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LONG-TIME TAILS IN THE PARABOLIC ANDERSON MODEL
WITH BOUNDED POTENTIAL

By Marek Biskup and Wolfgang König

Microsoft Research and Technische Universität Berlin

We consider the parabolic Anderson problem ∂tu = κ�u + ξu on
�0�∞� × �d with random i.i.d. potential ξ = �ξ�z��z∈�d and the initial
condition u�0� ·� ≡ 1. Our main assumption is that esssup ξ�0� = 0. De-
pending on the thickness of the distribution Prob�ξ�0� ∈ ·� close to its
essential supremum, we identify both the asymptotics of the moments of
u�t�0� and the almost-sure asymptotics of u�t�0� as t → ∞ in terms of
variational problems. As a by-product, we establish Lifshitz tails for the
random Schrödinger operator −κ� − ξ at the bottom of its spectrum. In
our class of ξ distributions, the Lifshitz exponent ranges from d/2 to ∞;
the power law is typically accompanied by lower-order corrections.

1. Introduction and statement of results.

1.1. Model and motivation. In recent years, systems with a priori disorder
have become one of the central objects of study in both probability theory and
mathematical physics. Two of the pending open problems are the behavior of
the simple random walk in random environment on the side of probability
theory and understanding of the spectral properties of the so-called Anderson
Hamiltonian on the side of (mathematical) solid state physics. The parabolic
Anderson model studied in this paper encompasses various features of both
aforementioned problems and thus provides a close link between the two seem-
ingly rather remote areas. In particular, long-time tails in the parabolic model
are intimately connected with the mass distribution of the spectral measure
at the bottom of the spectrum for a class of Anderson Hamiltonians, and with
the asymptotic scaling behavior of the random walk in random environment.
The parabolic Anderson model is the Euclidean-time (or diffusion) version

of the Schrödinger equation with a random potential. More precisely, the name
refers to the initial problem

∂t u�t� z� = κ�du�t� z� + ξ�z�u�t� z�� �t� z� ∈ �0�∞�× �d�

u�0� z� = 1� z ∈ �d�
(1.1)

where ∂t is the time derivative, u: �0�∞�×�d → �0�∞� is a function, κ > 0 is
a diffusion constant, �d is the discrete Laplacian ��df
�z� =∑y∼z�f�y�−f�z��
(here y ∼ z denotes that y and z are nearest neighbors), and ξ = �ξ�z��z∈�d is
a random i.i.d. potential. Let us use � · � to denote the expectation with respect
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to ξ and let Prob�·� denote the corresponding probability measure. The main
subject of our interest concerning (1.1) is the large time behavior of the pth
moment �u�t�0�p� for all p > 0 and the almost-sure asymptotics of u�t�0�.
The quantity u�t� z� can be interpreted as the expected total mass at time

t carried by a particle placed at time 0 at site z with a unit mass on it. The
particle diffuses on �d like a simple random walk with generator κ�d; when
present at site x, its mass is increased/decreased by an infinitesimal amount
at rate ±ξ�x� ∨ 0. Of particular interest is the phenomenon of intermittency:
The total mass at time t comes mainly from passing through certain small t-
dependent regions, the “relevant islands,” where the potential ξ is large and of
particular preferred shape. Intermittency is reflected (and sometimes defined)
by a comparison of the asymptotics of �u�t�0�p�1/p for different p and/or by a
comparison of the growths of �u�t�0�� and u�t�0�, see also Remarks 4 and 5
below. For general aspects of intermittency see Gärtner and Molchanov (1990)
and the monograph of Carmona and Molchanov (1994).

1.2. Assumptions. Since the time evolution in (1.1) is driven by the opera-
tor κ�d+ξ, it is clear that both large t asymptotics of u�t�0� are determined by
the upper tails of the random variable ξ�0�. Our principal assumption is that
the support of ξ�0� is bounded from above. As then follows by applying a crite-
rion derived in Gärtner and Molchanov (1990), there is a unique non-negative
solution to (1.1) for almost all ξ. Moreover, since ξ�·� → ξ�·�+a is compensated
by u�t� ·� → eatu�t� ·� in (1.1), we assume without loss of generality that ξ�0�
is a non-degenerate random variable with

esssup ξ�0� = 0�(1.2)

Hence, our potential ξ is non-positive throughout �d, that is, every lattice site
x is either neutral (ξ�x� = 0) or a “soft trap” (−∞ < ξ�x� < 0) or a “hard trap”
(ξ�x� = −∞). Furthermore, ξ�x� exceeds any negative value with positive
probability. Note that a priori we do not exclude hard traps, but some restric-
tions to the size of Prob�ξ�0� = −∞� have to be imposed in order to have an
interesting almost-sure asymptotics (see Theorem 1.5). The important special
case of “Bernoulli traps,” where the potential attains only the values 0 and
−∞, has already extensively been studied by, for example, Donsker and Varad-
han (1979), Antal (1995) and in a continuous analogue by Sznitman (1998).
As we have indicated above, our results will prominently depend on the

asymptotics of Prob�ξ�0� > −x� as x ↓ 0. Actually, they turn out to depend on
two parameters A ∈ �0�∞� and γ ∈ �0�1� only, which appear as follows:

Prob
(
ξ�0� > −x) = exp

{
−Ax−

γ
1−γ+o�1�

}
� x ↓ 0�(1.3)

The reader should keep (1.3) in mind as the main representative of the dis-
tributions we are considering. The case γ = 0 contains the above mentioned
special case of “Bernoulli traps.”
However, our precise assumption on the thickness of Prob�ξ�0� ∈ ·� at zero

will be more technical. As turns out to be more convenient for our proofs, we
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describe the upper tail of Prob�ξ�0� ∈ ·� in terms of scaling properties of the
cumulant generating function

H��� = log�e�ξ�0��� � ≥ 0�(1.4)

The reason is that H naturally appears once expectation with respect to ξ is
taken on the Feynman-Kac representation of u�t�0�; see, for example, formula
(4.8). Note that H is convex and, by (1.2), decreasing and strictly negative on
�0�∞�.

Scaling Assumption. We assume that there is a non-decreasing function
t �→ αt ∈ �0�∞� and a function H̃: �0�∞� → �−∞�0
, H̃ �≡ 0, such that

lim
t→∞

αd+2t

t
H

(
t

αdt
y

)
= H̃�y�� y ≥ 0�(1.5)

uniformly on compact sets in �0�∞�.
Informally and intuitively, the scale function αt admits the interpretation

as the asymptotic diameter of the “relevant islands” from which the main
contribution to the expected total mass �u�t�0�� comes; see also subsection 2.1.
The choice of the scaling ratios αd+2t /t and t/αdt in (1.2) is dictated by matching
two large-deviation scales: one (roughly) for the range of the simple random
walk, the other for the size of the field ξ; see subsection 2.1.

Remark 1. The finiteness and non-triviality of H̃ necessitate that t/αdt →
∞ and αt = O�t1/�d+2�). In the asymptotic sense, (1.5) and non-triviality of H̃
determine the pair �αt� H̃� uniquely up to a constant multiple resp. scaling.
Indeed, if �α̂t� Ĥ� is another pair satisfying the Scaling Assumption then, nec-
essarily, α̂t/αt → c �= 0�∞ and Ĥ�·� = cd+2H̃�·/cd�. Moreover, if t �→ α̂t is a
positive function with α̂t/αt → 0, then the limit in (1.5) gives Ĥ ≡ 0. Similarly,
if α̂t/αt →∞, then Ĥ ≡ −∞. These assertions follow directly from convexity
of H (see also subsection 3.2).

Our Scaling Assumption should be viewed as a more general form of (1.3)
that is better adapted to our proofs. Remarkably, it actually constrains the
form of possible H̃ to a two-parameter family and forces the scale function αt
to be regularly varying. The following claim is proved in subsection 3.2.

Proposition 1.1. Suppose that (1.2) and the Scaling Assumption hold.
Then

H̃�y� = H̃�1�yγ� y > 0�(1.6)

for some γ ∈ �0�1
. Moreover,

lim
t→∞

αpt

αt
= pν for all p > 0 and lim

t→∞
log αt
log t

= ν�(1.7)
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where

ν = 1− γ
d+ 2− dγ ∈

[
0�

1
d+ 2

]
�(1.8)

Remark 2. As is seen from (1.3), each value γ ∈ �0�1� can be attained.
Note that, despite the simplicity of possible H̃, the richness of the class of all
ξ distributions persists in the scaling behavior of αt = tν+o�1�. For instance, the
case γ = 0 includes both distributions with an atom at 0 and those with no
atom but with a density ρ (w.r.t. the Lebesgue measure) having the asymptotic
behavior ρ�x� ∼ �−x�σ �x ↑ 0� for a σ > −1. It is easy to find that αt = t1/�d+2�

[and H̃�1� = log Prob�ξ�0� = 0�] in the first case while αt = �t/ log t�1/�d+2� in
the second one. Yet thinner a tail has ρ�x� ∼ exp�− logτ �x�−1� with τ > 1, for
which we find αt = �t/ logτ t�1/�d+2�. Similar examples exist for any γ ∈ �0�1�.
Proposition 1.1 leads us to the following useful concept:

Definition. Given a γ ∈ �0�1
, we say that H is in the γ-class, if (1.2)
holds and there is a function t �→ αt such that �H�αt� satisfies the Scaling
Assumption and the limiting H̃ is homogeneous with exponent γ, as in (1.6).

Throughout the remainder of this paper, we restrict ourselves to the case
γ < 1. The case γ = 1 is qualitatively different from that of γ < 1; for more
explanation see subsections 2.2 and 2.5.
The rest of this paper is organized as follows. In the remainder of this

section we state our results (Theorems 1.2 and 1.5) on the moment and almost-
sure asymptotics of u�t�0� and on Lifshitz tails of the Schrödinger operator
−κ�d−ξ (Theorem 1.3). The next section contains heuristic explanation of the
proofs, discussion of the case γ = 1 in (1.3), some literature remarks, and a
list of open problems. Section 3 contains necessary definitions and proofs of
some technical claims (in particular, Proposition 1.1). The proofs of our main
results (Theorems 1.2 and 1.5) come in Sections 4 and 5.

1.3. Main results.
1.3.1. Fundamental objects. First we introduce some objects needed for

the definition of the quantity χ which is basic for all our results. An uninter-
ested reader may consider skipping these definitions and passing directly to
subsection 1.3.2.

Function spaces. Define

� =
{
f ∈ Cc��d� �0�∞��: �f�1 = 1

}
�(1.9)

and for R > 0, let �R be set of f ∈ � with support in �−R�R
d. By C+�R�
(resp. C−�R�) we denote the set of continuous functions �−R�R
d → �0�∞�
(resp. �−R�R
d → �−∞�0
). Note that functions in �R vanish at the boundary
of �−R�R
d, while those in C±�R� may not.
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Functionals. Let � :� → �0�∞
 be the Donsker-Varadhan rate functional

� �f� =
{
κ
∥∥�−�� 12√f∥∥22� if

√
f ∈ �

(�−�� 12 )�
∞� otherwise,

(1.10)

where � is the Laplace operator on L2��d� (defined as a self-adjoint extension
of
∑

i�∂2/∂x2i � from, for example, the Schwarz class on �d) and � ��−��1/2�
denotes the domain of its square root. Note that � �f� is nothing but the
Dirichlet form of the Laplacian evaluated at f1/2.
For R > 0 we define the functional �R:C+�R� → �−∞�0
 by putting

�R�f� =
∫
�−R�R
d

H̃
(
f�x�)dx�(1.11)

Note that for H in the γ-class, �R�f� = H̃�1� ∫ f�x�γdx, with the interpre-
tation �R�f� = H̃�1��suppf� when γ = 0. Here � · � denotes the Lebesgue
measure.

Legendre transforms. Let �R:C−�R� → �0�∞
 be the Legendre transform
of �R,

�R�ψ� = sup
{�f�ψ� −�R�f�:f ∈ C+�R�� suppf ⊂ suppψ

}
�(1.12)

where we used the shorthand notation �f�ψ� = ∫ f�x�ψ�x�dx. If H is in the
γ-class, we get �R�ψ� = const�

∫ �ψ�x��− γ
1−γ dx for γ ∈ �0�1� and �R�ψ� =

−H̃�1� �suppψ� for γ = 0.
For any potential ψ ∈ C−�R�, we also need the principal (i.e., the largest)

eigenvalue of the operator κ� + ψ on L2��−R�R
d� with Dirichlet boundary
conditions, expressed either as the Legendre transform of � or in terms of
the Rayleigh-Ritz principle:

λR�ψ� = sup
{�f�ψ� −� �f�:f ∈ �R� suppf ⊂ suppψ

}
= sup

{�ψ�g2� − κ�∇g�22:g ∈ C∞c �suppψ���� �g�2 = 1
}
�

(1.13)

with the interpretation λR�0� = −∞.

Variational principles. Here is the main quantity of this subsection:

χ = inf
R>0

inf
{
� �f� −�R�f�:f ∈ �R

}
(1.14)

= inf
R>0

inf
{
�R�ψ� − λR�ψ�:ψ ∈ C−�R�

}
�(1.15)

where (1.15) is obtained from (1.14) by inserting (1.12) and the second line in
(1.13). Note that χ depends on γ and the constant H̃�1�.
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1.3.2. Moment asymptotics. We proceed by describing the logarithmic
asymptotics of the pth moment of u�t�0�; for the proof see Section 4.

Theorem 1.2. Suppose that (1.2) and the Scaling Assumption hold. Let
H be in the γ-class for some γ ∈ �0�1�. Then χ ∈ �0�∞� and

lim
t→∞

α2pt

pt
log
〈
u�t�0�p〉 = −χ�(1.16)

for every p ∈ �0�∞�.

Remark 3. Both formulas (1.14) and (1.15) arise in well-known large-
deviation statements: the former for an exponential functional of Brownian
occupation times, the latter for the principal eigenvalue for a scaled version of
the field ξ. Our proof pursues the route leading to (1.14); an approach based
on the second formula is heuristically explained in subsection 2.1.1.

Remark 4. Formula (1.16), together with the results of Proposition 1.1,
imply that

lim
t→∞

α2t
t
log

�u�t�0�p�1/p
�u�t�0�q�1/q = χ

(
q−2ν − p−2ν)� p� q ∈ �0�∞��(1.17)

wheneverH is in the γ-class, where ν > 0 is as in (1.8). In particular, �u�t�0�p�
for p > 1 decays much slower than �u�t�0��p. This is one widely used mani-
festation of intermittency.

1.3.3. Lifshitz tails. Based on Theorem 1.2, we can compute the asymp-
totics of the so-called integrated density of states (IDS) of the operator −κ�d−ξ
on the right-hand side of (1.1), at the bottom of its spectrum. Below we define
the IDS and list some of its basic properties. For a comprehensive treatment
and proofs we refer to the book by Carmona and Lacroix (1990).
The IDS is defined as follows: Let R > 0 and let us consider the operator

�R = −κ�d − ξ in �−R�R
d ∩ �x ∈ �d: ξ�x� > −∞� with Dirichlet boundary
conditions. Clearly, �R has a finite number of eigenvalues that we denote Ek,
so it is meaningful to consider the quantity

NR�E� = #�k:Ek ≤ E�� E ∈ ��(1.18)

The integrated density of states is then the limit

n�E� = lim
R→∞

NR�E�
�2R�d �(1.19)

giving n�E� the interpretation as the number of energy levels below E per
unit volume. The limit exists and is almost surely constant, as can be proved
using, for example, subadditivity.
It is clear that E �→ n�E� is monotone and that n�E� = 0 for all E < 0,

provided (1.2) is assumed. In the 1960’s, based on heuristic arguments, Lifshitz
postulated that n�E� behaves like exp�−const�E−δ� as E ↓ 0. This asymptotic
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form has been established rigorously in the so called “obstacle cases” (see
subsection 2.4) treated by Donsker and Varadhan (1979) and Sznitman (1998),
with δ = d/2. Here we generalize this result to our class of distributions with
γ < 1; however, in our cases the power-law is typically supplemented with a
lower-order correction. The result can concisely be formulated in terms of the
inverse function of t �→ αt:

Theorem 1.3. Suppose that (1.2) and the Scaling Assumption hold. Let
H be in the γ-class for some γ ∈ �0�1� and let α−1 be the inverse to the scaling
function t �→ αt. Then

lim
E↓0

log n�E�
Eα−1�E− 1

2 �
= − 2ν

1− 2ν

[�1− 2ν�χ]− 1
2ν(1.20)

where χ is as in (1.14) and ν is defined in (1.8).

