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ASYMPTOTIC DENSITY IN A THRESHOLD COALESCING AND
ANNIHILATING RANDOM WALK1

By David Stephenson

Cornell University

We consider an interacting random walk on �d where particles interact
only at times when a particle jumps to a site at which there are at least
n− 1 other particles present. If there are i ≥ n− 1 particles present, then
the particle coalesces (is removed from the system) with probability ci and
annihilates (is removed along with another particle) with probability ai.
We call this process the n-threshold randomly coalescing and annihilating
random walk. We show that, for n ≥ 3, if both ai and ai +ci are increasing
in i and if the dimension d is at least 2n+ 4, then

P�the origin is occupied at time t� ∼ C�d	n�t− 1
n−1 	

E�number of particles at the origin at time t� ∼ C�d	n�t− 1
n−1 �

The constants C�d	n� are explicitly identified. The proof is an extension of
a result obtained by Kesten and van den Berg for the 2-threshold coalescing
random walk and is based on an approximation for dE�t�/dt�

1. Introduction. In this paper, we study a broad class of systems which
make up an extension of both the standard coalescing random walk and the
standard annihilating random walk. First introduced as the dual of the voter
model, the standard coalescing random walk is one of the more basic particle
systems. In brief, it considers a system of particles on the space �d, starting at
time 0 with a particle at each site. Particles jump at times determined by Pois-
son processes, with displacements determined by some transition kernel q�·�.
One particle is removed at each collision of two particles. In the annihilating
random walk, two particles (i.e., both particles) are removed at each collision.
One of the main problems of interest, having applications to the dual voter
model, is that of determining the asymptotic order of P�t�, the probability that
the origin (or any other fixed site) is occupied at time t.

In 1980, Bramson and Griffeath applied a certain result of Sawyer’s (1979)
to show that, as t → ∞ in the coalescing case, P�t� ∼ log t/�πt� for d = 2 and
P�t� ∼ 1/�γdt� for d ≥ 3. Here γd denotes the probability that a d-dimensional
simple random walk never returns to the origin. Technically, these results were
established in the case of simple random walks only. Soon afterward, Arattia
(1981) showed that P�t� in the annihilating system is asymptotically one-half
that of the coalescing system [see Arratia (1981), Theorem 3], so long as the
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random walks are multidimensional (i.e., not restricted to a one-dimensional
subspace).

Recently, Kesten and van den Berg (2000) established a new technique for
analyzing the asymptotic density, E�t�, of coalescing random walks using a
differential equation for E�t�. In addition to providing the result of Bramson
and Griffeath for general random walks satisfying certain moment conditions,
their work also provides a rate of convergence to the limiting density. More
importantly, it extends to the cases where particles coalesce only with prob-
abilities strictly less than one (so long as these probabilities are increasing
with the number of particles present during a collision). Their result requires
the probabilities of coalescence to be strictly positive for any collision.

In this paper, we extend their result in several ways, considering systems
where multiple particles may collide with zero probability of interaction and
where collisions may result either in coalescence or in annihilation of particles
(resulting in the loss of one or two particles, respectively).

The following is a heuristic description of the model studied in this paper:
Each system, ξt, is associated with a continuous time random walk, St	

which has transition kernel q�·� and jumps at the jump-times of a rate one
Poisson process. We assume that the support of q�·� contains d linearly in-
dependent vectors. We also assume that St has zero mean and finite second
moment.

We start at time 0 with one particle at each site of �d. For any x ∈ �d, we let
the particle starting at x move according to Sx

t , which is an independent copy
of St + x� The particle may be removed, however, if it jumps to a site which
already contains particles, or if another particle jumps onto the site that the
first particle currently occupies.

Each system has a threshold n, which is the minimum number of particles
which must be present at a site in order for interaction to occur. There are also
positive constants ai and ci, with ai + ci ≤ 1, representing the probabilities
that a particle jumping onto a site occupied by i ≥ n − 1 particles will cause
an annihilation or a coalescence (respectively). The proof of the main result
assumes that both ai and ai + ci are increasing in i. To each jump, we attach
a uniform �0	1� random variable U. If a particle jumps to a position y which
is occupied by i particles and if the corresponding U satisfies U ≤ ai, then we
remove two particles from y. If ai < U ≤ ai + ci	 then we remove one particle
only. No particles are removed if U > ai + ci.

Our main result is the following theorem.

Theorem 1. Assume that

ai = ci = 0 for i = 0	 � � � 	 n− 2� an−1 + cn−1 > 0

and that

ai and ai + ci are increasing in i�(1)

Assume also that the particles move according to continuous time random
walks which are distributed as translates of �St�, where St is a continuous
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time random walk with transition kernel q�·� and jump-times dictated by a
rate one Poisson process. Assume also that

the support of q�·� contains d linearly independent vectors	(2)

q�0� = 0	 ESt = 0 and
∑
y∈�d

�y�2q�y� < ∞�(3)

Define

γn	d �= P
{
n independent copies of S· never coincide

after the first walk leaves 0
}

and

C1 = C1�d	n� �=
[ �n− 1��2an−1 + cn−1�γn	d

1 − �1 − an−1 − cn−1��1 − γn	d�
]− 1

n−1

�

Then, for n ≥ 3 and d ≥ 2n+ 4, there exists a ζ = ζ�d	n� such that, for large
t,

P�the origin is occupied at time t� = C1t
− 1

n−1 +O
(
t−

1
n−1 −ζ

)
(4)

and

E�number of particles at the origin at time t� = C1t
− 1

n−1 +O
(
t−

1
n−1 −ζ

)
�(5)

Also, for p ≥ 2	

P�there are at least p particles at the origin at time t�
= O

(
t−

p
n−1 ∨ t

n−2
n−1 −d�1−ε�/�2n−2�

)
	

(6)

where ε > 0 can be taken to be arbitrarily small.

The condition n ≥ 3 is necessary to achieve the lower bound in Lemma 11.
However, the case where n = 2 and ai = 0 for all i is the system studied by
Kesten and van den Berg (2000).

2. Description and construction of the Markov process. Since our
system is so similar to the system introduced in Kesten and van den Berg
(2000), we will follow their construction in many places. The main difference
between the construction of our system and that of the system in Kesten
and van den Berg is that, because we allow for annihilation to occur, our
system does not have the monotonicity property that increasing the number of
particles present at time zero will increase the number of particles present at
any site for any time t� We do, however, establish a certain relation between
the two types of systems (Lemma 8).

The state space for the n-threshold randomly coalescing and annihilating
random walk will be a subset of �0 �= ��+��d

. A point of �0 is denoted by
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ξ = �ξ�x� � x ∈ �d�� ξt is then the state of our system at time t, and ξt�x�
denotes the number of particles at position x.

Define ξN	t to be the process with initial state ξ0�y����y� ≤ N�� We start
by constructing the processes ξN	t for any N > 0 and then use a limiting
procedure (Lemma 2) to arrive at the system ξt.

For each x ∈ �d and k ≥ 1, we construct an independent Poisson pro-
cess �Nt�x	 k��t≥0 with jump-times τ1�x	 k� < τ2�x	 k� < · · · and N0�x	 k� =
τ0�x	 k� = 0� To each τn�x	 k�	 we attach a displacement yn�x	 k� and a col-
lection of random variables X�n	x	 k	 i�, i ≥ 0� Particles perform continuous-
time random walks dictated by these random variables. At time τn�x	 k�, if
ξN	t�x� ≥ k	 then one particle jumps to x + yn�x	 k�. X�n	x	 k	 i� takes the
values 2, 1 and 0, depending, as described below, on the number of particles
i at the position x+ yn�x	 k�. X�n	x	 k	 i� specifies whether a particle which
jumps from x at time τn�x	 k� annihilates, coalesces or stays in the system,
respectively, so that

ξτn�x	k��x� = ξτn�x	k�−�x� − 1

and

ξτn�x	k��x+ yn�x	 k�� = ξτn�x	k�−�x+ yn�x	 k�� + 1 −X�n	x	 k	 i��
Assume that all yn�x	 k� and X�n	x	 k	 ·� for different �n	x	 k� are indepen-
dent of each other and of all Poisson processes and that, for fixed �n	x	 k�,
the yn�x	 k� and X�n	x	 k	 ·� are independent. The X�n	x	 k	 i� for different
i are dependent, as described below.

