆ �0
1� with zero Lebesgue measure such
that for t ∈ �0
1�\In,

ωn�t� =
∣∣∣∣ ∫ t0 ω′

n�u�du
∣∣∣∣ ≤ ∫ t

0
ω′

n�u�du�

Hence for t ∈ �0
1�\⋃n In,

ωn�t� → 0 as n→ ∞�
that is, ωn → 0 almost everywhere as n→ ∞. This forces

F�ωn� =
∫ 1

0

1
ωn�t�

dt→ ∞


contrary to F�ωn� → 0. Hence the infimum must be positive as claimed. ✷
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R. Bañuelos
Department of Mathematics
Purdue University
West Lafayette, Indiana 47907
E-mail: banuelos@math.purdue.edu

D. DeBlassie
Department of Mathematics
Texas A&M University
College Station, Texas 77843

R. Smits
Department of Mathematics
Towson University
8000 York Road
Towson, Maryland 21252