Invoking (1.7), Eα−1�E−1/2� = E−1/β+o�1� as E ↓ 0, where

β = 2
d+ 2 γ

1−γ
= 2ν
1− 2ν

∈
(
0�

2
d

]
�(1.21)

In particular, 1/β is the Lifshitz exponent. Theorem 1.3 is proved in subsec-
tion 4.3.
1.3.4. Almost-sure asymptotics. The almost-sure behavior of u�t�0� de-

pends strongly on whether the origin belongs to a finite or infinite component
of the set 	 = �z ∈ �d: ξ�z� > −∞�. Indeed, if 0 is in a finite component of
	 , then u�t�0� decays exponentially with t. Thus, in order to get a non-trivial
almost-sure behavior of u�t�0� as t→∞, we need that 	 contains an infinite
component 	∞ and that 0 ∈ 	∞ occurs with a non-zero probability. In d ≥ 2,
this is guaranteed by requiring that Prob�ξ�0� > −∞� exceed the percolation
threshold pc�d� for site percolation on �d. In d = 1, 	 is percolating if and
only if Prob�ξ�0� > −∞� = 1; sufficient “connectivity” can be ensured only
under an extra condition on the lower tail of ξ�0�.
Suppose, without loss of generality, that t �→ t/α2t is strictly increasing (re-

call that αt = tν+o�1� with ν ≤ 1/3). Then we can define another scale function
t �→ bt ∈ �0�∞� by setting

bt

α2bt

= log t� t > 0�(1.22)

(In other words, bt is the inverse function of t �→ t/α2t evaluated at log t.) Let

χ̃ = − sup
R>0

sup
{
λR�ψ�:ψ ∈ C−�R�� �R�ψ� ≤ d

}
�(1.23)

In our description of the almost sure asymptotics, the pair �αbt� χ̃� will play
a role analogous to the pair �αt� χ� in Theorem 1.2 [in particular, αbt is the
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diameter of the “islands” in the “ξ landscape” dominating the a.s. asymptotics
of u�t�0�]. It is clear from Proposition 1.1 that

bt = �log t�
1

1−2ν+o�1� and α2bt =
(
log t
)β+o�1�

� t→∞�(1.24)

where β is as in (1.21). It turns out that χ̃ can be computed from χ:

Proposition 1.4. Suppose that (1.2) and the Scaling Assumption hold. Let
H be in the γ-class for some γ ∈ �0�1�. Let ν and β be as in (1.7) and (1.21).
Then χ̃ ∈ �0�∞� and

χ̃ = χ
1

1−2ν �1− 2ν�
(
2ν
d

)β
�(1.25)

where χ and χ̃ are as in (1.14) and (1.23).

The proof of Proposition 1.4 is given in subsection 3.3. In the special case
γ = 0, the relation (1.25) can independently be verified by inserting the explicit
expressions for χ and χ̃ derived, for example, in Sznitman (1998).
Our main result on the almost sure asymptotics reads as follows:

Theorem 1.5. Suppose that (1.2) and the Scaling Assumption hold. Let H
be in the γ-class for some γ ∈ �0�1�. In d ≥ 2, let Prob�ξ�0� > −∞� > pc�d�;
in d = 1, let �log�−ξ�0� ∨ 1�� <∞. Then

lim
t→∞

α2bt
t
log u�t�0� = −χ̃� Prob� · �0 ∈ 	∞� -almost surely�(1.26)

Theorem 1.5 is proved in Section 5; for a heuristic derivation see subsec-
tion 2.1.2.

Remark 5. From a comparison of the asymptotics in (1.16) and in (1.26), we
obtain another manifestation of intermittency: The moments of u�t�0� decay
much slower than the u�t�0� itself.
Assuming that there is no critical site percolation in dimensions d ≥ 2, The-

orem 1.5 and the arguments at the beginning of this subsection give a complete
description of possible leading-order almost-sure asymptotics of u�t�0�.
Remark 6. In d = 1, there is site percolation at pc�1� = 1 which is

the reason why an extra condition on the lower tail of Prob�ξ�0� ∈ ·� needs
to be assumed. If the lower tail is too heavy, that is, if log�−ξ�0� ∨ 1� is
not integrable, then a screening effect occurs: The mass flow over large dis-
tances is hampered by regions of large negative field, which cannot be cir-
cumvented due to one-dimensional topology. As has recently been shown in
Biskup and König (2000), u�t�0� decays faster than in the cases described in
Theorem 1.5.
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2. Heuristics, literature remarks and open problems.

2.1. Heuristic derivation. In our heuristics we use the interpretation of
(1.1) in terms of a particle system that randomly evolves in a random potential
of traps: A particle at z either jumps to its nearest neighbor at rate κ or is
killed at rate −ξ�z�. Then u�t�0� is the total expected number of particles
located at the origin at time t, provided the initial configuration had exactly
one particle at each lattice site.
It is clear from (1.2) that, by time t, the origin is not likely to be reached

by any particle from regions having distance more than t from the origin.
If ut�t�0� is the expected number of particles at the origin at time t under
the constraint that none of the particles has ever been outside of the box
Qt = �−t� t
d ∩ �d, then this should imply that

u�t�0� ≈ ut�t�0��(2.1)

The particle system in the boxQt is driven by the operator κ�d+ξ on the right-
hand side of (1.1) with zero boundary conditions on ∂Qt and the leading-order
behavior of ut should be governed by its principal (i.e., the largest) eigenvalue
λdt �ξ� in the sense that

ut�t�0� ≈ etλ
d
t �ξ��(2.2)

Based on (2.2), we can give a plausible explanation of our Theorems 1.2
and 1.5.
2.1.1. Moment asymptotics. Under the expectation with respect to ξ, there

is a possibility that �u�t�0��will be dominated by a set of ξ’s with exponentially
small probability. But then the decisive contribution to the average particle-
number at zero may come from much smaller a box than Qt. Let Rαt denote
the diameter of the purported box. Then we should have〈

ut�t�0�
〉 ≈ 〈exp�tλdRαt�〉�(2.3)

The proper choice of the scale function αt is determined by balancing the gain
in λdRαt�ξ� and the loss due to taking ξ’s with exponentially small probability.
Introducing the scaled field

ξ̄t�x� = α2t ξ
("xαt#)�(2.4)

the condition that these scales match for ξ̄t ≈ ψ ∈ C−�R� reads
log Prob�ξ̄t ≈ ψ� $ tλdRαt

(
α−2t ψ�·α−1t �

)
�(2.5)

By scaling properties of the continuous Laplace operator, the right-hand side
is approximately equal to �t/α2t �λR�ψ�, where λR�ψ� is defined in (1.13). On
the other hand, by our Scaling Assumption,

log Prob�ξ̄t ≈ ψ� ≈ − t

α2t
�R�ψ��(2.6)
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that is, we expect ξ̄t to satisfy a large-deviation principle with rate t/α2t and
rate function �R. Then the rates on both sides of (2.5) are identical and,
comparing also the prefactors, we have〈

exp�tλdRαt�1�ξ̄t ≈ ψ�
〉
≈ exp

{
t

α2t
�λR�ψ� −�R�ψ�


}
�(2.7)

Now collect (2.1), (2.3) and (2.7) and maximize over ψ ∈ C−�R� and over R > 0
to obtain formally the statement on the moment asymptotics in Theorem 1.2
for p = 1. Note that, by the above heuristic argument, αt is the spatial scale of
the “islands” in the potential landscape that are only relevant for the moments
of u�t�0�.
2.1.2. Almost-sure asymptotics. Based on the intuition developed for the

moment asymptotics, the decisive contribution to (2.2) should come from some
quite localized region in Qt. Suppose this region has size αbt , where bt is some
new running time scale, and divide Qt regularly into boxes of diameter Rαbt
(“microboxes”) with some R > 0. According to (2.6) with t replaced by bt, we
have for any ψ ∈ C−�R� with �R�ψ� ≤ d that

Prob�ξ̄bt ≈ ψ� ≈ exp

{
− bt

α2bt

�R�ψ�
}
≥ exp�−dbt/α2bt��(2.8)

Suppose that bt obeys (1.22). Then the right-hand side of (2.8) decays as fast
as t−d. Since there are of order td microboxes inQt, a Borel-Cantelli argument
implies that for any ψ with �R�ψ� < d, there will be a microbox in Qt where
ξ̄bt ≈ ψ. As before, tλdRαbt �ψ�·/αbt�/α

2
bt
� ≈ �t/α2bt�λR�ψ�, and by optimizing over

ψ, any value smaller than χ̃ can be attained by λR�ψ� in some microbox in Qt.
This suggests that u�t� ·� in the favorable microbox decays as described by

(1.26). It remains to ensure, and this is a non-trivial part of the argument, that
the particles that have survived in this microbox by time t can always reach
the origin within a negligible portion of time t. This requires, in particular,
that sites x with ξ�x� > −∞ form an infinite cluster containing the origin. If
the connection between 0 and the microbox can be guaranteed, u�t�0� should
exhibit the same leading-order decay, which is the essence of the claim in
Theorem 1.5. Note that, as before, αbt is the spatial scale of the islands relevant
for the random variable u�t�0�.

2.2. The case γ = 1. In the boundary case γ = 1 the relevant islands grow
(presumably) slower than any polynomial as t→∞ (i.e., αt = to�1�), and H̃ is
linear. As a consequence, the asymptotic expansions of �u�t�0�p� and u�t�0�
itself start with a field-driven term (i.e, a term independent of κ). In particular,
no variational problem is involved at the leading order and no information
about the “typical” configuration of the fields is gained.
To understand which ξ dominate the moments of u�t�0� we have to analyze

the next-order term. This requires imposing an additional assumption: We
suppose the existence of a new scale function t �→ ϑt, with αt = o�ϑt�, such
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that

lim
t→∞

ϑd+2
t

t

[
H

(
t

ϑd
t

y

)
−H
(
t

ϑd
t

)
y

]
= Ĥ�y�(2.9)

exists (and is not identically zero) locally uniformly in y ∈ �0�∞�. Analogous
heuristic to that we used to explain the main idea of Theorem 1.2 outputs the
asymptotic expansion of the first moment

�u�t�0�� = exp
[
ϑd
t H

(
t

ϑd
t

)
− �t/ϑ2

t � �χ̂+ o�1��
]
�(2.10)

where χ̂ is defined as in subsection 1.3.1 with H̃ replaced by Ĥ.
Similar scenario should occur for the almost-sure asymptotics. Indeed, set-

ting

ψ�x� = �ϑd
t /t�H�t/ϑd

t � +ϑ−2t ψ2�x/ϑt�(2.11)

with some ψ2 ∈ C−�R�, formula (2.8) should be rewritten as Prob�ξ ≈ ψ� ≈
exp�−�t/ϑ2

t �� 2
R�ψ2��, where � 2

R is defined by (1.12) with H̃ replaced by Ĥ.
Let b2t solve for s in s/ϑ2

s = log t. By following the heuristic derivation of
Theorem 1.5 (and, in particular, invoking the scaling and additivity of the
continuum eigenvalue λR�ψ�, see subsection 2.1.2) we find that

u�t�0� = exp
[(
tϑd

b2t
/b2t

)
H
(
b2t/ϑ

d
b2t

)
−
(
t/ϑ2

b2t

)
�χ̂2 + o�1��

]
(2.12)

should hold Prob�·�0 ∈ 	∞�-almost surely, where and χ̂2 is defined by (1.23)
with H̃ everywhere replaced by Ĥ. However, we have not made any serious
attempt to carry out the details.
Surprisingly, unlike in the cases discussed in Proposition 1.1, Ĥ takes a

unique functional form:

Ĥ�y� = σy log y�(2.13)

where σ > 0 is a parameter. This fact is established by arguments similar to
those used in the proof of Proposition 1.1. (As a by-product, we also get that
t �→ ϑt is slowly varying as t→∞.) An interesting consequence of this is that,
unlike in γ < 1 situations, the variational problems for χ̂ and χ̂2 factorize to
one-dimensional problems; see Gärtner and den Hollander (1999).

2.3. An application: Self-attractive random walks. One of our original
sources of motivation for this work have been self-attractive path measures as
models for “squeezed polymers.” Consider a polymer S = �S0� � � � � Sn� of length
n modeled by a path of simple random walk with weight exp�β∑x V��n�x��
.
Here V:�→ �−∞�0
, and �n�x� = #�k ≤ n:Sk = x� is the local time at x. As-
suming thatV is convex andV�0� = 0, for example,V��� = −�γ with γ ∈ �0�1�,
the interaction has an attractive effect. A large class of such functions V (i.e.,
the completely monotonous ones) are the cumulant generating functions of
probability distributions on �−∞�0
, like H in (1.4). Via the Feynman-Kac
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representation, this makes the study of the above path measure essentially
equivalent to the study of the moments of a parabolic Anderson model. In fact,
the only difference is that for polymer models the time of the walk is discrete.
We have no doubt that Theorem 1.2 extends to the discrete-time setting.

Hence, the endpoint Sn of the polymer should fluctuate on the scale αn as
in our Scaling Assumption, which is αn = nν in the V��� = −�γ case. Since
γ �→ ν is decreasing, we are confronted with the counterintuitive fact that the
squeezing effect is the more extreme the “closer” is V to the linear function.
This is even more surprising if one recalls that for the boundary case γ = 1, the
Hamiltonian

∑
x V��n�x�� is deterministic, and therefore the endpoint runs on

scale n1/2. Note that, on the other hand, for γ > 1, which is the self-repellent
case, it is known in d = 1 (and expected in dimensions d = 2 and 3) that
the scale of the endpoint is a power larger than 1/2. Hence, at least in low
dimensions, there is an intriguing phase transition for the path scale at γ = 1.
As a nice side remark, the following model of an annealed randomly-

charged polymer also falls into the class of models considered above. Consider
an n-step simple random walk S = �S0� � � � � Sn� with weight exp�−β�n�S��,
where β > 0 and

�n�S� =
∑

0≤i<j≤n
ωiωj1�Si = Sj��(2.14)

Here ω = �ωi�i∈
0
is an i.i.d. sequence with a symmetric distribution on �

having variance one. Think of ωi as an electric charge at site i of the polymer.
[For continuous variants of this model and more motivation see, e.g., Buffet
and Pulé (1997).]
If the charges equilibrate faster than the walk, the interaction they effec-

tively induce on the walk is given by the expectation E�exp�−β�n�S��� and
is thus of the above type with

V��� = − logE exp
(�ω0 + · · · +ω��2

)
�(2.15)

where E denotes the expectation with respect to ω. By the invariance princi-
ple, we haveV��� = −�1/2+o�1�� log � as �→∞, which means thatV satisfies
our Scaling Assumption with αn = �n/ log n�1/�d+2�. Hence, we can identify the
logarithmic asymptotics of the partition function Ɛ0⊗E�exp�−β�n�� and see
that the typical end-to-end distance of the annealed charged polymer runs on
the scale αn, that is, the averaging over the charges has a strong self-attractive
effect.