Let U�n	x	 k�	 x ∈ �d	 n	 k ≥ 1, be a family of uniform random variables on
�0	1� which are independent of all y’s and of all Poisson processes Nt�x	 k�.
We define the joint distribution of yn�x	 k� and U�n	x	 k� by

P�yn�x	 k� = y	U�n	x	 k� ≤ λ� = q�y�λ	 0 ≤ λ ≤ 1�

We then set

X�n	x	 k	 i� =




2	 if U�n	x	 k� ≤ ai	

1	 if ai < U�n	x	 k� ≤ ai + ci	

0	 if ai + ci < U�n	x	 k��
Define

�s �=σ-field generated by all Nu�x	 k� for u ≤ s and all yn�x	 k� and U�n	x	 k�
attached to some τn�x	 k� ≤ s�

Lemma 1. Assume �1�. Let ξ′
0 and ξ′′

0 be initial states with finite numbers
of particles, and define ξ′

t and ξ′′
t to be the processes with initial states ξ′

0 and
ξ′′

0, respectively. If we run these processes using the same random variables
Nu�x	 k�	 yn�x	 k� and U�n	x	 k�, then, for all t ≥ 0	 we have that∑

x

�ξ′
t�x� − ξ′′

t �x�� ≤ ∑
x

�ξ′
0�x� − ξ′′

0�x���(7)
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In addition, define

ηt�x� �= ξ′′
t �x� − ξ′

t�x�
and

� �= �x1	 � � � 	 xk�	
where k = ∑

x �ξ′
0�x� − ξ′′

0�x�� and each x ∈ �d is listed % times if �η0�x�� = %�
Then there exist independent random walks �Sy

· �y∈� which are translates of

S· but with S
y
0 = y and such that at all times t the following inclusion of events

holds:

�ηt�x� �= 0� ⊆ �Sy
t = x for some y ∈ � ��(8)

Here each S
y
t is completely determined by the Nu�x	 k� for u ≤ t and the

yn�x	 k� and U�n	x	 k� attached to some τn�x	 k� ≤ t�

Note that (8) essentially states that locations of discrepancy between ξ′
t and

ξ′′
t move as independent random walks but may vanish under certain condi-

tions. Intuitively, this follows by noting that the particles not common to both
systems follow independent random walks up until collision with a particle.
At the point of collision, a particle either remains unaffected, coalesces or an-
nihilates. The second case creates proper inclusion in (8), and the other two
cases represent preservation of the discrepancy between the systems at the
place and time of collision. By the Strong Markov property for the finite sys-
tem, the location of the non-common particle continues to move as a random
walk (although the non-common particle may now be in the other system). Al-
though the preservation of non-common particles is not independent of other
particles in the system, the positions of these non-common particles depend
only on independent random jumps.

Proof of Lemma 1. We couple the processes ξ′
t and ξ′′

t to create another
process ζt	 where ζ0�x� has ξ′

0�x�∧ξ′′
0�x� white particles, ξ′

0�x�−[ξ′
0�x�∧ξ′′

0�x�]
blue particles and ξ′′

0�x�− [ξ′
0�x�∧ξ′′

0�x�] green particles. As will be seen, blue
and green particles never occupy the same sites. Blue and green particles
move normally but are always considered to be above the white particles at
each site (i.e., jump according to the processes Nt�x	 i + 1� · · ·Nt�x	 i + j� if
there are i white particles and j blue or green particles at a site at time t). We
will also introduce black particles, which will move normally but not interact
at all. The black particles will move above all other particles.

We set up the coupling so that at all times the white particles represent par-
ticles common to both ξ′

t and ξ′′
t , the blue particles represent particles present

in only the ξ′-process, and the green particles represent particles present in
only the ξ′′-processes. The black particles represent discrepancies which have
disappeared due to extra particles coalescing or annihilating. The following
rules govern the interactions of particles in the process ζt:

Suppose, for some y ∈ �d, n > 0 and time τn�y	k�−, that a site x has i
white particles and j blue/green particles. (As we will see, at no time will a
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site have both blue and green particles.) Suppose one of the following three
jumps occurs:

(i) A white particle jumps from some y to x at time τn�y	k�. (This is a jump
that occurs in both the ξ′ and the ξ′′-systems.)

(a) If U�n	y	 k� ≤ ai	 then the particle is removed along with another
white particle from x. (An annihilation occurs in both system.)

(b) If U�n	y	 k� ∈ �ai	 ai+j� and U�n	y	 k� ≤ �ai + ci�	 then the white
particle is removed and one blue or green particle (whichever is present) at x
is colored black. (An annihilation occurs at x in the system with extra particles
at x, but a coalescence occurs in the other system. This jump eliminates one
discrepancy between the systems.)

(c) If U�n	y	 k� ∈ �ai	 ai+j� and U�n	y	 k� > �ai +ci�	 then, if j ≥ 2	 we
color two blue or green particles (whichever color is present) black, and the
white particle remains. If j < 2, then the white particle is removed and the one
blue or green particle is colored green or blue, respectively. (An annihilation
occurs at x in the system with extra particles at x, but nothing happens in
the other system. The jump eliminates two particles at the site: either two
extra particles or one extra particle and one common particle. The latter case
preserves the discrepancy between the systems, the extra particle now being
in the other system.)

(d) If U�n	y	 k� ∈ �ai+j	 ai+j+ci+j� and ai < U�n	y	 k� ≤ �ai+ci�	 then
the white particle is removed. (Coalescence occurs in either system.)

(e) If U�n	y	 k� ∈ �ai + ci	 ai+j + ci+j� and U�n	y	 k� > �ai + ci�	 then
a blue/green particle at x is colored black and the white particle remains.
(Coalescence occurs only in the system with the extra particles.)

(f) If U�n	y	 k� > ai+j + ci+j	 then all particles remain unchanged.

(ii) A blue particle jumps from y to x at time τn�y	k�: (This is a jump by a
particle that is only in the ξ′-system.)

(a) If there is a green particle at x and U�n	y	 k� ≤ ai	 then the blue
particle is colored green and one of the white particles at x is colored black.
(Here there is an annihilation in the ξ′-system only, eliminating both the extra
blue particle and one of the common particles. Note that ai is nonzero only if
i > 0, so the existence of a white particle is guaranteed in this case.)

(b) If there is a green particle at x and ai ≤ U�n	y	 k� ≤ ai + ci, then
the blue particle is colored black. (Here the extra blue particle has coalesced
and been removed from the ξ′-system.)

(c) If there is a green particle at x and U�n	y	 k� ≥ ai + ci, then the
blue and green particles are colored black and a white particle is inserted at
x. (Here two particles which were in separate systems have occupied the same
site, resulting in one particle common to both systems.)

(d) If there are no green particles at x and if U�n	y	 k� ≤ ai+j, then the
blue particle is colored black along with another blue particle from x, provided
there is another blue particle present at x. If there are no blue particles at x	
then one white particle is removed from x and the blue particle which jumped
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is colored green. (An annihilation occurs in the ξ′-system, and the result is
that two of the extra particles at x are removed, or, if the new particle is
the only extra particle at x	 it is removed along with one common particle
from x. In this last case, one particle is no longer common to both systems
and the blue particle is colored green because the ξ′′-system now contains the
extra particle. An equivalent, more intuitive description would be that the blue
particle is removed and the white particle is colored green. However, we want
to keep white particles separate from colored particles for clarity in tracing
paths.)

(e) If there are no green particles at x and if U�n	y	 k� ∈ �ai+j	 ai+j +
ci+j�, then the blue particle is colored black. (The extra particle has coalesced
and been removed.)

(f) If there are no green particles at x and if U�n	y	 k� > ai+j + ci+j,
then all particles remain unchanged.

(iii) A green particle jumps from y to x at time τn�y	k�: This is a jump by
a particle that is only in the ξ′′-system and is treated analogously to case (ii).

The black particles move normally but do not interact at all. Note that, at
any time t	 the white and blue particles together make up the ξ′

t-system and
the white and green particles make up the ξ′′

t -system. We then have

∑
x

∣∣ξ′
t�x� − ξ′′

t �x�∣∣ = ∑
x

[
number of blue and green particles at x at time t

]
≤ ∑

x

�ξ′
0�x� − ξ′′

0�x��	

since the total sum of blue and green particles never increases. Equation (7)
follows.

The inclusion (8) follows in a similar way by noting that the position of any
particle not shared by both ξ′

t and ξ′′
t must lie at either a blue or a green par-

ticle, and that, although the color (indicating preservation of the discrepancy)
is affected by other particles, the distribution of the path of a blue or green
particle (possibly having been changed to black) is not affected. The random
walks �Sy

t � are then these paths followed by the blue, green, or black parti-
cles. The paths �Sy

t � are independent because the particles jump according to
independent Poisson processes, so that the distribution of the exit time of a
particle from a site does not change even if the movement of another particle
onto or off of a site causes the particle to jump according to a different Poisson
process. ✷

Lemma 2. For all x ∈ �d and t > 0, it holds, with probability one, that
ξN	t�x� converges to a finite limit as N → ∞. We call this limit ξt�x��

Proof. For any positive integer N, let �u1	 u2	 � � �� be the lattice positions
satisfying �ui� > N� In addition, let ξ'k	t

be the process ξN	t with the addition
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of the particles starting at u1	 � � � 	 uk. Then

P�ξN	t�x� �= ξM	t�x� for any M>N�

≤ E

{
sup
M>N

�ξN	t�x� − ξM	t�x��
}

≤
∞∑
k=0

E�ξ'k+1	t
�x� − ξ'k	t

�x��

=
∞∑
k=0

P
{
ξ'k+1	t

�x� �= ξ'k	t
�x�
} [

since �ξ'k+1	t
�x� − ξ'k	t

�x�� = 0 or 1
]