2.4. Relation to earlier work. General mathematical aspects of the prob-
lem 1.1, including the existence and uniqueness of solutions and a criterion
for intermittency [see (1.17) and the comments thereafter], were first ad-
dressed by Gärtner and Molchanov (1990). In the subsequent paper, Gärtner
and Molchanov (1998), the authors focused on the case of double-exponential
distributions

Prob�ξ�0� > x� ∼ exp
{−ex/8}� x→∞�(2.16)
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For 0 < 8 < ∞, the main contribution to �u�t�0�p� comes from islands
in �d of asymptotically finite size (which corresponds to a constant αt in our
notation). When the upper tails of Prob�ξ�0� ∈ ·� are yet thicker (i.e., 8 =
∞), for example, when ξ�0� is Gaussian, then the overwhelming contribution
to �u�t�0�p� comes from very high peaks of ξ concentrated at single sites.
[In a continuous setting the scaling can still be non-trivial; see Gärtner and
König (2000) and Gärtner, König and Molchanov (1999).] For thinner tails
than double-exponential [i.e., when 8 = 0, called the almost bounded case
in Gärtner and Molchanov (1998)], the relevant islands grow unboundedly
as t → ∞, that is, αt → ∞ in our notation. The distribution (2.16) thus
constitutes a certain critical class for having a non-degenerate but still discrete
spatial structure.
The opposite extreme of tail behaviors was addressed in Donsker and Varad-

han (1979) (moment asymptotics) and in Antal (1995) (almost-sure asymp-
totics); see also Antal (1994). The distribution considered by these authors is
ξ�0� = 0 or −∞ with probability p and 1 − p, respectively. The analysis of
the moments can be reduced to a self-interacting polymer problem (see sub-
section 2.3), which is essentially the route taken by Donsker and Varadhan.
In the almost-sure case, the problem is a discrete analogue of the Brown-
ian motion in a Poissonian potential analyzed extensively by Sznitman in the
1990’s using his celebrated method of enlargement of obstacles (MEO); see
Sznitman (1998).
The MEO bears on the problem (1.1) because of the special form of the

ξ distribution: Recall the interpretation of points z with ξ�z� = −∞ as “hard
traps” where the simple random walk is strictly killed. If � = �z ∈ �d: ξ�z� =
−∞� denotes the trap region and T� = inf�t > 0:X�t� ∈ �� the first entrance
time, then

u�t� z� = 
z�T� > t��(2.17)

that is, u�t� z� is the survival probability at time t for a walk started at z. In
his thesis, Antal derives a discrete version of the MEO and demonstrates its
value in Antal (1994) and Antal (1995) by proving results which are (slight
refinements of) our Theorems 1.2 and 1.5 for γ = 0 and αt = t1/�d+2�.
The primary goal of this paper was to fill in the gap between the two

regimes considered in Gärtner and Molchanov (1998) and Donsker and Varad-
han (1979), resp., Antal (1995); that is, we wanted to study the general case in
which the diameter αt of the relevant islands grows to infinity. We succeeded
in doing that under the restrictions that the field is bounded from above and
αt diverges at least like a power of t. As already noted in subsection 2.2, in the
boundary case αt = to�1� (i.e., γ = 1) another phenomenon occurs which cannot
be handled in a unified manner; see the discussion of “almost-bounded” cases
in the next subsection.
The technique of our proofs draws heavily on that of Gärtner and

König (2000) and Gärtner, König and Molchanov (1999), however, non-trivial
adaptations had to be made. An interesting feature of this technique is the
handle of the compactification argument: We do not use folding (as Donsker
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and Varadhan did in their seminal papers from 1975 and 1979) nor do we
coarse-grain the field as is done in the MEO; instead, we develop comparison
arguments for Dirichlet eigenvalues in large and small boxes. The task is in
many places facilitated by switching between the dual languages of Dirichlet
eigenvalues vs local times of the simple random walk.
After this paper had been submitted, we learned that F. Merkl and

M. Wüthrich had independently used rather similar techniques to describe
the scaling of the principal eigenvalue of the continuous Dirichlet operator
−� + �log t�−2/dVω in �−t� t
d, where Vω is the potential generated by con-
voluting a shape function with the Poissonian cloud. (The scaling of Vω is
chosen such that the eigenvalue is not dominated solely by the potential, as
in a certain sense happens in the “obstacle case.”) The first part of the results
appeared in Merkl and Wüthrich (2000).

2.5. Discussion and open problems.

(i) “Almost-bounded” cases. As discussed in subsection 2.2, the γ = 1 case
requires analyzing a lower-order scale than considered in this paper. Interest-
ingly, the variational problem driving this scale coincides with that of ρ = 0
limit of the double exponential case; see (2.16) and, for example, Gärtner and
den Hollander (1999). This makes us believe that the γ = 1 case actually re-
flects the whole regime of “almost bounded” but unbounded potentials, that
is, those interpolating between our cases γ < 1 and the double exponential
distribution. (In all these cases, we expect the following strategy of proof to be
universally applicable: identify the maximum of ξ in a box of size t and, sub-
tracting this term away, map the problem to the effectively bounded case; see
subsection 2.2 for an example.) For these reasons, we leave its investigation
to future work.

(ii) Generalized MEO. Despite the fact that our current technique circum-
vents the use of the MEO, it would be interesting to develop its extension
including other fields in our class (in particular, those with γ �= 0). The main
reason is that this should allow for going beyond the leading order term.
However, the so called “confinement property,” which is the main result of the
MEO we cannot obtain, would require rather detailed knowledge of the shape
of the field that brings the main contribution to the moments of u�t�0�, resp.,
to u�t�0� itself. Thus, while the MEO can help in controlling the “probabil-
ity part” of the statements (1.16) and (1.26), an analysis of the minimizers
in (1.14) and (1.23) is also needed. The latter is expected to be delicate in
higher dimensions (in d = 1 this task has fully been carried out in Biskup
and König (1998)).
(iii) Adding a drift. An interesting open problem arises if a homogeneous

drift term h · ∇u is added on the right-hand side of (1.1). This problem is con-
sidered hard (especially in d ≥ 2), since the associated Anderson Hamiltonian
lacks self-adjoinedness with respect to the canonical inner product on �2��d�.
Self-adjointness can be restored if the inner product is appropriately modified;
however, this case seems to be much more difficult to handle. One expects an
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interesting phase transition of the decay rate as �h� increases, but the rigorous
understanding is rather poor at the moment.

(iv) Intermittency. Our results imply intermittency for our model in the
sense of asymptotic properties of positive moments of u�t�0�; see Remarks 4
and 5. The picture would round up very nicely if one could identify precisely
the set of “islands” (or rather peaks) in the “ξ landscape,” where the main
contribution to �u�t�0��, resp., u�t�0� comes from. At the moment, work of
Gärtner, König and Molchanov (2001) for the double-exponential distributions
of the potentials is going on in this direction. Some additional complications
stemming from αt →∞ can be expected in our present cases.

(v) Correlation structure. Another open problem concerns the asymptotic
correlation structure of the random field u�t� ·�, as has been analyzed by
Gärtner and den Hollander (1999) in the case of the double-exponential distri-
bution. Also for answering this question, quite some control of the minimizers
in (1.14) and (1.23) is required. Unfortunately, the compactification technique
of Gärtner and den Hollander (1999) cannot be applied without additional
work, since it seems to rely on the discreteness of the underlying space in
several important places. As already alluded to, extension of this technique to
continuous space may also be relevant for the analysis of (1.1) with “almost-
bounded” fields.

3. Preliminaries. In this section we first introduce some necessary no-
tation needed in the proof of Theorems 1.2 and 1.5 and then prove Proposi-
tions 1.1 and 1.4. In the last subsection, we prove a claim on the convergence
of certain approximants to the variational problem (1.14).

3.1. Feynman-Kac formula and Dirichlet eigenvalues. Our analysis is
based on the link between the random-walk and random-field descriptions
provided by the Feynman-Kac formula. Let �X�s��s∈�0�∞� be the continuous-
time simple random walk on �d with generator κ�d. By 
z and Ɛz we denote
the probability measure, resp., the expectation with respect to the walk start-
ing at X�0� = z ∈ �d.
3.1.1. General initial problem. For any potential V:�d → �−∞�0
, we de-

note by uV the unique solution to the initial problem

∂tu�t� z� = κ�du�t� z� +V�z�u�t� z�� �t� z� ∈ �0�∞�× �d�

u�0� z� = 1� z ∈ �d�
(3.1)

Note that we have to set u�t� z� ≡ 0 whenever V�z� = −∞, in order that (3.1)
is well defined. The Feynman-Kac formula allows us to express uV as

uV�t� z� = Ɛz

[
exp
∫ t
0
V
(
X�s�)ds] � z ∈ �d� t > 0�(3.2)

Introduce the local times of the walk

�t�z� =
∫ t
0

1�X�s� = z�ds� z ∈ �d� t > 0�(3.3)
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that is, �t�z� is the amount of time the random walk has spent at z ∈ �d

by time t. Note that
∫ t
0 V�X�s��ds = �V� �t�, where �·� ·� stands for the inner

product on �2��d�.
In view of (2.1), of particular importance will be the finite-volume version of

(3.1) with Dirichlet boundary condition. Let R > 0 and letQR = −�R�R
d∩�d
be a box in �d. The solution of the initial-boundary value problem

∂tu�t� z� = κ�du�t� z� +V�z�u�t� z�� �t� z� ∈ �0�∞�×QR�

u�0� z� = 1� z ∈ QR�

u�t� z� = 0� t > 0� z /∈ QR�

(3.4)

will be denoted by uVR: �0�∞� × �d → �0�∞�. Similarly to (3.2), we have the
representation

uVR�t� z� = Ɛz

[
exp
{∫ t

0
V
(
X�s�)ds}1�τR > t�

]
� z ∈ �d� t > 0�(3.5)

where τR is the first exit time from the set QR, that is,

τR = inf
{
t > 0:X�t� /∈ QR

}
�(3.6)

Alternatively,

uVR�t� z� = Ɛz
[
exp��V� �t��1

{
supp ��t� ⊂ QR

}]
�(3.7)

where we recalled (3.3). Note that, for 0 < r < R <∞,

uVr ≤ uVR ≤ uV in �0�∞�× �d�(3.8)

as follows by (3.5) because �τr > t� ⊂ �τR > t�.
Apart from uV, we also need the fundamental solution pVR�t� ·� z� of (3.4),

that is, the solution to (3.4) with pVR�0� ·� z� = δz�·� instead of the second line.
The Feynman-Kac representation is

pVR�t� y� z� = Ɛy
[
exp��V� �t��1

{
supp ��t� ⊂ QR

}
1
{
X�t� = z

}]
�(3.9)

for all y� z ∈ �d� Note that
∑

z∈QR
pVR�t� y� z� = uVR�t� y�.

3.1.2. Eigenvalue representations. The second crucial tool for our proofs
will be the principal (i.e., the largest) eigenvalue λdR�V� of the operator κ�d+V
in QR with Dirichlet boundary condition. The Rayleigh-Ritz formula reads

λdR�V�= sup
{�V�g2�−κ�∇g�22:g ∈ �2��d�� �g�2= 1� supp �g� ⊂ QR

}
�(3.10)

Here ∇ denotes the discrete gradient.
Let λ1 > λ2 ≥ λ3 ≥ · · · ≥ λn, n = #QR, be the eigenvalues of the operator

κ�d+V in �2�QR�with Dirichlet boundary condition (some of them can be−∞).
We also write λd�kR �V� = λk for the kth eigenvalue to emphasize its dependence
on the potential and the box QR. Let �ek�k be an orthonormal basis in �2�QR�
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consisting of the corresponding eigenfunctions ek = ed�kR �V�. (Conventionally,
ek vanishes outside QR.) Then we have the Fourier expansions

pVR�t� y� z� =
∑
k

exp�tλk�ek�y�ek�z�(3.11)

and, by summing this over all y ∈ QR,

uVR�t� ·� =
∑
k

exp�tλk��ek�1�R ek�·��(3.12)

where we used �·� ·�R to denote the inner product in �2�QR�. Here and hence-
forth “1” is the function taking everywhere value 1.

3.2. Power-law scaling.

Proof of Proposition 1.1. Let H̃t be the function given by

H̃t� · � =
αd+2t

t
H

(
t

αdt
·
)
�(3.13)

By our Scaling Assumption, limt→∞ H̃t = H̃ on �0�∞�. Note that both H̃t

and H̃ are convex, non-positive and not identically vanishing with value 0 at
zero. Consequently, H̃t and H̃ are continuous and strictly negative in �0�∞�.
Moreover, by applying Jensen’s inequality to the definition ofH, we have that
y �→ H̃t�y�/y and y �→ H̃�y�/y are both non-decreasing functions.
Next we shall show that αpt/αt tends to a finite non-zero limit for all p. Let

us pick a y > 0 and a p ∈ �0�∞� and consider the identity

H̃t

p( αt
αpt

)d
y

 = p

(
αt
αpt

)d+2
H̃pt�y��(3.14)

which results by comparing (3.13) with the “time” parameter interpreted once
as t and next time as pt. Invoking the monotonicity of y �→ H̃t�y�/y, it follows
that

p

(
αt
αpt

)2
H̃pt�y� ≥ H̃t�py� whenever αt ≥ αpt�(3.15)

This implies that αpt/αt is bounded away from zero, because we have

lim inf
t→∞

(
αpt

αt

)2
≥ pH̃�y�
H̃�py�

∧ 1 > 0�(3.16)

where “∧” stands for minimum. Since p ∈ �0�∞� was arbitrary, αpt/αt is also
uniformly bounded, by replacing t with t/p.
Let φ�p� be defined for each p as a subsequential limit of αpt/αt, that is,

φ�p� = limn→∞ αptn/αtn with some (p-dependent) tn → ∞. By our previous
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reasoning φ�p�−1 is non-zero, finite and, for all y > 0, it solves for z in the
equation

H̃
(
pzdy

)
= pzd+2H̃�y��(3.17)

Here we were allowed to pass to the limiting function H̃ on the left-hand side
of (3.14) because H̃ is continuous and the scaling limit (1.5) is uniform on
compact sets in �0�∞�. But z �→ H̃�pzdy�/zd is non-decreasing while z �→
pz2H̃�y� is strictly decreasing, so the solution to (3.17) is unique. Hence, the
limit φ�p� = limt→∞ αpt/αt exists in �0�∞� for all p ∈ �0�∞�.
It is easily seen that φ is multiplicative on �0�∞�, that is, φ�pq� =

φ�p�φ�q�. Since φ�p� ≥ 1 for p ≥ 1, by the same token we also have that
p �→ φ�p� is non-decreasing. These two properties imply that φ�2n� = φ�2�n
and that φ�2� nm ≤ φ�p� ≤ φ�2� n+1m for any p > 0, and m, n integer such that
2n ≤ pm < 2n+1. Consequently, φ�p� = pν with ν = log2φ�2�. By plugging this
back into (3.17) and setting y = 1 we get that

H̃
(
p1−dν) = H̃�1�p1−�d+2�ν�(3.18)

The claims (1.6) and (1.7) are thus established by putting γ�1−dν� = 1−�d+
2�ν, which is (1.8). Clearly, γ ∈ �0�1
, in order to have the correct monotonicity
properties of y �→ H̃�y� and y �→ H̃�y�/y.
To prove also the second statement in (1.7), we first write

α2N = α1

N−1∏
m=0

α2m+1

α2m
(3.19)

which, after taking the logarithm, dividing by log 2N, and noting that
α2m+1/α2m → φ�2� as m→∞, allows us to conclude that

lim
N→∞

log α2N
log 2N

= log2φ�2� = ν�(3.20)

The limit for general t is then proved again by sandwiching t between 2N−1

and 2N and invoking the monotonicity of t �→ αt. ✷

3.3. Relation between χ and χ̃.

Proof of Proposition 1.4. SupposeH is in the γ-class and define ν as in
Proposition 1.1. Suppose χ �= 0�∞ (for a proof of this statement, see Propo-
sition 3.1). The argument hinges on particular scaling properties of the func-
tionals ψ �→ �R�ψ� and ψ �→ λR�ψ�, which enable us to convert (1.15) into
(1.23). Given ψ ∈ C−�R�, let us for each b ∈ �0�∞� define ψb ∈ C−�bR� by

ψb�x� =
1
b2
ψ
(x
b

)
�(3.21)

Then we have

�bR�ψb� = b
1
ν−2�R�ψ� and λbR�ψb� = b−2λR�ψ��(3.22)
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where in the first relation we used that ψb can be converted into ψ in (1.12) by
substituting b2/�1−γ�f�·/b� in the place of f� · �; the second relation is a result
of a simple spatial scaling of the first line in (1.13). Note that 1

ν
− 2 ≥ 1 > 0.

Let ψ�n� ∈ C−�Rn� be a minimizing sequence of the variational problem in
(1.15). Suppose, without loss of generality, that �Rn

�ψ�n�� → ¯� and λRn
�ψ�n��

→ λ̄. Then we have

χ = ¯� − λ̄�(3.23)

Now pick any b ∈ �0�∞� and consider instead the sequence �ψ�n�b �. Clearly,
χ ≤ lim

n→∞

[
�bRn

(
ψ
�n�
b

)
− λbRn

(
ψ
�n�
b

)]
= b

1
ν−2 ¯� − b−2λ̄(3.24)

for all b. By (3.23), the derivative of the right-hand side must vanish at b = 1,
that is, (

1
ν
− 2
)

¯� + 2λ̄ = 0�(3.25)

By putting (3.23) and (3.25) together, we easily compute that

¯� = 2νχ�(3.26)

Note that while b �→ �bR�ψb� is strictly increasing, b �→ λbR�ψb� is strictly
decreasing. This allows us to recast (1.15) as

χ = ¯� + inf
R>0

inf
{−λR�ψ�:ψ ∈ C−�R�� �R�ψ� ≤ ¯�

}
�(3.27)

Indeed, we begin by observing that “≤” holds in (3.27), as is verified by pulling
¯� inside the bracket, replacing it with�R�ψ�, and dropping the last condition.

To prove the “≥” part, note that the above sequence �ψ�n�b � for b < 1 eventually

fulfills the last condition in (3.27) because �bRn
�ψ�n�b � → b

1
ν−2 ¯� < ¯� . Since

λbRn
�ψ�n�b � → b−2λ̄, the right-hand side of (3.27) is no more than ¯� − b−2λ̄ for

any b < 1. Taking b ↑ 1 and recalling (3.23) proves the equality in (3.27).
With (3.27) in the hand we can finally prove (1.25). By using ψb instead of

ψ in (3.27), the condition �R�ψ� ≤ ¯� becomes �R�ψ� ≤ b
1
ν−2 ¯� and the factor

b−2 appears in front of the infimum. Thus, setting b
1
ν−2 ¯� = d, which by (3.26)

requires that

b =
(
2νχ
d

) ν
1−2ν

�(3.28)

(note that b �= 0�∞) and invoking (3.26), we recover the variational problem
(1.23). Therefore,

χ = ¯� + b−2χ̃ = 2νχ+
(
2νχ
d

)− 2ν
1−2ν

χ̃�(3.29)

From this, (1.25) follows by simple algebraic manipulations. The claim χ̃ ∈
�0�∞� is a consequence of (1.25) and the fact that χ ∈ �0�∞�. ✷
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3.4. Approximate variational problems. The proof of Theorem 1.2 will re-
quire some technical approximation properties of the variational problem
(1.14). These are stated in Proposition 3.1 below. The reader may gain more
motivation for digesting the proof by reading first subsection 4.1.
Let χR be the finite-volume counterpart of χ:

χR = inf
{
� �f� −�R�f�:f ∈ �R

}
� R > 0�(3.30)

SupposeH is in the γ-class and introduce the following quantities: In the case
γ ∈ �0�1�, let

χ2R�M� = inf
{
� �f� −�R�f ∧M�:f ∈ �R

}
� M > 0�(3.31)

for any R > 0. For γ = 0 and any R > 0, let

χ#R�ε� = inf
{
� �f� − H̃�1���f > ε��:f ∈ �R

}
� 0 < ε' R�(3.32)

The needed relations between χ, χR, χ
2
R�M� and χ#R�ε� are summarized as

follows

Proposition 3.1. Let H be in the γ-class and let χ be as in (1.14). Then(
(1) χ ∈ �0�∞�.
(2) For γ ∈ �0�1� and any R > 0, limM→∞ χ

2
R�M� = χR.

(3) For γ = 0 and any R > 0, limε↓0 χ
#
R�ε� = χR.

Proof of (1) and (2). Assertion (1) for γ = 0 is well-known. Assume that
γ ∈ �0�1� and observe that, due to the perfect scaling properties of both f �→
� �f� and f �→ �R�f�, (3.30) can alternatively be written as

χR = inf
{
R−2� �f� −Rd�1−γ��1�f�:f ∈ �1

}
�(3.33)

Let �λ1� ĝ� be the principal eigenvalue, resp., an associated eigenvector of −�
in �−1�1
d with Dirichlet boundary condition. Then � �ĝ2� = κλ1 �= 0�∞,
which means that

χR ≤ R−2κλ1 −Rd�1−γ�H̃�1�
∫
�ĝ�2γ =( χ̄R�(3.34)

Since ĝ is continuous and bounded, the integral is finite, whereby
χ ≤ infR>0 χ̄R <∞.
Claim (2) and the remainder of (1) are then simple consequences of the

following observation, whose justification we defer to the end of this proof:

inf
{
� �f�:f ∈ �R�

∥∥f1�f≥M�
∥∥
1
≥ ε
}

≥ κ
ε

2

(
M

8πd

)2/d
� R� ε > 0� M ≥ 8πdd

d/Rd�
(3.35)

where πd is the volume of the unit sphere in �d. Indeed, to get that χ is
non-vanishing, set ε = 1/2 and choose M such that the infimum in (3.35)
is strictly larger than −H̃�1�Mγ−1/2 for all R ≥ 1. Clearly, M is finite, so
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C (= −H̃�1�Mγ−1/2 > 0. Then for any f ∈ �R either �f1�f≥M��1 ≥ 1/2, which
implies � �f� ≥ C, or �f1�f≥M��1 < 1/2 which implies

−�R�f� ≥ −H̃�1�
∫
fγ 1�f<M�

≥ −H̃�1�Mγ−1 ∫ f1�f<M� ≥ −H̃�1�Mγ−1/2 = C�
(3.36)

Thus, in both cases, � �f� −�R�f� ≥ C > 0 independent of R. Since R �→ χR
is decreasing, the restriction to R ≥ 1 is irrelevant which finishes part 1.
To prove also part (2), note first that χ2R�M� ≤ χR for all M > 0. Given

ε > 0, letM ≥ 1 be such that the infimum in (3.35) is larger than χ̄R in (3.34).
Consider (3.31) restricted to f ∈ �R with �f1�f≥M��1 < ε. Since for any such f

−�R�f ∧M� ≥ −H̃�1�
∫
fγ 1�f<M� ≥ −�R�f� + H̃�1�

∫
fγ 1�f≥M�

≥ −�R�f� + H̃�1�
∫
f1�f≥M� ≥ −�R�f� + H̃�1�ε�

(3.37)

the restricted infimum is no less than χR + H̃�1�ε. Therefore, χ2R�M� ≥ χ̄R ∧
�χR + H̃�1�ε�, which by ε ↓ 0 and (3.34) proves part (2) of the claim.
It remains to prove (3.35). To that end, denote the infimum by AR�ε�M�

and note that

AR�ε�M� = R−2A1�ε�MRd��(3.38)

Indeed, denoting f∗� · � = Rdf�·R� for any f ∈ �R, we have f∗ ∈ �1, � �f∗� =
R2� �f�, and �f∗1�f∗≥MRd��1 = �f1�f≥M��1, whereby (3.38) immediately fol-
lows. Since R−2�MRd�2/d =M2/d, it suffices to prove (3.35) just for R = 1.
Recall that the operator −� on �−1�1
d with Dirichlet boundary condition

has a compact resolvent, so its spectrum σ�−�� is a discrete set of finitely-
degenerate eigenvalues. For each k ∈ 
, define the function

ϕk�x� =


cos
(π
2
kx
)
� if k is odd,

sin
(π
2
kx
)
� if k is even.

(3.39)

Then σ�−�� = �π2�k�22/4:k ∈ 
d�, with �k�22 = k21+� � �+k2d and the eigenvectors
given as ωk = ϕk1 ⊗ � � � ⊗ ϕkd . Note that the latter form a (Fourier) basis in
L2��−1�1
d�.
Let ε > 0 and M > 0 be fixed. Let r be such that 8πdrd = M. Note that

r ≥ d. Pick a function f ∈ �1 such that �f1�f≥M��1 ≥ ε and let g = √f.
Let g1, resp., g2, be the normalized projections of g onto the Hilbert spaces
generated by �ωk� with �k�2 ≤ r, resp., �k�2 > r. Then g = a1g1 + a2g2 with
�a1�2 + �a2�2 = 1. We claim that �g1�∞ ≤

√
M/2. Indeed, g1 =

∑
k ckωk where

�ck� ∈ �2�
d� is such that ck = 0 for all k ∈ 
d with �k�2 > r and

�g1�∞ ≤
∑
k

�ck� �ωk�∞ ≤
√
#�k: ck �= 0� ≤

√
2πdrd =

√
M/2�(3.40)

Here we used that �ωk�∞ ≤ 1, then we applied Cauchy-Schwarz inequality
and noted that �ck� is normalized to one in �2�
d�, because �ωk�2 = 1 for
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all k ∈ 
d. The third inequality follows by the observation #�k: ck �= 0� ≤
πd�r+ 1�d/2d ≤ 2πdrd implied by r ≥ d.
Let x be such that g�x� ≥ √

M. Then we have
√
M ≤ g�x� ≤ �g1�x�� +

�a2��g2�x��. Using (3.40), we derive that �a2��g2�x�� ≥
√
M/2, whereby we have

that g�x� ≤ 2�a2��g2�x��. This gives us the bound
ε ≤ �f1�f≥M��1 =

∥∥g1�g≥√M�
∥∥2
2
≤ 4�a2�2�g2�22 = 4�a2�2�(3.41)

that is, �a2�2 ≥ ε/4. On the other hand,

� �f� = κ�∇g�22 ≥ κ�a2�2�∇g2�22 ≥ κ�a2�2
π2

4
r2�(3.42)

where we used that g1⊥g2 and that g2 has no overlap with ωk such that
�k�2 ≤ r. By putting (3.41) and (3.42) together and noting that π2/16 ≥ 1/2,
(3.35) for R = 1 follows. ✷

Proof of (3). Let ε' �2R�d and consider f ∈ �R. Let g =
√
f and define

gε = �g − √ε�1�g ≥ √
ε�. By a straightforward calculation, �gε�22 ≥ 1 −

2ε�2R�d − 2
√
ε�2R�d. Let fε = �gε/�gε�2�2. Then � �f� ≥ �gε�22� �fε�, while

��f > ε�� = ��fε > 0��. This implies that χ#R�ε� ≥ χR�1 − O�√ε��. Since
χ#R�ε� ≤ χR, the proof is complete. ✷

4. Proof of Theorems 1.2 and 1.3 . We begin by deriving the logarithmic
asymptotics for the moments of u�t�0� as stated in Theorem 1.2. The proof is
divided into two parts: we separately prove the lower bound and the upper
bound. Whenever convenient, we write α�t� instead of αt.

4.1. The lower bound. We translate the corresponding proof of Gärtner
and König (2000) into the discrete setting. Let u denote the solution to (1.1),
denoted by uξ in Section 3. Similarly, let uR stand for uξR for any R > 0. Fix
p ∈ �0�∞�, R > 0, and consider the box QRα�pt� = �−Rα�pt��Rα�pt�
d ∩ �d.

Note that #QRα�pt� = eo�tα
−2
pt � as t → ∞. Recall that uRα�pt��t� ·� = 0 outside

QRα�pt� and that �·� ·� denotes the inner product in �2��d�. Our first observation
is the following.

Lemma 4.1. As t→∞,〈
u�t�0�p〉 ≥ exp�o�tα−2pt ��

〈�uRα�pt��t� ·��1�p〉�(4.1)

Proof. In the case p ≥ 1, use the shift-invariance of z �→ u�t� z�, Jensen’s
inequality, and the monotonicity assertion (3.8) to obtain〈

u�t�0�p〉 = 〈 1
#QRα�pt�

∑
z∈QRα�pt�

u�t� z�p
〉

≥
〈 1

#QRα�pt�

∑
z∈QRα�pt�

u�t� z�
p〉

≥ exp
{
o�tα−2pt �

} 〈�uRα�pt��t� ·��1�p〉 �
(4.2)
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In the case p < 1, instead of Jensen’s inequality we apply

n∑
i=1

x
p
i ≥
(

n∑
i=1

xi

)p
� x1� � � � � xn ≥ 0� n ∈ 
�(4.3)

to deduce similarly as in (4.2) that

〈
u�t�0�p〉 = exp

{
o�tα−2pt �

}〈 ∑
z∈QRα�pt�

u�t� z�p
〉

≥ exp
{
o�tα−2pt �

}〈( ∑
z∈QRα�pt�

u�t� z�
)p〉

≥ exp
{
o�tα−2pt �

}〈�uRα�pt��t� ·��1�p〉� ✷

(4.4)

The following lemma carries out the necessary large-deviation arguments
for the case p = 1. Lemma 4.3 then reduces the proof of arbitrary p to the
case p = 1. Recall the “finite-R” version χR of (1.14) defined in (3.30).

Lemma 4.2. Let R > 0. Then for t→∞,

− χR + o�1� ≤
α2t
t
log
〈�uRα�t��t� ·��1�〉 ≤ −χ3R + o�1��(4.5)

α2t
t
log

〈∑
k

exp
{
tλ

d�k
Rα�t��ξ�

}〉
≤ −χ3R + o�1��(4.6)

Lemma 4.3. Let R > 0. Then for t→∞,〈�uRα�pt��t� ·��1�p〉 ≥ exp
{
o�tα−2pt �

} 〈�uRα�pt��pt� ·��1�〉 �(4.7)

Lemmas 4.1, 4.2 and 4.3 make the proof of the lower bound immediate:

Proof of Theorem 1.2, lower bound. By combining (4.1), (4.7) and the
left inequality in (4.5) for pt instead of t, we see that �α2pt/pt� log�u�t�0�p� ≥
−χR + o�1�. Since limR→∞ χR = χ, the left-hand side of (1.16), with “lim inf ”
instead of “lim,” is bounded below by −χ. By Proposition 3.1(1), χ positive,
finite and non-zero. ✷

The remainder of this subsection is devoted to the proof of the two lemmas.