≤
∞∑
k=0

P
{
S
uk+1
t = x

}
�from equation (8)�

→ 0 as N → ∞	

since ∑
�u�>N

P �Su
t = x� ≤ P ��Sx

t � > N� → 0 as N → ∞� ✷

The limiting process ξt is our version of the infinite process.
We define the norm

Nt�ξ� �= ∑
x∈�d

ξ�x�αt�x�	

where

αt�x� �= P�St = −x��
We then take

� �= �ξ ∈ �0 � Nt�ξ� < ∞ for all t > 0�
to be the state space for our process. For any function f � � → �	 define

Lt�f� �= sup
x∈�d

sup
ξ∈�

∣∣f�ξ + ex� − f�ξ�∣∣
αt�x� �

Note that, for ξ′	 ξ′′ ∈ �	

�f�ξ′� − f�ξ′′�� ≤ Lt�f�∑
x

αt�x��ξ′�x� − ξ′′�x�� = Lt�f�Nt��ξ′ − ξ′′���(9)

Define

�n � = σ-field of subsets of � generated by the coordinate

functions ξ�x� with �x� ≤ n

and

� �= ∨
�n�
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We can now define the class of functions

� �= {
f � f is � -measurable and Lt�f� < ∞ for some t > 0

}
�

Lemma 3. Assume �1�� For any ξ′
0	 ξ

′′
0 ∈ �	

ENt

(�ξ′
s − ξ′′

s �
) ≤ Nt+s��ξ′

0 − ξ′′
0���

Proof. We define initial states ξ�1�
0 	 ξ

�2�
0 	 � � � ∈ �	 where ξ�1�

0 = ξ′
0 and each

subsequent ξ�i�
0 differs from ξ

�i−1�
0 by at most one particle and in such a way

that, for each y ∈ �d, there exists M�y� > 0 such that n ≥ M�y� ⇒ ξ
�n�
0 �y� =

ξ′′
0�y�� Then

ENt

(�ξ′
s − ξ′′

s �
)

= ∑
x

αt�x�E∣∣ξ′
s�x� − ξ′′

s �x�∣∣
≤ ∑

x

αt�x� lim inf
N→∞

E
∣∣ξ′

N	s�x� − ξ′′
N	s�x�∣∣

≤ ∑
x

αt�x� lim inf
N→∞

∑
i>1

E
∣∣ξ�i�

N	s�x� − ξ
�i−1�
N	s �x�∣∣

≤ ∑
x

αt�x� lim inf
N→∞

∑
i>1

∑
y

∣∣ξ�i�
N	0�y� − ξ

�i−1�
N	0 �y�∣∣αs�y− x� (by Lemma 1)

= ∑
x

αt�x�∑
y

∣∣ξ′
0�y� − ξ′′

0�y�∣∣αs�y− x�

= Nt+s��ξ′
0 − ξ′′

0��� ✷

For ξ0 ∈ � and B ∈ � , define

Kt�ξ0	B� �= P
{
ξt ∈ B

}
�

For fixed ξ0 and t, Kt�ξ0	 ·� is a probability measure on � � In addition, it can
be shown, from Lemma 2 and a monotone class argument, that ξ → Kt�ξ	B�
is � -measurable for all B ∈ � and t ≥ 0.

Lastly, define

Ktf�ξ� �=
∫
�
Kt�ξ	dη�f�η�	 ξ ∈ �	

where f is any � -measurable function on � such that the above integral
converges absolutely.

The next two lemmas show that Kt preserves � and has the semigroup
property when applied to � .
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Lemma 4. Assume �1�� If f ∈ � , then

Lu

(
Ksf

) ≤ eu−t−sLt�f� �u ≥ t+ s��(10)

Ksf�·� =
∫
�
Ks�·	 dη�f�η� ∈ � � and(11)

Ksf�ξ0� = lim
N→∞

Ksf�ξN	0�	 ξ0 ∈ ��(12)

Proof. First note that, for s ≤ u,

αu�x� ≥ αs�x�P {S0
u−s = 0

} ≥ αs�x�e−u+s	

so that, for any ξ and s ≤ u	

Ns�ξ� ≤ eu−sNu�ξ��
We then have ∣∣Ksf�ξ′

0� −Ksf�ξ′′
0�
∣∣

= ∣∣E[f(ξ′
s

)− f
(
ξ′′
s

)]∣∣
≤ Lt�f�ENt

(�ξ′
s − ξ′′

s �
)

[by (9)](13)

≤ Lt�f�Nt+s��ξ′
0 − ξ′′

0�� (by Lemma 3)

≤ eu−t−sLt�f�Nu

(�ξ′
0 − ξ′′

0�
) �for u ≥ t+ s��

This proves (10), since

Lu�Ksf� = sup
x	ξ

�Ksf�ξ + ex� −Ksf�ξ��
αu�x�

≤ sup
x	ξ

eu−t−s

αu�x�Lt�f�Nu��ξ + ex − ξ�� = eu−t−sLt�f��

Equation (11) follows from (10). For (12), we apply (13) with ξ′
0 = ξ0 and

ξ′′
0 = ξN	0. Choose t > 0 such that Lt�f� < ∞ and then set u = t+s. This gives∣∣Ksf�ξ0� −Ksf�ξN	0�

∣∣≤ Lt�f�Nt+s��ξ0 − ξN	0�� → 0 as N → ∞� ✷

Lemma 5. Assume �1�� For f ∈ � 	 ξ0 ∈ �	

Ks+tf�ξ0� = Ks�Ktf��ξ0��

Proof.

Ks+tf�ξ0� = lim
N→∞

Ks+tf�ξN	0� (by Lemma 4)

= lim
N→∞

∫
Ks�ξN	0	 dη�Ktf�η�

= lim
N→∞

Ks�Ktf��ξN	0��
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By (11), we see that Ktf ∈ � 	 which allows us to apply (12). This then gives

Ks+tf�ξ0� = Ks�Ktf��ξ0�� ✷

For ξ ∈ � and f ∈ � , define

/f�ξ� �= ∑
x

ξ�x�∑
y

q�y− x�
{
�1 − aξ�y� − cξ�y��

[
f�ξ − ex + ey� − f�ξ�]

+ aξ�y�
[
f�ξ − ex − ey� − f�ξ�]

+ cξ�y�
[
f�ξ − ex� − f�ξ�]}�

(14)

Here ex is the vector in � with one at x and zeros at all other positions. The
following lemma is a portion of Proposition 6 in Kesten and van den Berg,
and is analogous to Lemma 2.16 in Liggett and Spitzer (1981) and Theorem
IX.1.14 in Liggett (1985).

Lemma 6. Assume �1� holds and that f ∈ � and ξ0 ∈ �� Then /�Ktf��ξ0�
is well defined and

Ktf�ξ0� = f�ξ0� +
∫ t

0
/�Ksf��ξ0�ds�

In addition,

d

dt
Ktf�ξ0� = /�Ktf��ξ0� = Kt�/f��ξ0� = E

{�/f��ξt�
}
�

The proof is identical to that in Kesten and van den Berg (2000) and demon-
strates, among other things, that the right hand side of (14) converges for all
f ∈ � and ξ ∈ �� We apply Lemma 6 to get a formula which will form the
cornerstone of our proof of Theorem 1.

Lemma 7. E�t� is differentiable and

d

dt
E�t� = − ∑

y∈�d

E
{
ξt�0�q�y��2aξt�y� + cξt�y��

}
�(15)

Proof. We define the function f�ξ�	 ξ ∈ �, as

f�ξ� �= ξ�0��
Then

Ktf�ξ0� = E
{
ξt�0�}�

We apply Lemma 6 to get

d

dt
Ktf�ξ0� = /�Ktf��ξ0� = Kt�/f��ξ0� = E

{�/f��ξt�
}
�
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For our choice of f	

d

dt
Ktf�ξ0� = d

dt
E�t��

For any ξ0 ∈ �, Lemma 3 in Kesten and van den Berg states that, with
probability one, ξt ∈ � for all t ≥ 0 (although their proof uses monotonicity,
we use Lemma 8 below to extend the result to our system). Thus, for any
ξ0 ∈ �	 /f�ξt� converges with probability one for all t > 0� Substituting our
choice of f into (14), we now have

E��/f��ξt�� = − ∑
y∈�d

E
{
ξt�0�q�y��2aξt�y� + cξt�y��

}
� ✷

One immediate consequence of this lemma is that E�t� is decreasing in t�
The following lemma provides a relation between systems with and without

the possibility of annihilation.

Lemma 8. Let ξt be the system with annihilation and coalescence proba-
bilities �ai� and �ci�, respectively, satisfying �1�� Define ξ∗

t to be the system
where ξ∗

0 = ξ0 and

a∗
i = 0 and c∗

i = ai + ci for all i�

If we run ξ∗
t using the same random variables Nu�x	 k�	 yn�x	 k� and

U�n	x	 k� as used for ξt, then, for all t ≥ 0 and x ∈ �d, we have ξt�x� ≤ ξ∗
t �x��

Proof. We perform the following coupling:
Start at time zero with all particles colored white. White particles will rep-

resent particles present in both systems, while black particles will represent
those present only in the ξ∗

t -system, in which annihilation is replaced by coa-
lescence. White particles at a site will move according to the Poisson processes
with the lower numbers, so that, as we will see, the white particles will exactly
correspond to the particles in the ξt-system and the white and black together
to those in the ξ∗

t -system. Notice that each time we remove a white particle,
it will be when a removal occurs in both systems, and each time we color a
white particle black it will be when a removal occurs in the ξt-system only.

When a white particle jumps at time τn�y	k� from a site y to a site x
with i white particles and j black particles, if U�n	y	 k� ≤ ai	 then
the particle is removed and a white particle at x is colored black
(note that ai > 0 implies the existence of another white particle
at x). However, if ai < U�n	y	 k� ≤ ai + ci	 then only one white
particle is removed. If ai + ci < U�n	y	 k� ≤ ai+j + ci+j	 then one
of the black particles is removed and the white particle remains. If
U�n	y	 k� > ai+j+ci+j	 then no particles are removed or recolored.

When a black particle jumps to a site x with i white particles and j
black particles, we remove the black particle if U�n	y	 k� ≤ ai+j +
ci+j� If U�n	y	 k� > ai+j + ci+j	 then no particles are removed or
recolored.
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The result is that the white particles make up the ξt-system, while the
white and black together make up the ξ∗

t -system. ✷

The next lemma shows that the system ξ∗
t has the desired monotonicity

property described in Section 2.

Lemma 9. Let ξ∗
t be the system defined in Lemma 8 and, for any setA ⊂ �d,

let ξAt be the ξ∗
t system run with only those particles which begin in the set A.

If B ∩ A = ∅	 then there exist versions of ξA∪B
t 	 ξAt and ξBt such that, for any

t ≥ 0, it holds with probability one that ξA∪B
t �x� ≤ ξAt �x�+ξBt �x� for all x ∈ �d.

Proof. Initially, we assume that both A and B are bounded. We use a
different coupling, where particles start colored and may be recolored. At time
t = 0, color all particles in A blue and all particles in B green. We will also
introduce blue striped and green striped particles, corresponding to particles
which are not present in ξA∪B

t , but only in ξAt or ξBt 	 respectively. If there are
i blue particles at a site x	 then these blue particles will jump according to
Nt�x	1�	 � � � 	Nt�x	 i�. If, in addition, there are j green particles at x, the green
particles will jump according to Nt�x	 i + 1�	 � � � 	Nt�x	 i + j�. k blue striped
particles will then jump according to Nt�x	 i+j+1�	 � � � 	Nt�x	 i+j+k�, and %
green striped particles according to Nt�x	 i+j+k+1�	 � � � 	Nt�x	 i+j+k+%��

Defining the variables i	 j	 k and % as above and recalling the definition of
the random variable U on page 140, we handle interactions as follows:

When a blue particle jumps from a site y to a site x:

If U�n	y	 k� ≤ min�c∗
i+j	 c

∗
i+k�, then the blue particle is removed.

This would be a removal in either system.

If c∗
i+k ≤ U�n	y	 k� ≤ c∗

i+j, then the blue particle is made into a blue
striped particle. In this case, the blue particle would be removed
only in the system ξA∪B

t .

If c∗
i+j < U�n	y	 k� ≤ c∗

i+k, then one of the k blue striped particles
at x is removed and the blue particle remains at x.

If U�n	y	 k� > max�c∗
i+j	 c

∗
i+k�, then all particles remain un-

changed.

Green particle jumps are treated in a corresponding manner.
When a blue striped particle jumps to a site x occupied by i blue particles

and k blue striped particles, it is removed if U�n	y	 k� ≤ c∗
i+k. Otherwise, all

particles remain unchanged. Green striped particle jumps are treated anal-
ogously. The result is that the solid particles make up ξA∪B

t , while the solid
and striped together make up ξAt + ξBt �

We remove the boundedness condition on A and B by using Lemma 2 to
take the limit as N → ∞ of the inequality ξ

AN∪BN

t �x� ≤ ξ
AN

t �x� + ξ
BN

t �x��
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Here the sets AN	BN ⊂ �d are defined as AN�x� �= A�x����x� ≤ N� and
BN�x� �= B�x����x� ≤ N�� ✷

3. An upper bound for E�t�. For t ≤ u, we define the system ξ∗
'	t	u to

be the ξ∗
u-system (from Lemma 8) with all particles not in the set ' at time t

removed at time t.

Lemma 10. For x1	 � � � 	 xn ∈ �d, let S
x1
t 	 � � � 	 S

xn
t be independent random

walks beginning at x1	 � � � 	 xn �respectively�. Define

Hs�x1	 � � � 	 xn� �= P �Sx1
r = Sx2

r = · · · = Sxn
r for some r < s� �

Then, for any ' ⊂ �d	

∑
x∈'

ξ∗
t �x� −E

{∑
x

ξ∗
'	t	u�x� � �t

}

≥ c∗
n−1

[(∑
x∈'

ξ∗
t �x�

)
− �n− 1�

]
min

x1	���	xn∈'
Hu−t�x1	 � � � 	 xn��

(16)

Proof.

∑
x∈'

= ξ∗
t �x�− = E

{∑
x

ξ∗
'	t	u�x� � �t

}

= E
{
number of particles from ξ∗

t located in ' at time t which

would coalesce by time u in the absence of particles outside

of ' at time t � �t

}
≥ E

{
number of particles located in ' at time t which coalesce,

by time u, with any given �n− 1� particles also located in '

at time t, in the absence of particles outside of ' at time t � �t

}
≥ c∗

n−1

[(∑
x∈'

ξ∗
t �x�

)
− �n− 1�

]
min

x1	���	xn∈'
Hu−t�x1	 � � � 	 xn�� ✷

The interested reader may refer to Lemma 3 in Bramson and Griffeath
(1980), where a similar result is proven using the underlying percolation sub-
structure.

The following proposition generalizes Theorem 1 of Bramson and Griffeath
(1980).

Proposition 1. Assume �2� and �3�. For the n-threshold randomly coalesc-
ing and annihilating random walk in dimension d ≥ 3, there exists a constant
C2 = C2�d	n� such that

E�t� ≤ C2t
− 1

n−1 �(17)
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Proof. We prove the proposition in the system ξ∗
t with coalescing proba-

bilities

c∗
i = ai + ci and a∗

i = 0 for all i�

By Lemma 8, this suffices to prove the proposition.
Define

ft �= t
1

n−1 �
gt �= ftE�t��

Our goal is to show that gt is bounded uniformly in t. To this end, let ' be
any bounded subset of �d and define

E�t	 '� �= E �number of particles in ' at time t� �
By translation invariance, E�t	 '� = �'�E�t�� Taking 0 ≤ t ≤ u	 we see that

E�u� = E�u	'�/�'��
E�t� = E�t	 '�/�'��(18)

E�u� = E�t�
[
1 − E�t	 '� −E�u	'�

E�t	 '�
]
�

For a given integer R > 0, let ' be the set of lattice points in the half open
box �−R	R�d and define

V �= �2zR � z ∈ �d��
Note that �'− v � v ∈ V� = �'+ v � v ∈ V� = �d� By Lemma 9, we know that

E

{∑
x∈'

ξ∗
u�x�

}
≤ E

{∑
x∈'

∑
v∈V

ξ∗
'+v	t	u�x�

}
�

We then have

E�u	'� ≤E

{∑
x∈'

∑
v∈V

ξ∗
'+v	t	u�x�

}

=E

{∑
x∈'

∑
v∈V

ξ∗
'	t	u�x− v�

}

=E

{ ∑
x∈�d

ξ∗
'	t	u�x�

}
�

(19)

Now define

8t	u�'� �= E�t	 '� −E

{∑
x

ξ∗
'	t	u�x�

}
�



152 D. STEPHENSON

We apply (19) and (18) to get

E�u� ≤E�t�


1 −

E�t	 '� −E

{∑
x

ξ∗
'	t	u�x�

}

E�t	 '�




=E�t�
[
1 − 8t	u�'�

E�t	 '�
]
�

(20)

We wish to bound the growth rate of gt� Taking the expectation of (16), we
have

8t	u�'� ≥ c∗
n−1 �E�t	 '� − �n− 1�� min

x1	���	xn∈'
Hu−t�x1	 � � � 	 xn��

For ease of notation, define

hs �= min
x1	���	xn∈'

Hs�x1	 � � � 	 xn��
When we set s:=u-t, (20) becomes

E�t+ s� ≤E�t�
[
1 − c∗

n−1 �E�t	 '� − �n− 1��hs
E�t	 '�

]

= E�t�
[
1 − c∗

n−1

(
1 − �n− 1� �E�t	 '��−1

)
hs

]
�

(21)