Proof of Lemma 4.2. Recall the notation of subsection 3.1. By taking the
expectation over ξ (and using that ξ is an i.i.d. field) and recalling (3.7), we
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have for any z ∈ QRα�t� that〈
uRα�t��t� z�

〉 = 〈Ɛz[exp ��ξ� �t��1�τRα�t� > t�]〉
= Ɛz

[ ∏
y∈�d

〈
exp ��t�y�ξ�y��

〉
1�τRα�t� > t�

]
(4.8)

= Ɛz

[
exp
{ ∑
y∈�d

H
(
�t�y�

)}
1
{
supp ��t� ⊂ QRα�t�

}]
�

Consider the scaled version �̄t:�d → �0�∞� of the local times

�̄t�x� =
αdt
t
�t
("xαt#)� x ∈ �d�(4.9)

Let �̃ be the space of all non-negative Lebesgue almost everywhere continuous
functions in L1��d� with a bounded support. Clearly, � ⊂ �̃ and �̄t ∈ �̃ .
Introduce the functional � �t�: �̃ → �−∞�0
, assigning each f ∈ �̃ the value

� �t��f� =
∫
�d
H̃t

(
f�x�)dx�(4.10)

where we recalled (3.13). Substituting �̄t and � �t� into (4.8), we obtain〈�uRα�t��t� ·��1�〉
= ∑

z∈QRα�t�

Ɛz

[
exp
{
t

α2t
� �t� (�̄t)}1

{
supp ��̄t� ⊂ �−R�R+ α−1t 
d

}]
�(4.11)

Using shift-invariance and the fact that � �t��f� ≤ � �t��f∧M� for anyM> 0,
we have

Ɛ0

[
exp
{
t

α2t
� �t� (�̄t)}1

{
supp ��̄t� ⊂ �−R�R
d

}
1��̄t ≤M�

]
≤ 〈�uRα�t��t� ·��1�〉
≤ exp

{
o�tα−2t �

}
×Ɛ0
[
exp
{
t

α2t
� �t� (�̄t ∧M)}1

{
supp ��̄t� ⊂ �−3R�3R
d

}]
�

(4.12)

It is well known that the family of scaled local times ��̄t�t>0 satisfies a weak
large-deviation principle on L1��d� with rate tα−2t and rate function� defined
in (1.10). This fact has been first derived by Donsker and Varadhan (1979)
for the discrete-time random walk; for the changes of the proof in the con-
tinuous time case we refer to Chapter 4 of the monograph by Deuschel and
Stroock (1989). The large-deviation principle allows us to use Varadhan’s inte-
gral lemma to convert both bounds in (4.12) into corresponding variational for-
mulas. Note that, if both� and� are appropriately extended toL1��−R�R
d�,
all infima (3.30), (3.31) and (3.32) can be taken over f ∈ L1��−R�R
d� with
the same result. In the sequel, we have to make a distinction between the
cases γ ∈ �0�1� and γ = 0.
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In the case γ ∈ �0�1�, our Scaling Assumption implies that, for everyM> 0,
f �→ � �f� is continuous and � �t� converges to � uniformly on the space
of all measurable functions �−R�R
d → �0�M
 with L∞ topology. Indeed,
for any such function f and any ε > 0, the integral (4.10) can be split into
� �t��f1�f>ε�� and � �t��f1�0<f≤ε��. The former then converges uniformly to
� �f1�f>ε��, while the latter can be bounded as

0 ≥ � �t�(f1�0<f≤ε�
) ≥ H̃t�ε�

∣∣�0 < f ≤ ε�∣∣ ≥ �2R�dH̃t�ε��(4.13)

where we invoked the monotonicity of y �→ H̃t�y�. Taking ε ↓ 0 proves that
this part is negligible for � �t��f� and, if t → ∞ is invoked before ε ↓ 0,
it also shows that � �f1�f>ε�� → � �f� uniformly in f as ε ↓ 0. Having
verified continuity, Varadhan’s lemma (and M→ ∞) readily outputs the left
inequality in 4.5, while on the right-hand side it yields a bound in terms of
the quantity χ23R�M� defined in (3.31). By Proposition 3.1(2), χ23R�M� tends to
χ3R as M→∞, which proves the inequality on the right of (4.5).
In the case γ = 0, the lower bound goes along the same line, but we have

to be more careful with (4.13), since limε↓0 limt→∞ H̃t�ε� �= 0 in this case. Let
us estimate

� �t��f� = � �t�(f1�0<f≤ε�
)+� �t�(f1�f>ε�

)
≥ H̃t�ε�

∣∣�0 < f ≤ ε�∣∣+� �t�(f1�f>ε�
)

(4.14)

≥ � �f� − ∣∣� �t��f1�f>ε�� −� �f1�f>ε��
∣∣− �2R�d∣∣H̃t�ε� − H̃�ε�

∣∣�
where we invoked the explicit form of f �→ � �f�. Since both absolute values
on the right-hand side tend to 0 as t→∞ uniformly in f ≤M, the lower bound
in (4.5) follows again by Varadhan’s lemma and limit M→∞. For the upper
bound, the estimate and uniform limit � �t��f� ≤ � �t��f1�f>ε�� → � �f1�f>ε��
give us a bound in terms of the quantity χ#3R�ε� defined in (3.32). By then M
is irrelevant, so by invoking Proposition 3.1(3), the claim is proved by taking
ε ↓ 0.
It remains to prove (4.6). Recall the shorthand λk = λ

d�k
Rα�t��ξ�. By (3.11),

(3.9) and analogously to (4.8), we have〈∑
k

exp�tλk�
〉
= ∑

z∈QRα�t�

〈
pRα�t��t� z� z�

〉
=
〈 ∑
z∈QRα�t�

Ɛz
[
exp��ξ� �t��1�τRαt > t�1 �X�t� = z�]〉 �(4.15)

Noting that 1�X�t� = z� ≤ 1, we thus have �∑k exp�tλk�� ≤ ��uRα�t��t� ·��1��.
With this in the hand, (4.6) directly follows by the right inequality in (4.5). ✷

Proof of Lemma (4.3). In the course of the proof, we use abbreviations
r = Rα�pt� and λk = λd�kr �ξ�. Recall that �ek�k denotes an orthonormal basis
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in �2�Qr� (with inner product �·� ·�r) consisting of the eigenfunctions of κ�d+ξ
with Dirichlet boundary condition.
We first turn to the case p ≥ 1. Use the Fourier expansion (3.12) and the

inequality (
n∑
i=1

xi

)p
≥

n∑
i=1

x
p
i � x1� � � � � xn ≥ 0� n ∈ 
�(4.16)

to obtain〈�ur�t� ·��1�p〉 =
〈(∑

k

exp�tλk� �ek�1�2r
)p〉

≥
〈∑
k

exp�ptλk� �ek�1�2pr
〉
�(4.17)

By Jensen’s inequality for the probability measure

�l� dξ� �→
〈∑
k

exp�ptλk�
〉−1

exp�ptλl�Prob�dξ��(4.18)

we have that the r.h.s. of (4.17) is greater than or equal to( �∑k exp�ptλk��ek�1�2r�
�∑k exp�ptλk��

)p 〈∑
k

exp�ptλk�
〉

≥ exp�o�tα−2pt ��
〈∑
k

exp�ptλk� �ek�1�2r
〉

(4.19)

= exp�o�tα−2pt �� ��ur�pt� ·��1�� �
where we recalled from the end of the proof of Lemma 4.2 that �∑k exp�ptλk��
≤ ��ur�pt� ·��1�� = �

∑
k exp�ptλk��ek�1�2r�, inserted 1 ≥ exp�o�tα−2pt ���ek�1�2r

and applied (3.12).
In the case p ∈ �0�1�, we apply Jensen’s inequality as follows:

��ur�t� ·��1�p� = �1�1�pr
〈(∑

k

exp�tλk�
�ek�1�2r
�1�1�r

)p〉

≥ �1�1�pr
〈∑
k

exp�ptλk�
�ek�1�2r
�1�1�r

〉
�

(4.20)

Invoking that �1�1�r = exp�o�tα−2pt ��, the proof is complete by recalling (3.12)
once again. ✷

4.2. The upper bound. Recall that QR denotes the discrete box �−R�R
d∩
�d. We abbreviate r�t� = t log t for t > 0. For z ∈ �d and R > 0, we denote
by λdz,R�V� the principal eigenvalue of the operator κ�d + V with Dirichlet
boundary conditions in the shifted box z+QR. The main ingredient in the proof
of the upper bound in Theorem 1.2 is (the following) Proposition 4.4, which
provides an estimate of u�t�0� in terms of the maximal principal eigenvalue
of κ�d +V in small subboxes (“microboxes”) of the “macrobox” Qr�t�.
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Proposition 4.4. Let BR�t� = Qr�t�+2"R#. Then there is a constant C =
C�d�κ� > 0 such that, for any R� t > C and any potential V:�d → �−∞�0
,

uV�t�0� ≤ exp�−t� + exp�Ct/R2�(3r�t�)d exp{t max
z∈BR�t�

λdz,2R�V�
}
�(4.21)

By Proposition 4.4 and inequality (4.6), the upper bound in Theorem 1.2 is
now easy:

Proof of Theorem 1.2, upper bound. Let p ∈ �0�∞�. First, notice that
the second term in (4.21) can be estimated in terms of a sum:

exp
{
t max
z∈BR�t�

λdz,2R�V�
}
≤ ∑

z∈BR�t�
exp�tλdz,2R�V���(4.22)

Thus, applying (4.21) to u�t�0� (i.e., for V = ξ) with R replaced by Rα�pt� for
some fixed R > 0, raising both sides to the pth power and using (4.22) we get

u�t�0�p ≤ 2pmax

{
exp�−pt�� exp�Cpt/�R2α�pt�2��(3r�t�)pd

× ∑
z∈BRα�pt��t�

exp
{
ptλdz,2Rα�pt��ξ�

}}
�

(4.23)

Next we take the expectation w.r.t. ξ and note that, by the shift-invariance of
ξ, the distribution of λdz,2Rα�pt��ξ� does not depend on z ∈ �d. Take logarithm,
multiply by α2pt/�pt� and let t→∞. Then we have that

lim sup
t→∞

α2pt

pt
log
〈
u�t�0�p〉 ≤ C

R2
+ lim sup

t→∞

α2pt

pt
log
〈
exp�ptλd2Rα�pt��ξ��

〉
�(4.24)

where we also used that exp�−pt�, r�t�pd and #BRα�pt��t� are all exp�o�tα−2pt ��
as t→∞. Since

exp
{
ptλdRα�pt��ξ�

}
≤∑

k

exp
{
ptλ

d�k
Rα�pt��ξ�

}
�(4.25)

(4.6) for pt instead of t implies that the second term on the right-hand side of
(4.24) is bounded by −χ6R. The upper bound in Theorem 1.2 then follows by
letting R→∞. ✷

Now we can turn to the proof of Proposition 4.4. We begin by showing that
uV�t�0� is very close to the solution uVr�t��t�0� of the initial-boundary problem
(3.4), whenever the size r�t� = t log t of the “macrobox” Qr�t� is large enough.

Lemma 4.5. For sufficiently large t > 0,

uV�t�0� ≤ e−t + uVr�t��t�0��(4.26)
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Proof. It is immediate from (3.2) and (3.5) with r = r�t� that

uV�t�0� − uVr�t��t�0� = Ɛ0

[
exp
{∫ t

0
V
(
X�s�)ds}1�τr�t� ≤ t�

]
�(4.27)

According to Lemma 2.5(a) in Gärtner and Molchanov (1998), we have, for
every r > 0,


0�τr ≤ t� ≤ 2d+1 exp
{
−r
(
log

r

dκt
− 1
)}
�(4.28)

Using this for r = r�t� = t log t in (4.27), we see that, for sufficiently large
t (depending only on d and κ), the right-hand side of (4.27) is no more than
e−t. ✷

The crux of our proof of Proposition 4.4 is that the principal eigenvalue in
a box Qr of size r can be bounded by the maximal principal eigenvalue in
“microboxes” z + QR contained in Qr, at the cost of changing the potential
slightly. This will later allow us to move the t-dependence of the principal
eigenvalue from the size of Qr�t� to the number of “microboxes.” The following
lemma is a discrete version of Proposition 1 of Gärtner and König (2000) and
is based on ideas from Gärtner and Molchanov (2000). However, for the sake
of completeness, no familiarity with Gärtner and König (2000) is assumed.

Lemma 4.6. There is a number C > 0 such that for every integer R, there
is a function ER:�d → �0�∞� with the following properties(
1. ER is 2R-periodic in every component.
2. �ER�∞ ≤ C/R2.
3. For any potential V:�d → �−∞�0
 and any r > R,

λdr�V−ER� ≤ max
z∈Qr+2R

λdz,2R�V��(4.29)

Proof. The idea is to construct a partition of unity:∑
k∈�d

η2k�z� = 1� z ∈ �d�(4.30)

where ηk�z� = η�z− 2Rk� with
η:�d → �0�1
 such that η ≡ 1 on QR/2� supp �η� ⊂ Q3R/2�(4.31)

Then we put

ER�z� = κ
∑
k∈�d

∣∣∇ηk�z�∣∣2� z ∈ �d�(4.32)

where ∇ is the discrete gradient. Obviously, ER is 2R-periodic in every com-
ponent. The construction of η such that ER satisfies claim 2 is given at the
end of this proof.
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Assuming the existence of the above partition of unity, we turn to the proof
of (4.29). Recall the Rayleigh-Ritz formula (3.10), which can be shortened as
λdr�V� = supGV�g�, where

GV�g� = ∑
z∈�d

(−κ�∇g�z��2 +V�z�g2�z�)�(4.33)

and where the supremum is over normalized g ∈ �2��d� with support in Qr.
Let g be such a function, and define gk�z� = g�z�ηk�z� for k� z ∈ �d. Note
that, according to (4.30) and (4.31), we have

∑
k �gk�22 = 1 and supp �gk� ⊂

2kR+Q3R/2.
The pivotal point of the proof is the bound

GV−ER�g� ≤ ∑
k∈�d

�gk�22GV

(
gk
�gk�2

)
�(4.34)

In order to prove this inequality, we invoke the rewrite

g�y�ηk�y� − g�x�ηk�x�
= g�x�(ηk�y� − ηk�x�)+ ηk�y�(g�y� − g�x�)�(4.35)

recall (4.30) and (4.32), and then perform a couple of symmetrizations to derive

κ
∑
k∈�d

∑
x∈�d

∣∣∇gk�x�∣∣2 = ∑
x∈�d

[
κ
∣∣∇g�x�∣∣2 +ER�x�g�x�2

]
+ κH�(4.36)

where H is given by the formula

H = − 1
2

∑
k∈�d

∑
x∈�d

∑
y:y∼x

[
g�y� − g�x�]2[ηk�y� − ηk�x�]2 ≤ 0�(4.37)

Using this bound on the right-hand side of (4.36), we have∑
k∈�d

�gk�22GV

(
gk
�gk�2

)
= ∑

k∈�d
GV�gk�

= ∑
z∈�d

∑
k∈�d

[
−κ∣∣∇gk�z�∣∣2 +V�z�g2

k�z�
]

(4.38)
≥ ∑

z∈�d

[
−κ∣∣∇g�z�∣∣2+ (V�z�−ER�z�

)
g2�z�

]
= GV−ER�g��

which is exactly inequality (4.34).
Since the support of gk is contained in 2kR + Q3R/2, the Rayleigh-Ritz

formula yields that

GV

(
gk
�gk�2

)
≤ λd2kR,3R/2�V� ≤ λd2kR,2R�V�(4.39)

whenever �gk�2 �= 0 (which requires, in particular, that 2R�k� − 3R/2 ≤ r).
Estimating these eigenvalues by their maximum and taking into account that
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k∈�d �gk�22 = �g�22 = 1, we find that the right-hand side of (4.34) does not

exceed the right-hand side of (4.29). The claim (4.29) is finished by passing to
the supremum over g on the left-hand side of (4.34).
For the proof to be complete, it remains to construct the functions η and ER

with the properties (4.30) and (4.31) and such that �ER�∞ ≤ C/R2 for some
C > 0. First, the ansatz