Choose ' = 't to have side width 2R	 with

R = Rt �=
⌈(

n

2E�t�
)1/d

⌉
	

so that

E�t	 '� = �2R�dE�t� ≥ n�

Applying (21), we have

E�t+ s� ≤ E�t� �1 − c∗
n−1hs/n� �

Adding �t/s� multiples of s gives us

E�2t� ≤ E�t+ s �t/s�� ≤ E�t� �1 − c∗
n−1hs/n��t/s� 	

where the first inequality holds because E�t� is decreasing in t (see Lemma
7). Since 1 − x ≤ exp�−x�, we may now write

E�2t� ≤ E�t� exp �−c∗
n−1hs �t/s� /n� for all s	 t ≥ 0�(22)

Note that f2t = 21/�n−1�ft	 so that multiplying (22) by f2t gives

g2t ≤ gt exp ��log 2�/�n− 1� − c∗
n−1hs �t/s� /n� for all s	 t ≥ 0�(23)

We now show that there exists a set of positive real numbers �st�t∈�+ such
that

lim inf
t→∞

g
−�n−1�
t hst

⌊
ts−1

t

⌋
> 0�(24)
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To this end, set

st �= �n/2�−�n−1� R2
t /4�

Given n independent random walks on �d with starting points x1	 � � � 	 xn,
respectively, we can define

D1�t�	 � � � 	Dn−1�t� ∈ �d

as the relative displacements at time t of the last n − 1 random walks with
respect to the first walk. �D1�t�	 � � � 	Dn−1�t�� is then a random walk on ��n−1�d

which hits the origin at exactly those times when the n random walks coincide.
We let x̃ ∈ ��n−1�d be the direct sum of the differences �x2 − x1�	 � � � 	 �xn − x1�
and let ηx̃

t denote the random walk �D1�t�	 � � � 	Dn−1�t�� as just described.
It is simple to show that

Hs�x1	 � � � 	 xn� ≥
∫ s

0 P�η0̃
t = x̃�dt∫ s

0 P�η0̃
t = 0̃�dt

�(25)

Since (2) and (3) hold, we may apply the local central limit theorem to estimate
P�η0̃

t = x̃� and P�η0̃
t = 0̃� [see, e.g., Proposition 7.9 and the proof of Proposi-

tion 26.1 of Spitzer (1976), as well as the comments at the beginning of Section
2 and at the end of the proof of Lemma 8 in Kesten and van den Berg with
regard to weakening the assumptions of aperiodicity and strong aperiodicity
of S·]. With a little work, the local central limit theorem estimates yield

hst ≥ Cd	n �Rt�2−�n−1�d �(26)

[For this calculation, we first decompose the probabilities according to the
number of jump events. Note that all of the coordinates of x̃ lie within the
interval �−Rt	Rt� and that st is a constant multiple of R2

t . This allows us to
bound the exponential term in the estimate of the numerator of (25).]

Let pt denote the probability that there is a particle at the origin at time t
in the system where c2 = 1 [see Bramson and Griffeath (1980)]. We have

t �E�t��2/d ≥ tp
2/d
t → ∞	 t → ∞

[cf. Kesten and van den Berg (2000), Lemma 2, with regard to the inequality],
so that ⌊

ts−1
t

⌋ ∼ ts−1
t 	 t → ∞�(27)

Lastly, note that E�t� ≤ 1 for all t [recall from Lemma 7 that E�t� is decreasing
in t]. Thus

Rt =
⌈(

n

2E�t�
)1/d

⌉
≤ 2

(
n

2E�t�
)1/d

and hence

t/st ≥ t

�n/2�−�n−1�
(

n
2E�t�

)2/d
�(28)
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Applying (26), (27) and (28) and substituting for gt and Rt give

lim inf
t→∞

g
−�n−1�
t hst

⌊
ts−1

t

⌋

≥ Cd	n lim inf
t→∞

t−1 �E�t��−�n−1�
(

n

2E�t�
)2/d−�n−1� ⌊

ts−1
t

⌋

≥ Cd	n lim inf
t→∞

t−1 �E�t��−�n−1�
(

n

2E�t�
)2/d−�n−1�

×t
[
�n/2�−�n−1�

(
n

2E�t�
)2/d

]−1

= Cd	n > 0�

This proves (24), which we we now apply in the following form:

For some ε> 0	 there exists a t0 such that t> t0 ⇒hst
⌊
ts−1

t

⌋
>εg

�n−1�
t �(29)

For t ≥ t0	 (23) becomes

g2t ≤ gt exp
{
�log 2�/�n− 1� − εc∗

n−1g
�n−1�
t /n

}
≤ 21/�n−1�C�n	 ε	 c∗

n−1�	
since x exp�−kx�n−1�� ≤ C�k��

This completes the proof of Proposition 1. ✷

4. Crucial variance and expectation bounds. Note that in proofs uti-
lizing a large number of constants we will occasionally employ numbered su-
perscripts, as in C�j�, to reference constants not referred to outside of the
proof.

We start with a crude lower bound for P�t��

Lemma 11. Define

P�t� �= P�the origin is occupied at time t��
Then, for n ≥ 3,

P�t� ≥ C3/t for some constant C3 > 0�(30)

Proof. The standard annihilating random walk, ηt, has asymptotic lower
bound C3/t, so long as the random walk is multidimensional (not restricted to
a one-dimensional subspace) and satisfies (3) [see Arratia (1981), Theorem 3,
along with the asymptotic for general coalescing random walks as established
in Kesten and van den Berg (2000)]. We set up the following coupling to show
that, so long as n ≥ 3, we have ηt�x� ≤ ξt�x� for all t ≥ 0 and x ∈ �d�

At time zero we color all particles black except at those sites x which have
an odd number of particles. At such x, we color one particle white and the other
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particles black. White particles will correspond to those particles present in
both ηt and ξt, while black particles will correspond to those particles which
would be removed in ηt but not in ξt� As we will see, a site will have at
most one white particle at any time t, so that, for n ≥ 3, there will always
be at least two black particles present whenever a removal occurs. Whenever
either a white particle jumps to a site occupied only by black particles or
a black particle jumps to any site, we remove black particles from the site
according to the normal procedure for ξ	 with both white and black particles
counted in determining coalescence and annihilation events. This corresponds
to a removal of particles which are present only in the ξ-system. Whenever a
white particle jumps to a site containing another white particle, we color both
black, corresponding to an annihilation in the η-system. We then proceed
to remove black particles from the site according to the normal procedure
for ξ.

We set up the coupling so that, if there are i white particles and j black
particles at a site x at time τn�x	 k�−, then a white particle jumps at time
τn�x	 k� if k ≤ i but a black particle jumps if i < k ≤ i+ j� In this way, white
particles make up ηt	 the standard annihilating random walk, while the white
and black together make up our system, ξt. ✷

Lemma 12. Assume �1�	 �2� and �3�� If β�x� ∈ � satisfy
∑

x �β�x�� < ∞,
then there exists a constant C4 = C4�n	d�, independent of β and t	 such
that

Var

{∑
x

β�x�ξt�x�
}

≤ C4t
n−2
n−1

∑
x∈�d

β2�x� �n ≥ 3��

This is the n-threshold analogue of Proposition 7 in Kesten and van den
Berg. Our Lemma 1 is used in place of their Lemma 1, and, otherwise, the
proof is essentially identical. We will apply this result in the proof of the
following lemma to get a type of correlation bound.

As in Kesten and van den Berg (2000), define 't�u1	 u2	 � � � 	 up� to be the
number of ordered p-tuples of distinct particles which we can select from
the particles present at the sites u1	 u2	 � � � 	 up at time t. Note that these
sites are not necessarily distinct, so, as demonstrated in Lemma 14, we can
use the bound on E't�u1	 u2	 � � � 	 up� to bound the probability that at least p
particles occupy one site x. The following is similar to Lemma 10 of Kesten and
van den Berg (2000).

Lemma 13. For any d ≥ 3	 p ≥ 2	 n ≥ 3	 u1	 � � � 	 up ∈ �d	 < < t and ε < 1	
there exists a positive constant C5 = C5�n	d	 ε	p� such that, for t ≥ 1,

E't�u1	 � � � 	 up� ≤ C5

[
Ep�t− <� ∨ �t− <� �n−2��1−ε�

n−1 <− d�1−ε�
2

]
�(31)

Proof. Without loss of generality, we may take the ui to be distinct, since,
for example, 't�u	u� ≤ 't�u	 v� for any v. We use the notation 'N	t for 't in
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the system where ξt is replaced by ξN	t. For a designated particle in ξN	t with
location x at time s < t, we also define

ξ̄N	s	t�x��y� �= ��the particle has moved from x at time s to position
y at time t in the system where interaction is
suspended from time s��

Let z1	 � � � 	 zrs be the positions at time s of the particles present in ξN	s� Here
each position occurs with the proper multiplicity; if ξN	s = k for some x	 then
k of the zi equal x. Hence rs = ∑

x ξN	s�x�� We note that

ξN	t�x� ≤
rs∑
i=1

ξ̄N	s	t�zi��x�	(32)

which can be seen by coupling the system with that system in which particles
are colored black rather than removed. More specifically, all particles are col-
ored white at time s, and any particle which would be removed at a time u > s
is colored black at time u and ceases to interact with other particles. The white
particles continue to interact normally with other white particles. At time t,
the white particles make up the left hand side of the above inequality, while
the white and black together make up the right hand side.

Using (32) with s = t− <, we now have

'N	t�u1	 � � � 	 up�

≤
(

r∑
i=1

p∑
j=1

[
ξ̄N	t−<	t�zi��uj�

])×
(

r∑
i=1

p∑
j=1

[
ξ̄N	t−<	t�zi��uj�

]− 1

)

× · · · ×
(

r∑
i=1

p∑
j=1

[
ξ̄N	t−<	t�zi��uj�

]− �p− 1�
)

= �number of ordered p− tuples z1	 � � � 	 zp of positions of particles at
time t− < such that each of the corresponding particles ends at
one of the positions ui at time t�

=
r∑

i1=1

r∑
i2=1
i2 �=i1

r∑
i3=1

i3 �=i1	i2

· · ·
r∑

ip=1
ip �=i1	���	ip−1

�
[
each of the p particles corresponding
to the zik ends at one of the ui

]

=
r∑

i1=1

r∑
i2=1
i2 �=i1

r∑
i3=1

i3 �=i1	i2

· · ·
r∑

ip=1
ip �=i1	���	ip−1

p∏
k=1

( p∑
j=1

[
ξ̄N	t−<	t�zik��uj�

])
�

Noting that the particles in the ξ̄N	t−<	t system move as independent random
walks, we can apply E� ��t−<� to both sides and sum over all possible values
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of zik �k = 1	 � � � 	 p� to get

E�'N	t�u1	 � � � 	 up���t−<�

≤
r∑

i1=1

r∑
i2=1
i2 �=i1

r∑
i3=1

i3 �=i1	i2

· · ·
r∑

ip=1
ip �=i1	���	ip−1

p∏
k=1

( p∑
j=1

[
α<�zik − uj�

])

≤
[ ∑
z∈�d

ξN	t−<�z�
[ p∑
j=1

α<�z− uj�
]]p

�

Taking the expectation of both sides, we have

E'N	t�u1	 � � � 	 up� ≤ E

[ ∑
z∈�d

ξN	t−<�z�
[ p∑
j=1

α<�z− uj�
]]p

�

We show that

E't�u1	 � � � 	 up� ≤ C�7�
[
Ep�t− <� ∨ �t− <� �n−2��1−ε�

n−1 <− d�1−ε�
2

]
(33)

uniformly in u1	 � � � 	 up ∈ �d.
To prove (33), we start by introducing the abbreviation

UN = UN�u1	 � � � 	 up� �= ∑
z

ξN	t−<�z�
p∑

j=1

α<�z− uj��

In order to apply the dominated convergence theorem, we note that

ξN	t−<�x� ≤ ξ̄t−<�x� for all N > 0	 x ∈ �d	

where ξ̄t is the system in which particles move freely with no interaction. Also,

Eξ̄t−<�x� = ∑
y

P�Sy
t−< = x� = 1�

We then have

lim
N→∞

EUN = pE�t− <��(34)

From the proof of Lemma 12, we also know that, for n ≥ 3	

Var�UN� = E��UN −EUN�2� ≤C4�t− <� n−2
n−1
∑
z

[
p∑

j=1

α<�z− uj�
]2

≤C�1��n	d	p�<−d/2�t− <� n−2
n−1 �

(35)

We now use

U
p
N ≤ C�2��p� ��UN −EUN�p + �EUN�p�

≤ C�2��p��UN −EUN�2−ε�UN −EUN�p−2+ε +C�2��p��EUN�p�
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By Hölder’s inequality, this shows that

E
{
U

p
N

} ≤ C�2��p� [E {�UN −EUN�2
}]1−ε/2

×
[
E
{
�UN −EUN�2�p−2+ε�/ε

}]ε/2
+C�2��p��EUN�p�

(36)

Note that
∑

z α<�z− u� = 1, and hence, by Jensen’s inequality,

U
p
N ≤ ∑

x

α<�x− u�ξpN	t−<�x��

We use (32) to get

E
{
U

p
N

} ≤ sup
x

E

[ ∑
y∈�d

ξ̄N	0	t−<�y��x�
]p

≤ C�3��p� sup
x

p∑
k=1

∑
n1	���	nk

∑
y1	���	yk
distinct

E
{�ξ̄N	0	t−<�y1��x��n1

}× · · ·

× E
{�ξ̄N	0	t−<�yk��x��nk}	

where n1	 � � � 	 nk run over the partitions of p into k nonzero integers.
ξ̄N	0	t−<�y��x� is an indicator function, and each of the above expectations
can be rewritten as

P
{
ξ̄N	0	t−<�yi��x� = 1

} = P
{
S
yi
t−< = x

}
	

so that

E
{
U

p
N

} ≤ C�3��p� sup
x

p∑
k=1

∑
n1	���	nk

∑
y1	���	yk
distinct

k∏
i=1

P
{
S
yi
t−< = x

} ≤ C�4��p�	

where C�4��p� is independent of N.
By Jensen’s inequality, this last inequality holds if we replace p by any

positive real number of size at least one. In particular, this allows us to write

E
{
�UN −EUN�2�p−2+ε�/ε

}
≤ C�5��p	 ε��(37)

Applying (37) to (36) gives us

E
{
U

p
N

} ≤ C�6��p	 ε� �Var�UN���1−ε/2� +C�2��p��EUN�p�
This, together with (35), proves that

E

{[ ∑
z∈�d

ξN	t−<�z�
[ p∑
j=1

α<�z− uj�
]]p}

≤ C�7�
[
�EUN�p ∨ �t− <� �n−2��1−ε�

n−1 <− d�1−ε�
2

](38)

for n ≥ 3, where C�7� = C�7��n	d	 ε	p� is independent of N > 0.
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We establish (33) by taking the lim inf as N → ∞ of both sides of (38)
and applying Fatou’s lemma to the left hand side and (34) to the right hand
side. ✷

The usefulness of this lemma will be enhanced through the following addi-
tional lemma:

Lemma 14. If we use the notation 't�x�p �p a strictly positive integer� to
denote the number of ordered p-tuples of distinct particles which we can select
from the particles present at the site x at time t, then the following inequalities
hold�

P�ξt�0� ≥ p� ≤ E�ξt�0�� ξt�0� ≥ p� ≤ E't�0�p	(39)

�E�t� −P�t�� = ∑
k≥2

kP�ξt�0� = k� ≤ E't�0	0��(40)

For n ≥ 2 and x ∈ �d	

�ξt�x��n ≤ nn �'t�x�n ∨ ��ξt�x� > 0�� �(41)

Let x1	 � � � 	 xk be distinct points in �d, and δ1	 � � � 	 δk be strictly positive
integers with N �= maxi δi and D �= ∑

i δi. Then, for < < t	 ε < 1 and large t,

E

{
k∏
i=1

ξ
δi
t �xi�

}
≤ 2NDC5

[
Ek�t− <� ∨ �t− <� �n−2��1−ε�

n−1 <− d�1−ε�
2

]
�(42)

Proof. For (39), we have

P�ξt�0� ≥ p� ≤ E�ξt�0�� ξt�0� ≥ p� = ∑
k≥p

kP�ξt�0� = k�

≤ ∑
k≥p

k!/�k− p�!P�ξt�0� = k� = E't�0�p�

We can see that (41) holds for ξt�x� ≤ n. If ξt�x� = k > n	 then, since
't�x�n = k�k− 1� · · · �k− n+ 1�, it suffices to show that

ak �= kn

k�k− 1� � � � �k− n+ 1� is decreasing in k ≥ n�

This is true, as 1/ak = 1 �1 − 1/k� · · · �1 − �n− 1�/k� is increasing in k.
To prove (42), note that (41) gives us

�ξt�xi��δi ≤ Nδi
[
't�xi�δi ∨ ��ξt�xi� > 0�]	

so that
k∏
i=1

ξ
δi
t �xi� ≤ ND

k∏
i=1

[
't�xi�δi ∨ ��ξt�xi� > 0�] ≤ ND

∑
't�y1	 � � � 	 y%��
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The sum is over combinations y1	 � � � 	 y% such that, for each j = 1 � � � k, yi = xj
for at least one but at most δj different yi’s. We take the expectation of both
sides and note that Lemma 13 shows that, for large t, the highest order bound
on any term of the sum is that on the term with the fewest number of variables.
Equation (42) follows. ✷

5. Solving an approximate differential equation for E�t�. The fol-
lowing lemma is an estimate for noninteracting random walks. It is, essen-
tially, Lemma 12 in Kesten and van den Berg (2000). If s→S

�u1	k1�
s 	 � � � 	 S

�un	kn�
s

(ki strictly positive integers) are random walk paths starting at u1	 � � � 	 un ∈
�d, respectively, we will say that the paths S�u1	k1�

s 	 � � � 	 S
�un	kn�
s meet exactly m

times during a time interval J if there exist exactly m times in the interval
J when one of these paths enters a site currently occupied by the other n− 1
paths.