η�z� =
d∏
i=1

ζ�zi�� z = �z1� � � � � zd� ∈ �d�(4.40)

reduces the construction of η to the case d = 1 (with η replaced by ζ). In
order to define z �→ ζ�z�, let ϕ:� → �0�1
 be such that both

√
ϕ and

√
1− ϕ

are smooth, ϕ ≡ 0 on �−∞�−1
 and ϕ ≡ 1 on �0�∞� and ϕ�−x� = 1−ϕ�x� for
all x ∈ �. Then we put

ζ�z� =
√
ϕ

(
1
2
+ z

R

)[
1− ϕ

(
−3
2
+ z

R

)]
� z ∈ ��(4.41)

In order to verify that the functions ζ2k�z� = ζ2�z + 2Rk� with k ∈ � form a
partition of unity on �, we first note that ζ�z� ≡ 1 on �−R/2�R/2
 while ζ�z�+
ζ�z−2R� = 1−ϕ�−3/2+z/R�+ϕ�−3/2+z/R� = 1 for z ∈ �R/2�3R/2
. More-
over, as follows by a direct computation, supz∈�

∑
k �∇ζk�z��2 ≤ 4��√ϕ�′�2∞R−2,

which means that claim 2 is satisfied with C = 4d��√ϕ�′�2∞. This completes
the construction and also the proof. ✷

Proof of Proposition 4.4. Having all the prerequisites, the proof is eas-
ily completed. First,∫ t

0
V
(
X�s�)ds ≤ t

C

R2
+
∫ t
0
�V−ER�

(
X�s�)ds� t > 0�(4.42)

by Lemma 4.6(2). Therefore, combining (3.2) with Lemma 4.5, we have that

uV�t�0� ≤ exp�−t� + exp�tC/R2�uV−ER

r�t� �t�0�(4.43)

whenever t is large enough. Invoking also the Fourier expansion (3.12) w.r.t.
the eigenfunctions of κ�d +V − ER in �2�Qr�t�� and the fact that �1�1�r�t� =
#Qr�t�, we find that

u
V−ER

r�t� �t�0� ≤ ∑
z∈Qr�t�

u
V−ER

r�t� �t� z� ≤ #Qr�t� exp
{
tλdr�t��V−ER�

}
�(4.44)

Now apply Lemma 4.6 for r = r�t� = t log t to complete the proof. ✷

4.3. Proof of Lifshitz tails. Let νR denote the empirical measure on the
spectrum of �R, that is,

νR =
1

#QR

∑
k

δ�−λk��(4.45)
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where λk = λ
d�k
R �ξ� = −Ek denotes the eigenvalues of −�R. Note that νR has

total mass at most 1, because the dimension of the underlying Hilbert space
is bounded by #QR. Due to (1.2), νR is supported on �0�∞�. Moreover, NR�E�
in (1.18) is precisely #QR νR��0�E
�, for any E ∈ �0�∞�. Let � �νR� t� be the
Laplace transform of νR evaluated at t ≥ 0,

� �νR� t� =
∫
νR�dλ� exp�−λt� =

1
#QR

∑
k

exp�tλk��(4.46)

Adapting Theorem VI.1.1. in Carmona and Lacroix (1990) to our discrete set-
ting, the existence of the limit (1.19) is proved by establishing the a.s. con-
vergence of νR to some non-random ν, which in turn is done by proving that
� �νR� ·� has a.s. a non-random limit. In our case, the argument is so short
that we find it convenient to reproduce it here.
Invoking (3.11) and (3.9) for V = ξ, we have from (4.46) that

� �νR� t� =
1

#QR

∑
z∈QR

Ɛz

{
exp
[∫ t

0
ξ
(
X�s�)ds]1�τR > t�1{X�t� = z

}}
�(4.47)

Next, writing 1�τR > t� = 1−1�τR ≤ t� we arrive at two terms, the second of
which tends to zero as R→∞ for any fixed t by the estimate

0 ≤ 1
#QR

∑
z∈QR

Ɛz

{
exp
{∫ t

0
ξ�X�s��ds

}
1�τR ≤ t�1�X�t� = z�

}
≤ 1
#QR

∑
z∈QR


z�τR ≤ t��
(4.48)

where we used that ξ ≤ 0. Indeed, 
z�τR ≤ t� ≤ 
0�τR�z� ≤ t� with R�z� =
dist�z�Qc

R�, which by (4.28) means that 
z�τR ≤ t� decays exponentially with
dist�z�Qc

R�. Thus, � �νR� t� is asymptotically given by the right-hand side of
(4.47) with 1�τR > t� omitted. But then the right-hand side is the average of
an L1 function over the translates in the box QR, so by the ergodic theorem,

lim
R→∞

� �νR� t� =
〈
Ɛ0

{
exp
[∫ t

0
ξ
(
X�s�)ds]1

{
X�t� = 0

}}〉
(4.49)

ξ-almost surely for every fixed t ≥ 0 (the exceptional null set is a priori
t-dependent). Both the right-hand side of (4.49) and � �νR� t� for every R
are continuous and decreasing in t. Consequently, with probability one, (4.49)
holds for all t ≥ 0.
The right-hand side of (4.49) inherits the complete monotonicity property

from � �νR� t�; it thus equals � �ν� t� where ν is some measure supported
in �0�∞�. Moreover, this also implies that νR → ν weakly as R → ∞. In
particular, we have n�E� = ν��0�E
� for any E ≥ 0.

Proof of Theorem 1.3. From (4.49) we immediately have

exp
{
o�t/α2t �

} 〈
exp
{
tλdRα�t�

}〉
≤ � �ν� t� ≤ �u�t�0��� R ≥ 0�(4.50)
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where λdRα�t� is as in (3.10). Here, for the upper bound we simply neglected
1�X�t� = 0� in (4.49), whereas for the lower bound we first wrote (4.49) as
a normalized sum of the right-hand side of (4.49) with the walk starting and
ending at all possible z ∈ QRαt

, and then inserted 1�supp ��t� ⊂ QRα�t��,
applied (3.9) and (3.11), and then recalled (4.25). The factor exp�o�t/α2t ��
comes from the normalization by #QRα�t� in the first step. Using subsequently
(4.24) for p = 1, the left-hand side of (4.50) is further bounded from below by
exp��t/α2t ��−4C/R2+o�1����u�t�0��. Then Theorem 1.2 and the limit R→∞
enable us to conclude that

lim
t→∞

α2t
t
log� �ν� t� = −χ�(4.51)

In the remainder of the proof, we have to convert this statement into the
appropriate limit for the IDS. This is a standard problem in the theory of
Laplace transforms and, indeed, there are theorems that can after some work
be applied [e.g., de Bruijn’s Tauberian Theorem; see Bingham, Goldie and
Teugels (1987)]. However, for the sake of both completeness and convenience
we provide an independent proof below.
Suppose that H is the γ-class. We begin with an upper bound. Clearly,

� �ν� t� ≥ e−tEn�E� for any t�E ≥ 0�(4.52)

Let tE = α−1�√�1− 2ν�χE−1� and insert this for t in the previous expression.
The result is

log n�E� ≤ tEE+ log� �ν� tE� = −tEE
2ν

1− 2ν

(
1+ o�1�)� E ↓ 0�(4.53)

where we applied (4.51) and the definition of tE. In order to finish the upper
bound, we first remark that from the first assertion in (1.7) it can be deduced
that

lim
E↓0

tE

α−1�E− 1
2 �
= [�1− 2ν�χ
− 1

2ν �(4.54)

Indeed, define t′E = α−1�E−1/2� and consider the quantity pE = tE/t
′
E. Clearly,

α�pEt′E� = α�t′E�
√
�1− 2ν�χ�(4.55)

Let p̃ = ��1 − 2ν�χ
−1/�2ν�. Since t′E → ∞ as E ↓ 0, there is no ε > 0 such
that pE ≥ p̃ + ε for infinitely many E with an accumulation point at zero,
because otherwise the left-hand side (4.55) would, by (1.7), eventually exceed
the right-hand side. Similarly we prove that lim infE↓0pE cannot be smaller
than p̃− ε. Therefore, pE → p̃ as E ↓ 0, which is (4.54).
Using (4.54), we have from (4.53) that

lim sup
E↓0

log n�E�
Eα−1�E− 1

2 �
≤ − 2ν

1− 2ν

[�1− 2ν�χ
− 1
2ν �(4.56)
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The lower bound is slightly harder, but quite standard. First, introduce the
probability measure on �0�∞� defined by

µE�dλ� =
e−tEλ

� �ν� tE�
ν�dλ�� E ≥ 0�(4.57)

We claim that, for any ε > 0, all mass of µE gets eventually concentrated
inside the interval �E− εE�E+ εE
 as E ↓ 0. Indeed, for any 0 ≤ t < tE we
have

µE
(�E+ εE�∞�)
≤ � �ν� tE�−1

∫ ∞
E+εE

ν�dλ� exp{−tEλ+ t�λ−E− εE�}
≤ exp�−tεE�� �ν� tE − t�

� �ν� tE�
exp�−tE��

(4.58)

Pick 0 < δ < 1 and set t = δtE. Then we have

µE
(�E+ εE�∞�)
≤ exp

{
−δεtEE− δtEE− χ

tE
α�tE�2

[�1− δ�1−2ν − 1+ o�1�]} �(4.59)

where we again used (4.51) and (1.7). Applying that �1− δ�1−2ν − 1 = −δ�1−
2ν� + o�δ�, using

tEE− χ�1− 2ν� tE
α�tE�2

= 0�(4.60)

and noting that α�tE�−2 = O�E�, we have
µE
(�E+ εE�∞�) ≤ exp

[−tEE(δε+ o�δ�)]�(4.61)

Choosing δ small enough, the right-hand side vanishes as E ↓ 0. Similarly we
proceed in the case �0�E− εE�.
Now we can finish the lower bound on Lifshitz tails. Indeed, using Jensen’s

inequality

ν
(�0�E+ εE
)
= � �ν� tE�

∫ E+εE
0

µE�dλ� exp�tEλ�

≥ � �ν� tE�µE
(�0�E+ εE
) exp{ tE

µE��0�E+ εE
�
∫ E+εE
0

µE�dλ�λ
}
�

(4.62)

But
∫∞
0 µE�dλ�λ tends to E, by what we have proved about the concentration

of the mass of µE (note that (4.61) and the similar bound for �0�E− εE� are
both exponential in ε) and, by the same token, so does

∫E+εE
0 µE�dλ�λ. By

putting all this together, dividing both sides of (4.62) by E′α−1��E′�−1/2� with
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E′ = E + εE, interpreting E′ as a new variable tending to 0 as E ↓ 0, and
invoking (4.53) and the subsequent computation, we get

lim inf
E↓0

log n�E�
Eα−1�E− 1

2 �
≥ −�1+ ε� 1−2ν2ν

2ν
1− 2ν

[�1− 2ν�χ]− 1
2ν �(4.63)

where we also used that tE/tE+εE → �1 + ε�1/�2ν�. Since ε was arbitrary, the
claim is finished by taking ε→ 0. ✷

5. Proof of Theorem 1.5. Again, we divide the proof in two parts: the
upper bound and the lower bound. While the former is a simple application
of our results on the moment asymptotics (and the exponential Chebyshev
inequality), the latter requires two ingredients: a Borel-Cantelli argument for
size of the field and a rather tedious percolation argument. These combine in
Proposition 5.1, whose proof is deferred to subsection 5.3.

5.1. The upper bound.

Proof of Theorem 1.5, upper bound. Let r�t�= t log t and let L∈ �0�∞�.
We want to apply Proposition 4.4 with the random potential V = ξ and with
R replaced by Rα�Lbt� for some fixed R�L > 0. (Later we shall let R → ∞
and pick L appropriately.)
Recall the definition of BR�t� in Proposition 4.4 and abbreviate B�t� =

BRα�Lbt��t�. Take logarithms in (4.21), multiply by α2bt/t and use (1.7) to obtain

lim sup
t→∞

α2bt
t
log u�t�0� ≤ C

L2νR2
+ lim sup

t→∞

[
α2bt maxz∈B�t�

λdz,2Rα�Lbt��ξ�
]
�(5.1)

almost surely w.r.t. the field ξ. Thus, we just need to evaluate the almost sure
behavior of the maximum of the random variables on the right-hand side. This
will be done by showing that

lim sup
R→∞

lim sup
t→∞

[
α2bt maxz∈B�t�

λdz,2Rα�Lbt��ξ�
]
≤ −χ̃(5.2)

almost surely w.r.t. the field ξ, provided L > 0 is chosen appropriately.
For any t > 0, let �λi�t��i=1�����N�t� be an enumeration of the random variables

λdz,2Rα�Lbt��ξ� with z ∈ B�t�. Note that N�t� ≤ 3dtd�log t�d for t large. Clearly,
�λi�t�� are identically distributed but not independent. By (4.6), the tail of
their distribution is bounded by

lim sup
t→∞

α2bt
bt

log
〈
exp�Lbtλd2Rα�Lbt��ξ��

〉 ≤ −L1−2νχ6R� L�R > 0�(5.3)

where χR is defined in (3.30).
Assertion (5.2) will be proved if we can verify that, with probability one,

max
i=1�����N�t�

λi�t� ≤ −
χ̃− ε
α2�bt�

(
1+ o�1�)� t→∞�(5.4)



670 M. BISKUP AND W. KÖNIG

for any ε > 0 and sufficiently large R > 0, as t → ∞. To that end, note
first that the left-hand side of (5.4) is increasing in t since the maps t �→
α�Lbt�, R �→ λdR�ξ� and t �→ r�t� are all increasing. As a consequence, it
suffices to prove the assertion (5.4) only for t ∈ �en:n ∈ 
�, because also
α�bs�−2 − α�ben�−2 = o�α�ben�−2� as n→∞ for any en−1 ≤ s < en. Let

pn = Prob
(

max
i=1�����N�en�

λi�en� ≥ −
χ̃− ε
α2�ben�

)
�(5.5)

Abbreviating t = en and recalling btα
−2
bt
= log t = n, the exponential Cheby-

shev inequality and (5.3) allow us to write for any L > 0 and n large that

pn ≤N�exp�n��Prob
(
exp�Lbtλ1�exp�n��� ≥ exp�−Lbtα−2�bt��χ̃− ε��

)
≤ 3dnd exp�nd� exp{Lbtα−2�bt��χ̃− ε�}〈exp�Lbtλd2Rα�Lbt��ξ��〉
= exp

{
n
[−εL+ d+Lχ̃−L1−2νχ6R + o�1�

]}
�

(5.6)

Now let L minimize the function L �→ d + Lχ̃ − L1−2νχ on �0�∞
. An easy
calculation reveals that L = ��1 − 2ν�χ/χ̃ 
1/�2ν�. By invoking Proposition 1.4,
we also find that d + Lχ̃ − L1−2νχ = 0 for this value of L, and, substituting
this into (5.6), we obtain

pn ≤ exp
{−n[εL−L1−2ν�χ− χ6R� + o�1�

]}
�(5.7)

which is clearly summable on n provided R is sufficiently large. The Borel-
Cantelli lemma then guarantees the validity of (5.4), which in turn proves
(5.2). The limit R→∞ then yields the upper bound in Theorem 1.5. ✷

5.2. The lower bound. Recall the notation of subsection 3.1. Let Qγt
=

�−γt� γt
d ∩ �d denote the “macrobox,” where γt is the time scale defined by

γt =
t

α3bt

� t > 0�(5.8)

We assume without loss of generality that t �→ γt is strictly increasing. Since
we assumed Prob�ξ�0� > −∞� > pc�d� for d ≥ 2, there is a K ∈ �0�∞� such
that Prob�ξ�0� ≥ −K� > pc�d�. Consequently, �z ∈ �d: ξ�z� ≥ −K� contains
almost-surely a unique infinite cluster 	 ∗∞.
Given a ψ ∈ C−��−R�R
d�, let ψt:�d → �−∞�0
 be the function ψt�·� =

ψ�·/α�bt��/α�bt�2. Suppose H is in the γ-class. Abbreviate

Q�t� =
{
QRα�bt�� if γ �= 0,

QRα�bt� ∩ suppψt� if γ = 0.
(5.9)

The main point of the proof of the lower bound in Theorem 1.5 is the existence
of a microbox of diameter of order αbt in Qγt

(which is contained in 	 ∗∞ for
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d ≥ 2) where the field is bounded from below by ψt:

Proposition 5.1. Let R > 0 and fix a function ψ ∈ C−�R� satisfying
�R�ψ� < d. Let ε > 0 and let H be in the γ-class with γ ∈ �0�1�. Then the
following holds almost surely: There is a t0 = t0�ξ�ψ� ε�R� <∞ such that for
each t ≥ t0, there exists a yt ∈ Qγt

such that

ξ�z+ yt� ≥
1

α2bt

ψ

(
z

αbt

)
− ε

α2bt

∀z ∈ Q�t��(5.10)

In addition, whenever d ≥ 2, yt can be chosen such that yt ∈ 	 ∗∞.