Lemma 15. Let d ≥ 3 and let S
�u1	k1�
t 	 � � � 	 S

�un	kn�
t 	 �ui	 ki� ∈ �d×�1	2	 � � ��	

be independent random walks such that S
�ui	ki�
0 = ui for i = 1	 � � � 	 n.

Choose 8 > 1 and define, for y1	 � � � 	 yn ∈ �d	

� �u1	 � � � 	 un	 k1	 � � � 	 kn	m	8	y1	 � � � 	 yn�
�= �S�ui	ki�

8 = yi for each i = 1	 � � � 	 n	 and the paths s → S
�ui	ki�
s

meet exactly m times during �0	 8��	
then there exists a δ = δ�d	n� with 0 < δ�d	n� ≤ 1 and a positive constant
C6 = C6�d	n� such that, uniformly in the yi’s and m,

∑
u1	���	un

∣∣∣∣∣ P�� �u1	 � � � 	 un	 k1	 � � � 	 kn	m	8	y1	 � � � 	 yn��

−P{s → S−yi
s 	 i = 1	 � � � 	 n	 meet exactly m times during �0	∞�}

×
n∏
i=1

α8�ui − yi�
∣∣∣∣∣ ≤ C68

−δ�

Although we omit the details, following the proof in Kesten and van den Berg
(2000) shows that this lemma holds with

δ =
(

2
n

)(
d− 2

3d2 − 3d− 4

)
�

Define

ρ�m	y� �= P
{
s #→ S0

s and n− 1 independent copies of s #→ S−y
s meet

exactly m times during �0	∞�}�
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In addition, define

D�y� �=
∞∑

m=0

�1 − an−1 − cn−1�mρ�m	y��

Finally, let '∗
t �u1	 � � � 	 up� be the number of ordered p−tuples of distinct par-

ticles, the first particle being present at u1 at time t, the second at u2, etc.
Note that

'∗
t �u1	 � � � 	 up� ≤ 't�u1	 � � � 	 up��

Also,

'∗
t �u1	 � � � 	 up� =

p∏
i=1

ξt�ui�(43)

if all of the ui’s are distinct.

Lemma 16. Assume �1�	 �2� and �3�� For y �= 0, 0 < 8 < t/4 and n ≥ 3,∣∣∣∣E�ξt�0��2aξt�y� + cξt�y���

−�2an−1 + cn−1�D�y� ∑
u1	���	un∈�d

E�'∗
t−8�u1	 � � � 	 un��α8�u1�

n∏
i=2

α8�ui − y�
∣∣∣∣

≤ C7

[
En+1�t/2� ∨ t

n−2
n−1 − d�1−ε�

2

]
+ C88

[
E2n−1�t/2� ∨ t

n−2
n−1 − d�1−ε�

2

]
+ C98

−δ�d	n�
[
En�t/2� ∨ t

n−2
n−1 − d�1−ε�

2

]
�

Proof. We start by showing that∣∣∣E{ξt�0��2aξt�y� + cξt�y�� − �2an−1 + cn−1�P
{
ξt�0� = 1	 ξt�y� = n− 1

}∣∣∣
≤ C�2�

[
En+1�t/2� ∨ t

n−2
n−1 − d�1−ε�

2

]
�

(44)

For y �= 0	∣∣E{ξt�0��2aξt�y� + cξt�y��
}− �2an−1 + cn−1�E

{
ξt�0���ξt�y� = n− 1�}∣∣

≤ 2E
{
ξt�0���ξt�y� ≥ n�}

≤ 2E
{
't�0	 y	 � � � 	 y�� ξt�y� ≥ n

} �n copies of y�
≤ 2E't�0	 y	 � � � 	 y�
≤ 2C�3�

[
En+1�t/2� ∨ t

n−2
n−1 − d�1−ε�

2

]
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where the last inequality above comes from Lemma 13, taking < �= t/2. In
addition,∣∣E{ξt�0���ξt�y� = n− 1�}−P

{
ξt�0� = 1	 ξt�y� = n− 1

}∣∣
= E

{
ξt�0���ξt�0� ≥ 2���ξt�y� = n− 1�}

≤ E
{
't�0	0	 y	 � � � 	 y�� ξt�0� ≥ 2	 ξt�y� = n− 1

} �n− 1 copies of y�
≤ E't�0	0	 y	 � � � 	 y�
≤ C�3�

[
En+1�t/2� ∨ t

n−2
n−1 − d�1−ε�

2

]
�

This proves (44).
We next approximate

P�ξt�0� = 1	 ξt�y� = n− 1��(45)

We will henceforth apply Lemma 13 with < �= t/2−8. In particular, this gives
the inequality

E't−8�u1	 � � � 	 up� ≤ C�1�
[(
E�t/2�)p ∨ t

n−2
n−1 − d�1−ε�

2

]
	

for some C�1� = C�1��n	d	 ε	p��
At any time s ≥ 0, we can arbitrarily order the particles located at any

position u ∈ �d. In this way, each particle will have a unique index. If ξt�0� = 1
and ξt�y� = n − 1	 then there must be n distinct particles, π1	 � � � 	 πn	 in the
system at time t− 8; one of these must move to 0 and the rest must move to
y at time t without coalescing into or being annihilated by another particle in
the mean time. Let u1	 � � � 	 un be the positions and k1	 � � � 	 kn the indices of
these n particles at time t− 8�

We define �1 as the event that:

(i) there exist distinct particles π1	 � � � 	 πn+1 positioned at some �ui	 ki� at
time t−8 such that π1 moves to be at 0 at time t, π2	 � � � 	 πn move to be at y
at time t	 and

(ii) an n−particle collision involving n− 1 of the π1	 � � � 	 πn along with the
particle πn+1 occurs in the time interval �t− 8	 t�.

�1 can be written as the union of several sub-events:
The first sub-event, which we will call �1	0, is the event that u1	 � � � 	 un+1,

the positions of the particles π1	 � � � 	 πn+1 at time t − 8, are not distinct. The
conditional probability of �1	0 given �t−8 is at most

∑
ui not distinct

't−8�u1	 � � � 	 un+1�α8�u1�
n∏

j=2

α8�uj − y��

Taking expectations and using Lemma 13, we see that

P��1	0� ≤ C�4�
[
En+1�t/2� ∨ t

n−2
n−1 − d�1−ε�

2

]
�
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The next sub-event, �1	1, is that the u1	 � � � 	 un+1 are distinct and that the
particle πn+1, starting at some site un+1 at time t−8, jumps onto a site occupied
by π1	 � � � 	 πn−1 at some time during the interval �t−8	 t�� Decomposing with
respect to the time of the jump and the positions z′ and z just before and after
the jump, we find that the conditional probability of �1	1 given �t−8 is at most∑

ui distinct
't−8�u1	 � � � 	 un+1�

×
∫ 8

0

[∑
z	z′

αs�u1 − z� · · ·αs�un−1 − z�αs�un+1 − z′�q�z− z′�

×α8−s�z��α8−s�z− y��n−2α8�un − y�
]
ds�

We take the expectation to get

P��1	1� ≤ ∑
ui distinct

E't−8�u1	 � � � 	 un+1�

×
∫ 8

0

[∑
z	z′

αs�u1 − z� · · ·αs�un−1 − z�αs�un+1 − z′�q�z− z′�

× α8−s�z��α8−s�z− y��n−2α8�un − y�
]
ds

≤ C�3�
[
En+1�t/2� ∨ t

n−2
n−1 − d�1−ε�

2

]

× ∑
ui distinct

∫ 8

0

[∑
z	z′

αs�u1 − z� · · ·αs�un−1 − z�αs�un+1 − z′�q�z− z′�

×α8−s�z��α8−s�z− y��n−2α8�un − y�
]
ds

≤ C�5�
[
En+1�t/2� ∨ t

n−2
n−1 − d�1−ε�

2

] ∫ 8

0
�1 ∧ �8− s�−d�n−2�/2�ds

≤ C�6�
[
En+1�t/2� ∨ t

n−2
n−1 − d�1−ε�

2

]
�

We define the sub-event �1	2 identically to �1	1, except that the collision
involves the particles π2	 � � � 	 πn	 πn+1. The bound on the probability of this
event is the same as that on �1	1.

We also have the sub-events that one of the particles π1	 � � � 	 πn jumps to
a site which is already occupied by πn+1 and n − 2 of the π1	 � � � 	 πn� These
sub-events are treated in the same way as �1	2, and the bound on their prob-
abilities is the same. The result is that

P��1 � �t−8� ≤ C�7�
[
En+1�t/2� ∨ t

n−2
n−1 − d�1−ε�

2

]
�(46)
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We next define �2 as the event that:
(i) there exist distinct particles π1	 � � � 	 πn+2 positioned at some �ui	 ki� at

time t−8 such that π1 moves to be at 0 at time t, π2	 � � � 	 πn move to be at y
at time t	 and

(ii) an n−particle collision involving n− 2 of the π1	 � � � 	 πn along with the
particles πn+1 and πn+2 occurs in the time interval �t− 8	 t�.