The proof of Proposition 5.1 is deferred to subsection 5.3. In order to make
use of it, we establish that the walk can get to yt+Q�t� in a reasonable time. In
d ≥ 2, this will be possible whenever the above microbox can be reached from
any point in 	 ∗∞∩Qγt

by a path in 	 ∗∞ whose length is comparable to the lattice
distance between the path’s end-points. Given x� z ∈ 	 ∗∞, let d∗�x� z� denote
the length of the shortest path in 	 ∗∞ connecting x and z. Let �x − z�1 be the
lattice distance of x and z. The following lemma is the site-percolation version
of Lemma 2.4 in Antal’s thesis [Antal (1994), page 72]. While the proof is given
there in the bond-percolation setting, its inspection shows that it carries over
to our case. Therefore, we omit it.

Lemma 5.2. Suppose d ≥ 2. Then, with probability one,

8�x� (= sup
z∈	 ∗∞\�x�

d∗�x� z�
�x− z�1

<∞ for all x ∈ 	 ∗∞�(5.11)

We proceed with the proof of Theorem 1.5 in the case d ≥ 2. In d = 1,
Lemma 5.2 will be substituted by a different argument.

Proof of Theorem 1.5 (d ≥ 2), lower bound. Let R�ε > 0 and let ψ ∈
C−�R� be twice continuously differentiable with �R�ψ� < d. If γ = 0, let
suppψ be a non-degenerate ball in QR centered at 0. Suppose that ξ =
�ξ�z��z∈�d does not belong to the exceptional null sets of the preceding as-
sertions. In particular, there are unique infinite clusters 	∞ in �z ∈ �d: ξ�z� >
−∞� and 	 ∗∞ in �z ∈ �d: ξ�z� ≥ −K�, and ξ satisfies the claims in Proposi-
tion 5.1 and Lemma 5.2. Clearly, 	 ∗∞ ⊂ 	∞. Assume 0 ∈ 	∞ and pick a z∗ ∈ 	 ∗∞.
For each t ≥ t0 choose a yt ∈ Qγt

∩ 	 ∗∞ such that (5.10) holds. We assume that
t is so large that z∗ ∈ Qγt

.
The lower bound on u�t�0� will be obtained by restricting the random walk

�X�s��s≥0 (which starts at 0) to be at z∗ at time 1, at yt at time γt (staying
within 	 ∗∞ in the meantime) and to remain in yt+Q�t� until time t. Introduce
the exit times from 	 ∗∞ and yt +Q�t�, respectively,

τ∗∞ = inf
{
s > 0:X�s� /∈ 	 ∗∞

}
and τyt�t = inf

{
s > 0:X�s� /∈ yt+Q�t�}�(5.12)
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Let t ≥ t0�ξ�. Inserting the indicator on the event described above and using
the Markov property twice at times 1 and γt, we get

u�t�0� ≥ I× II× III�(5.13)

where the three factors are given by

I = Ɛ0

[
exp
{∫ 1

0
ξ
(
X�s�)ds}1 �X�1� = z∗�

]
�

II = Ɛz∗

[
exp
{∫ γt−1

0
ξ
(
X�s�)ds}1 �τ∗∞ > γt − 1�X�γt − 1� = yt�

]
�

III = Ɛyt

[
exp
{∫ t−γt

0
ξ
(
X�s�)ds}1

{
τyt�t > t− γt

}]
�

(5.14)

Clearly, the quantity I is independent of t and is non-vanishing because
0� z∗ ∈ 	∞. Our next claim is that II ≥ exp�o�tα−2bt �� as t→∞. Indeed,

II ≥ exp�−Kγt�
z∗
(
τ∗∞ > γt − 1�X�γt − 1� = yt

)
�(5.15)

since there is at least one path connecting z∗ to yt within 	 ∗∞ (recall that the
field ξ is bounded from below by −K on 	 ∗∞). Denote by dt = d∗�z∗� yt� the
minimal length of such a path and abbreviate 8�z∗� = 8, where 8�z∗� is as in
(5.11). Then, for t ≥ t0,

dt ≤ 8�z∗ − yt�1 ≤ 2d8γt ≤ 3d8�γt − 1��(5.16)

by Lemma 5.2 and the fact that the both z∗� yt ∈ Qγt
. Hence, using also that

dt! ≤ ddtt ,


z∗
(
τ∗∞ > γt − 1�X�γt − 1� = yt

)
≥ exp�−�γt − 1���γt − 1�dt

dt!
�2d�−dt

≥ exp�−γt� exp
[−dt log�2ddt/�γt − 1��]

≥ exp
[−γt(1+ 3d8 log�6d28�)]�

(5.17)

In order to see that II ≥ exp�o�tα−2bt ��, recall that γt = o�tα−2bt � as t → ∞ by
(5.8) and that z∗ does not depend on t.
We turn to the estimate of III. By spatial homogeniety of the random walk,

we have

III = Ɛ0

[
exp
{∫ t−γt

0
ξ
(
yt +X�s�

)
ds

}
1�τ0�t > t− γt�

]
�(5.18)

where τ0�t is the first exit time from Q�t�. Using (5.10), we obtain the estimate

III ≥ exp
{
−ε�t− γt�α−2bt

}
×Ɛ0
[
exp
{∫ t−γt

0
ψt
(
X�s�)ds}1�τ0�t > t− γt�

]
�

(5.19)
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By invoking (3.5) and (3.12), the expectation on the right-hand side is bounded
from below by

exp
{
�t− γt�λd�t�

}
et�0�2�(5.20)

where λd�t�, resp., et, denote the principal Dirichlet eigenvalue, resp. the �2-
normalized principal eigenfunction of κ�d +ψt in Q�t�. For et�0� and λd�t� we
have the following bounds, whose proofs will be given subsequently.

Lemma 5.3. We have

lim inf
t→∞

α2bt
t
log et�0�2 ≥ 0�(5.21)

lim inf
t→∞

α2btλ
d�t� ≥ λR�ψ��(5.22)

Summarizing all the preceding estimates and applying (5.21) and (5.22),
we obtain

lim inf
t→∞

α2bt
t
log u�t�0� ≥ λR�ψ� − ε�(5.23)

where we also noted that t−γt = t�1+o�1��. In the case γ > 0, let ε ↓ 0, opti-
mize over ψ ∈ C−�R� with �R�ψ� < d [clearly, the supremum in (1.23) may be
restricted to the set of twice continuously differentiable functions ψ ∈ C−�R�
such that �R�ψ� < d] and let R→∞ to get the lower bound in Theorem 1.5.
In the case γ = 0, recall that �R�ψ� = const� ��ψ < 0��. It is classical [see,
e.g., Donsker and Varadhan (1975), Lemma 3.13, or argue directly by Faber-
Krahn’s inequality] that the supremum (1.23) can be restricted to ψ whose
support is a ball. The proof is therefore finished by letting ε ↓ 0, optimizing
over such ψ and letting R→∞. ✷

Proof of Lemma 5.3. We begin with (5.21). Recall that et is also an eigen-
function for the transition densities of the random walk in Q�t� with potential
ψt − λd�t�. Using this observation at time 1, we can write

et�0� = Ɛ0

[
exp
{∫ 1

0

[
ψt
(
X�s�)− λd�t�] ds}1�τ0�t > 1�et�X�1��

]
�(5.24)

Since λd�t� is nonpositive and ψ is bounded from below, we have

et�0� ≥ exp
[
α�bt�−2 inf ψ

] ∑
z∈Q�t�


0
(
τ0�t > 1�X�1� = z

)
et�z��(5.25)

Using the same strategy as in (5.17), we have 
0�τ0�t > 1�X�1� = z� ≥
exp�−O�α�bt� log α�bt���. Since et is nonnegative and satisfies �et�2 = 1� we
have

∑
z et�z� ≥ �et�22 = 1. From these estimates, (5.21) is proved by noting

that α�bt� log α�bt�� = o�t/α�bt�2�.
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In order to establish (5.22), we shall restrict the supremum in (3.10) to a
particular choice of g. Let QR�ψ� = �−R�R
d if γ �= 0 and QR�ψ� = suppψ if
γ = 0. Let ĝ: �−R�R
d → �0�∞� be the L2-normalized principal eigenfunction
of the (continuous) operator κ�+ψ on QR�ψ� with Dirichlet boundary condi-
tions. Let us insert ĝt�z� = ĝ�z/α�bt��/α�bt�d/2 into (3.10) in the place of g.
Thus we get

α�bt�2λd�t��ψt�

≥ α�bt�−d
∑

z∈Q�t�

[
�ψĝ2�

(
z

α�bt�
)

−κα�bt�2
∑
y:y∼z

(
ĝ

(
z

α�bt�
)
− ĝ
(

y

α�bt�
))2]

�

(5.26)

where y ∼ z denotes that y and z are nearest neighbors.
Since ψ is smooth, standard theorems guarantee that ĝ is continuously

differentiable on QR�ψ� and, hence, �∇ĝ�∞ < ∞. [This fact is derived using
regularity properties of Green’s function of the Poisson equation, see, e.g.,
Theorem 10.3 in Lieb and Loss (1997).] Then

ĝ
(
z/α�bt�

)−ĝ(y/α�bt�)=α�bt�−1�z−y� ·∇ĝ(zη/α�bt�)� z� y∈Q�t��(5.27)

where zη = ηz+�1−η�y for some η ∈ �0�1
. For the pairs z ∼ y with y �∈ Q�t�

we only get a bound �ĝ�z/α�bt�� − ĝ�y/α�bt��� ≤ �1+ �∇ĝ�∞�/α�bt� (note that
ĝ�y/α�bt�� = 0 in this case). Since the total contribution of these boundary
terms to (5.26) is clearly bounded by �1+�∇ĝ�∞�/α�bt�, we see that the right-
hand side of (5.26) converges to �ψ� ĝ2� − κ�∇ĝ�2 as t→∞. By our choice of
ĝ, this limit is equal to the eigenvalue λR�ψ�, which proves (5.22). ✷

Proof of Theorem (1.5) (d = 1), lower bound. Suppose that �log�−ξ�0�
∨ 1�� > −∞. This implies that 	∞ = � almost surely and, by the law of large
numbers,

Kξ (= sup
y∈�\�0�

1
�y�

�y�∑
x=0

log
(−ξ�x� ∨ 1) <∞ almost surely.(5.28)

Suppose that ξ = �ξ�z��z∈� does not belong to the exceptional sets of (5.28)
and Proposition (5.1). For sufficiently large t, let yt ∈ Qγt

be such that (5.10)
holds.
Let rx = �−1/ξ�x��∧1. The strategy for the lower bound on u�t�0� is that the

random walk performs �yt� steps toward yt, resting at most time rx at each site
x between 0 and yt, so that yt is reached before time γt. Afterwards the walk
stays at yt until γt. Use E�t� to denote the latter event. Then u�t�0� ≥ II× III,
where III is as in (5.14) and II = Ɛ0�exp�

∫ γt
0 ξ�X�s��ds�1E�t� 
.

The lower bound on III is identical to the case d ≥ 2. To estimate the term
II, suppose that yt > 0 (clearly, if yt = 0 no estimate on II is needed; yt < 0
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is handled by symmetry) and abbreviate �yt� = n + 1. Using the shorthand
�s
n = s0 + � � �+ sn, we have

II =
∫ r0
0
ds0 � � �

∫ rn
0
dsn

∫ γt−�s
n
0

dsn+1 exp

{
−

n+1∑
x=0

sx
(
κ− ξ�x�)}

≥ exp�O�γt��
n∏
x=0

[
rx exp

(
rxξ�x�

)]

≥ exp�O�γt�� exp
{
−

n∑
x=0

log
(−ξ�x� ∨ 1)} �

(5.29)

Indeed, in the first line we noted that �s
n ≤ γt because rx ≤ 1. Then we
took out the terms exp�−κsx� as well as exp�sn+1ξ�yt��, recalling that ξ�yt� ≥
inf ψt = inf ψ/α�bt�2 = O�1� and that �yt� = O�γt�. The last inequality follows
by the fact that rx exp�rxξx� ≥ rx/e. Invoking (5.28), the sum in the exponent
is bounded above byKξ�yt� = O�γt�, whereby we finally get that II ≥ e−O�γt�. ✷

5.3. Technical claims. In this final subsection, we prove Proposition 5.1.
First, we need to introduce some notation and prove two auxiliary lemmas.
For ε > 0 and y ∈ �d, define the event

A
�t�
y = �y ∈ 	 ∗∞� ∩

⋂
z∈Q�t�

{
ξ�y+ z� ≥ ψt�z�−

ε

2α�bt�2
}
�(5.30)

Note that the distribution of A�t�
y does not depend on y. By ∂�Q� we denote

the outer boundary of a set Q ⊂ �d. To estimate Prob�A�t�
y �, it is convenient to

begin with the first event on the right-hand side of (5.30). Since �y ∈ 	 ∗∞� ⊂
∂�y+Q�t�� ∩ 	 ∗∞ it suffices to know an estimate on Prob�∂Q�t� ∩ 	 ∗∞�:

Lemma 5.4. Let d ≥ 2 and let ψ ∈ C−�R� be such that ψ �≡ 0. Then there
is a c ∈ �0�∞� such that, for t large enough,

Prob
(
∂Q�t� ∩ 	 ∗∞ = �

) ≤ exp�−cα�bt���(5.31)

Proof. Since ψ �≡ 0 is continuous, there is a ball Bα�bt� of radius of order
α�bt� such that Bα�bt� ⊂ Q�t�. If t is so large that ψt ≥ inf ψ/α�bt�2 ≥ −K, then
Bα�bt� ⊂ �z: ξ�z� ≥ −K� and the left-hand side of (5.31) is bounded from above
by Prob�∂Bα�bt�∩	 ∗∞ = ��. The proof now proceeds in a different way depending
whether d ≥ 3 or d = 2. In the following, the words “percolation,” “infinite
cluster,” etc., refer to site-percolation on �d with parameter p = Prob�ξ�0� >
−K�. Recall that p > pc�d� by our choice of K.
Let d ≥ 3. Then, by equality of pc�d� and the limit of slab-percolation

thresholds, there is a width k such that the slab Sk = �d−1 × �1� � � � � k� con-
tains almost surely an infinite cluster. Pick a lattice direction and decompose
�d into a disjoint union of translates of Sk. There is c′ > 0 such that, for t large,
at least "c′α�bt�/k# slabs are intersected by ∂Bα�bt�. Then �∂Bα�bt� ∩	 ∗∞ = �� is
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contained in the event that in none of the slabs intersecting ∂Bα�bt� the respec-
tive infinite cluster reaches ∂Bα�bt�. Let P∞�k� be minimum probability that a
site in Sk belongs to an infinite cluster. Combining the preceding inclusions,
we have

Prob�∂Bα�bt� ∩ 	 ∗∞ = �� ≤ P∞�k�c
′α�bt�/k�(5.32)

Now the claim follows by putting c = −c′k−1 logP∞�k�.
In d = 2, suppose without loss of generality that Bα�bt� is centered at the

origin. Recall that x and y are ∗-connected if their Euclidean distance is not
more than

√
2. On the event �∂Bα�bt� ∩ 	 ∗∞ = ��, the origin is encircled by a

∗-connected circuit of size at least cα�bt� for some c > 0, not depending on t.
Denote by x the nearest point of this circuit in the first coordinate direction.
Call sites z with ξ�z� ≥ −K “occupied,” the other sites are “vacant.”
Note that percolation of occupied sites rules out percolation of vacant sites,

for example, by the result of Gandolfi, Keane and Russo (1988). Moreover,
using the site-perolation version of the famous “pc = πc” result [see, e.g.,
Grimmett (1989)], the probability that a given site is contained in a vacant
∗-cluster of size n is bounded by e−σ�p�n, where σ�p� > 0 since p > pc�d�. If
the ball Bα�bt� has diameter at least rα�bt�, then by taking the above circuit
for such a cluster we can estimate the probability of its occurrence:

Prob
(
∂Q�t� ∩ 	 ∗∞ = �

) ≤ ∞∑
n="rα�bt�#

ne−σ�p�n ≤ e−σ�p�rα�bt�/2�(5.33)

for t large enough. Here “n” in the sum accounts for the position of the circuit’s
intersection with the positive part of the first coordinate axis. The minimal
size of the circuit is at least "rα�bt�#, since it has to stay all outside Bα�bt�. The
claim follows by putting c = rσ�p�/2. ✷

Lemma 5.5. For any ε > 0,

Prob�A�t�
0 � ≥ t−�R�ψ�+o�1�� t→∞�(5.34)

Let H be in the γ-class and let ψ �≡ 0 (otherwise there is nothing to prove
because �R�0� = ∞). Consider the event

Ã�t� = ⋂
z∈Q�t�

{
ξ�z� ≥ ψt�z�−

ε

2α�bt�2
}
�(5.35)

Note that both events on the right-hand side of (5.30) are increasing in the
partial order ξ 0 ξ′ ⇔ ξ�x� ≥ ξ′�x� for all x. Therefore, by the FKG-inequality,

Prob�A�t�
0 � ≥ Prob�0 ∈ 	 ∗∞�Prob�Ã�t���(5.36)

Since Prob�0 ∈ 	 ∗∞� > 0, we only need to prove the assertion for A�t�
0 replaced

by Ã�t�. The proof proceeds in three steps, depending on γ and on whether
there is an atom at 0.
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Proof of Lemma 5.5 for γ ∈ �0�1�. Let f ∈ C+�R� be the solution to ψ−
3
8ε = H̃′ ◦ f and let ft:�d → �0�∞� be its scaled version: ft�z� = �bt/α�bt�d�
f�z/α�bt��. Define the tilted probability measure

Probt�z� · � =
〈
exp�ft�z�ξ�z��1�ξ�z� ∈ · �

〉
exp�−H�ft�z����(5.37)

We denote expectation with respect to Probt�z by � · �t�z. Consider the event

Dt�z� =
{
− ε

4α�bt�2
≥ ξ�z� − ψt�z� ≥ −

ε

2α�bt�2
}
�(5.38)

Then Prob�Ã�t�� can be bounded as

Prob
(
Ã�t�) ≥ ∏

z∈Q�t�

[
exp�H�ft�z���

〈
exp�−ft�z�ξ�z��1�Dt�z��

〉
t�z

]
�(5.39)

Applying the left inequality in (5.38), we obtain

Prob
(
Ã�t�) ≥ exp

 ∑
z∈Q�t�

[
H�ft�z�� − ft�z�

(
ψt�z� −

ε

4α�bt�2
)]

× ∏
z∈Q�t�

Probt�z
(
Dt�z�

)
�

(5.40)

Since γ > 0 and f is continuous and bounded, we can use our Scaling As-
sumption and the fact that btα�bt�−2 = log t to turn the sum over z ∈ Q�t� into
a Riemann integral over �−R�R
d:

Prob�Ã�t�� ≥ t−
∫ �fψ−H̃◦f
+ ε

4

∫
f+o�1� ∏

z∈Q�t�
Probt�z

(
Dt�z�

)
�(5.41)

where we also used that Q�t� = QRα�bt� in this case. In order to complete the
proof of the lower bound in (5.34), we thus need to show that∫ [

fψ− H̃ ◦ f] ≤ �R�ψ�(5.42)

and that ∏
z∈Q�t�

Probt�z
(
Dt�z�

) ≥ to�1�� t→∞�(5.43)

Let us begin with (5.42). For simplicity, we restrict ourselves to the case
when H̃�1� = −1. Then �R�ψ� = γ1/�1−γ��γ−1−1� ∫ �ψ�−γ/�1−γ� and f = γ1/�1−γ�

�ψ− 3
8ε�−1/�1−γ�. Hence,

∫ [
fψ− H̃ ◦ f]−�R�ψ� = γ

1
1−γ
∫
�ψ�− γ

1−γ ζγ

∣∣∣∣∣ ψ

ψ− 3
8ε

∣∣∣∣∣
1

1−γ
 �(5.44)

where ζγ�x� = 1−x− 1
γ
�1−xγ�. Since ζγ�x� ≤ 0 for any x ≥ 0, (5.42) is proved.
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In order to prove (5.43), note that

Probt�z
(
Dt�z�

) ≥ 1− Probt�z

(
ξ�z� ≥ ψt�z� −

ε

4α�bt�2
)

−Probt�z
(
ξ�z� ≤ ψt�z� −

ε

2α�bt�2
)
�

(5.45)

We concentrate on estimating the second term; the first term is handled anal-
ogously. By the exponential Chebyshev inequality, we have for any gt�z� ∈
�0� ft�z�� that

Probt�z
(
ξ�z� ≤ ψt�z� −

ε

2α�bt�2
)

≤ exp
{−H�ft�z��}〈exp{ft�z�ξ�z�−gt�z�[ξ�z�−ψt�z�+ ε

2α�bt�2
]}〉

= exp
{
H
(
ft�z� − gt�z�

)−H(ft�z�)+ gt�z�ψt�z� − gt�z� ε

2α�bt�2
}
�

(5.46)

Note that H̃′
t → H̃′ (recall (3.13)) as t → ∞ uniformly on compact sets

in �0�∞�. Also note that f is bounded away from 0. Choose gt�z� = δtft�z�,
where δt ↓ 0 is still to be chosen appropriately. Then the exponent in the third
line of (5.46) can be bounded from above by

−δt
bt

α�bt�d+2
f

(
z

α�bt�
){

H̃′
t

[
f

(
z

α�bt�
)
�1− δt�

]
− ψ
(

z

α�bt�
)
+ ε

2

}
= −δt

bt
α�bt�d+2

f

(
z

α�bt�
)[ε

8
+ o�1�

]
�

(5.47)

where we replaced H̃′
t by H̃

′ +o�1� and used the definition relation for f. Pick
δt = �αd+2bt

/bt�1/2 for definiteness. Taking the product over z ∈ Q�t� in (5.45)
and using that � ε8 + o�1�
f ≥ C > 0, we obtain for t large that

∏
z∈Q�t�

Probt�z
(
Dt�z�

) ≥ [1− 2 exp
{
−Cδt

bt
α�bt�d+2

}]#Q�t�

≥ exp
{
−4#Q�t� exp

{
−Cδt

bt
α�bt�d+2

}}
= t

−C′�αd+2bt
/bt� exp

(
−Cδt bt

α�bt�d+2
)
�

(5.48)

where also used that btα�bt�−2 = log t and #Q�t� ≤ α�bt�dC′/4 for some C′ as
t → ∞. By our choice of δt, (5.43) is clearly satisfied, which completes the
proof in the case γ ∈ �0�1�. ✷
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Proof of Lemma 5.5 for γ = 0, atom at 0. Suppose Prob�ξ�0� ∈ ·� has
an atom at 0 with mass p > 0. Then, noting that Q�t� are only the sites
with ψt < 0, we have

Prob�Ã�t�� ≥ Prob
(
ξ�0� = 0

)#Q�t�

= exp
{
α�bt�d��suppψ� + o�1�� logp

}
� t→∞�

(5.49)

Since αt = t1/�d+2� and H̃�1� = logp, we have �R�ψ� = −H̃�1��suppψ� and
α�bt�d = log t, whereby (5.34) immediately follows. ✷

Proof of Lemma 5.5 for γ = 0, no atom at 0. Suppose that γ = 0 and
Prob�ξ�0� = 0� = 0. Set ft = btα�bt�−d and consider the probability measure
Probt�ξ�0� ∈ ·� with density exp�ftξ�0�−H�ft�
 with respect to Prob�ξ�0� ∈ ·�.
Invoking that ξ�0� ≤ 0, we obtain

Prob�Ã�t�� ≥ Prob
(
ξ�0� ≥ − ε

2α�bt�2
)#Q�t�

≥ exp�#Q�t�H�ft��Probt
(
ξ�0� ≥ − ε

2α�bt�2
)#Q�t�

�

(5.50)

Now use the Scaling Assumption and the fact that #Q�t� = α�bt�d��suppψ� +
o�1�� as t→∞ to extract the term t−�R�ψ� from the exponential on the right-
hand side [here we recalled that �R�ψ� = −H̃�1��suppψ�]. Moreover, by an
argument similar to (5.46), the last term on the right-hand side is no smaller
than to�1� as t→∞. To that end we noted that our choice of ft corresponds to
f ≡ 1 and then we used again that limt→∞ btα�bt�−�d+2� = ∞, which follows
from the fact that ξ�0� has no atom at zero. This finally completes the proof
of Lemma 5.5. ✷

Now we can complete the proof of Proposition 5.1.

Proof of Proposition 5.1. Fix R > 0 and ψ ∈ C−�R� with �R�ψ� < d.
Recall the notation (5.9) and (5.30). Let t1 = t1�ψ� ε�R� be such that for all
t ≥ t1 and for all s ∈ �0� e�

ψet�z� −
ε

2α�bet�2
≥ ψst�z� −

ε

α�bst�2
� z ∈ Q�st��(5.51)

Such a t1 <∞ indeed exists, since α�bst�/α�bet� → 1 as t→∞ and since ψ is
uniformly continuous on �−R�R
d. This implies that to prove Proposition 5.1
it suffices to find an almost-surely finite n0 = n0�ξ�ψ� ε�R� such that for

each n ≥ n0 there is a yn ∈ Qγen
for which the event A�en+1�

yn occurs. Indeed,
for any t = sen with n ≥ n0 and s ∈ �0� e� we have that Qγen

⊂ Qγt
and

yn +QRα�bt� ⊂ yn +QRα�ben+1 �, as follows by monotonicity of the maps t �→ γt
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and t �→ α�bt� and, consequently,⋂
z∈Q�t�

{
ξ�yn + z� ≥ ψt�z� −

ε

α�bt�2
}
⊃ A

�en+1�
yn �(5.52)

by invoking (5.51). Then Proposition 5.1 would follow with the choice t0 =
t1 ∨ en0 .
Based on the preceding reduction argument, let t ∈ �en:n ∈ 
� for the

remainder of the proof. Let Mt = Qγt
∩ "3Rα�bet�#�d. We claim that, to prove

Proposition 5.1 for t ∈ �en:n ∈ 
�, it suffices to show the summability of

pt = Prob

( ∑
y∈Mt

1
A
�et�
y
≤ 1

2#Mt Prob
(
A
�et�
0

))
� t ∈ �en:n ∈ 
��(5.53)

Indeed, since #Mt ≥ td+o�1� we have by Lemma 5.5

#Mt Prob�A�et�
0 � ≥ td−�R�ψ�+o�1�� t→∞�(5.54)

Since we assumed �R�ψ� < d, summability of pt would imply the existence of
at least one site y ∈ Qγt

(in fact, at least td−�R�ψ�+o�1� sites) withA�et�
y satisfied.

To prove a suitable bound on pt we invoke Chebyshev’s inequality to find
that

pt ≤
4

#Mt Prob�A�et�
0 �

+ 4maxy �=y′ cov�A�et�
y �A

�et�
y′ �

Prob�A�et�
0 �2

�(5.55)

As follows from (5.54), the first term on the right-hand side is summable on
t ∈ �en:n ∈ 
�. In order to estimate cov�A�et�

y �A
�et�
y′ � for y �= y′, let � and �′ be

two disjoint half spaces in �d which contain y+Q�et� and y′+Q�et�, respectively,
including the outer boundaries. By our choice ofMt, � can be chosen such that
dist�y+Q�et���c� ≥ Rα�bt�/3, and similarly for �′. We introduce the event Fy

that the outer boundary of y+Q�et� is connected to infinity by a path in 	 ∗∞∩�,
and the analogous event Fy′ with y′ and �′ instead of y and �. By splitting

A
�et�
y into A�et�

y ∩Fy and A
�et�
y ∩Fc

y (and analogously for y′) and invoking the

independence of A�et�
y ∩Fy and A

�et�
y′ ∩Fy′ we see that

cov
(
A
�et�
y �A

�et�
y′
) = cov

(
A
�et�
y ∩Fc

y�A
�et�
y′
)+ cov

(
A
�et�
y ∩Fy�A

�et�
y′ ∩Fc

y′
)

≤ Prob
(
Ã�et�)2[Prob�Fc

y� + Prob�Fc
y′ �
]
�

(5.56)

where we recalled (5.35) for the definition of Ã�et�.
In order to estimate the last expression, let us observe that

Fc
y ⊂
{
∂�y+Q�et�� ∩ 	 ∗∞ = �

} ∪ ⋃
x∈∂�y+Q�et��

Gx(5.57)

where Gx is the event that x is in a finite component of �z: ξ�z� ≥ −K� ∩ �
which reaches up to �c. By Lemma 5.4, the probability of the first event is
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bounded by e−cα�bt�/2 and, as is well known [see, e.g., Grimmett (1989), proof
of Theorem 6.51], Prob�Gx� is exponentially small in dist�x��c�, which is at
least Rα�bt�/3. Since #∂�y+Q�et�� = O�α�bt�d−1�, we have

Prob�Fc
y� ≤ exp�−c∗α�bt��(5.58)

for some c∗ > 0. Since α�bt� = nν/�1−2ν�+o�1� for t = en, also the second
term is thus summable on t ∈ �en:n ∈ 
�, because by (5.36), Prob�Ã�et�� ≤
Prob�A�et��/Prob�0 ∈ 	 ∗∞�. Combining all the preceding reasoning, the proof of
Proposition 5.1 is complete. ✷
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occasional discussions. The authors wish to acknowledge the hospitality of
TU Berlin (M.B.) and Microsoft Research (W.K.).

REFERENCES

Antal, P. (1994). Trapping problems for the simple random walk. Ph.D. dissertation, ETH.
Antal, P. (1995). Enlargement of obstacles for the simple random walk. Ann. Probab. 23 1061–

1101.
Bingham, N. H., Goldie, C. M. and Teugels, J. L. (1987). Regular Variation. Encyclopedia of

Mathematics and Its Applications 27. Cambridge Univ. Press.
Biskup M. and König W. (1998). On a variational problem related to the one-dimensional

parabolic Anderson model. Unpublished manuscript.
Biskup, M. and König, W. (2000). Screening effect due to heavy lower tails in one-dimensional

parabolic Anderson model. J. Statist. Phys. To appear.
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