As with �1, we analyze P��2 � �t−8� in terms of its sub-events. The same
analysis leads to the bound

P��2 � �t−8� ≤ C�8�
[
En+2�t/2� ∨ t

n−2
n−1 − d�1−ε�

2

]
�

Define �3	 � � � 	�n−2 in a corresponding fashion, with the subscript denot-
ing the number of extra particles (not in the set �π1	 � � � 	 πn�) involved in a
collision. The conditional probability of each of these has a bound of order at
most

[
En+2�t/2� ∨ t

n−2
n−1 − d�1−ε�

2
]
. Thus,

P

{
n−2⋃
i=1

�i � �t−8

}
≤ C�9�

[
En+1�t/2� ∨ t

n−2
n−1 − d�1−ε�

2

]
�(47)

Lastly, define �n−1 as the event that:
(i) there exist distinct particles π1	 � � � 	 π2n−1 positioned at some �ui	 ki� at

time t−8 such that π1 moves to be at 0 at time t, π2	 � � � 	 πn move to be at y
at time t	 and

(ii) an n−particle collision involving one of the π1	 � � � 	 πn along with the
particles πn+1	 � � � 	 π2n−1 occurs in the time interval �t− 8	 t�.
In this case, sub-events are of the form
��n−1�	1 �= {

π1 jumps onto a site occupied by πn+1	 � � � 	 π2n−1 at some time

during the interval �t− 8	 t�}�
Then
P���n−1�	1 � �t−8�

≤ ∑
ui distinct

't−8�u1	 � � � 	 u2n−1�

×
∫ 8

0

[∑
z	z′

αs�u1 − z′�
2n−1∏
i=n+1

αs�ui − z�q�z− z′�α8−s�z�
n∏

j=2

α8�uj − y�
]
ds�

Taking the expectation of both sides, we have
P���n−1�	1� ≤ ∑

ui distinct
E't−8�u1	 � � � 	 u2n−1�

×
∫ 8

0

[∑
z	z′

αs�u1 − z′�
2n−1∏
i=n+1

αs�ui − z�q�z− z′�α8−s�z�

×
n∏

j=2

α8�uj − y�
]
ds�

≤ C�10�8
[
E2n−1�t/2� ∨ t

n−2
n−1 − d�1−ε�

2

]
�



COALESCING AND ANNIHILATING RANDOM WALK 165

The result is that

P��n−1 � �t−8� ≤ C88
[
E2n−1�t/2� ∨ t

n−2
n−1 − d�1−ε�

2

]
(48)

for some positive constant C8.
We have finished with the analysis of � and will now concern ourselves

with � c. On the complement of � 	 �ξt�0� = 1	 ξt�y� = n − 1� occurs if and
only if:

(i) there exist distinct particles π1	 � � � 	 πn positioned at some �ui	 ki� at
time t−8 such that π1 moves to be at 0 at time t, π2	 � � � 	 πn move to be at y
at time t, and

(ii) at any jump-time s ∈ �t − 8	 t� when one of these n particles enters a
site occupied by the other n − 1 particles, the corresponding U�0	1� random
variable exceeds an−1 + cn−1�

Conditionally on �t−8	 the probability of these three events is
∞∑

m=0

�1 − an−1 − cn−1�m

×P




⋃
u1	���	un

1≤ki≤ξt−8�ui�
�ui	ki��=�uj	kj� for i�=j

� �u1	 � � � 	 un	 k1	 � � � 	 kn	m	8	0	 y	 � � � 	 y�



�

We are now able to write the inequality

P�ξt�0� = 1	 ξt�y� = n− 1 � �t−8�
≤ P�� � �t−8�

+
∞∑

m=0

�1 − an−1 − cn−1�m
∑

u1	���	un

∑
1≤ki≤ξt−8�ui�

�ui	ki��=�uj	kj� for i�=j
×P�� �u1	 � � � 	 un	 k1	 � � � 	 kn	m	8	0	 y	 � � � 	 y��

= P�� � �t−8� +
∞∑

m=0

�1 − an−1 − cn−1�m
∑

u1	���	un

'∗
t−8�u1	 � � � 	 un�

×
[
P�� �u1	 � � � 	 un	1	 � � � 	 n	m	8	0	 y	 � � � 	 y��

−ρ�m	y�α8�u1�
n∏
i=2

α8�ui − y�
]

+
∞∑

m=0

�1 − an−1 − cn−1�mρ�m	y�

× ∑
u1	���	un

'∗
t−8�u1	 � � � 	 un�α8�u1�

n∏
i=2

α8�ui − y��

(49)
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Taking the expectation and applying (47) and (48) to the first term and Lem-
mas 13 and 15 to the other terms, we see that

P�ξt�0� = 1	 ξt�y� = n− 1�
≤ C�10�

[
En+1�t/2� ∨ t

n−2
n−1 − d�1−ε�

2

]
+C88

[
E2n−1�t/2� ∨ t

n−2
n−1 − d�1−ε�

2

]

+
∞∑

m=0

�1 − an−1 − cn−1�mC5

[
En�t/2� ∨ t

n−2
n−1 − d�1−ε�

2

]

× ∑
u1	���	un

∣∣∣∣∣P�� �u1	 � � � 	 un	1	 � � � 	 n	m	8	0	 y	 � � � 	 y��

−ρ�m	y�α8�u1�
n∏
i=2

α8�ui − y�
∣∣∣∣∣

+
∞∑

m=0

�1 − an−1 − cn−1�mρ�m	y�

× ∑
u1	���	un

E
{
'∗
t−8�u1	 � � � 	 un�

}
α8�u1�

n∏
i=2

α8�ui − y�

≤ C�10�
[
En+1�t/2� ∨ t

n−2
n−1 − d�1−ε�

2

]
+C88

[
E2n−1�t/2� ∨ t

n−2
n−1 − d�1−ε�

2

]
+C98

−δ�d	n�
[
En�t/2� ∨ t

n−2
n−1 − d�1−ε�

2

]

+D�y� ∑
u1	���	un

E �'∗
t−8�u1	 � � � 	 un��α8�u1�

n∏
i=2

α8�ui − y��

To get an inequality in the other direction,

P�ξt�0� = 1	 ξt�y� = n− 1 � �t−8�

≥
∞∑

m=0

�1 − an−1 − cn−1�m

×P




⋃
u1	���	un

1≤ki≤ξt−8�ui�
�ui	ki��=�uj	kj�

S
�u1	k1�
8 = 0	 S�ui	ki�

8 = y	 i = 2	 � � � 	 n

and the paths s → S
�ui	ki�
s meet exactly m times during �0	 8�

}

− P�� � �t−8��



COALESCING AND ANNIHILATING RANDOM WALK 167

Apply inclusion-exclusion to see that this is at least

−P�� � �t−8� +
∞∑

m=0

�1 − an−1 − cn−1�m

× ∑
u1	���	un

1≤ki≤ξt−8�ui�
�ui	ki��=�uj	kj�

P
{
� �u1	 � � � 	 un	 k1	 � � � 	 kn	m	8	0	 y	 � � � 	 y�}(50)

−
∞∑

m=0

�1 − an−1 − cn−1�m

× ∑
u1	���	u2n

1≤ki≤ξt−8�ui�

P

{
� �u1	 � � � 	 un	 k1	 � � � 	 kn	m	8	0	 y	 � � � 	 y�

∩ � �un+1	 � � � 	 u2n	 kn+1	 � � � 	 k2n	m	8	0	 y	 � � � 	 y�
}
�

(51)

The last sum in (51) is over �ui	 ki� such that �ui	 ki� �= �uj	 kj� for i �= j and
i	 j ∈ �1	 � � � 	 n�	 �u%	 k%� �= �up	 kp� for % �= p and %	p ∈ ��n+ 1�	 � � � 	2n� and,
finally, �u1	 � � � 	 un	 k1	 � � � 	 kn� �= �un+1	 � � � 	 u2n	 kn+1	 � � � 	 k2n�.

We separate this last sum into n sub-sums grouped according to the number
of distinct �ui	 ki� present in each term (ranging from n + 1 to 2n). From
Lemma 13, we see that the highest order bound on the expectation of any of
these sub-sums is the bound on the sum over n + 1 distinct particles. Thus,
for large t, the expectation of each of the n sub-sums in (50) is bounded by

∑
u1	���	un+1

C�3�
[
En+1�t/2� ∨ t

n−2
n−1 − d�1−ε�

2

]
α8�u1�α8�un+1�

n∏
i=2

α8�ui − y��

We sum over the ui’s and m and see that the expected value of (51) is at most

C�11��an−1 + cn−1�−1
[
En+1�t/2� ∨ t

n−2
n−1 − d�1−ε�

2

]
�

Estimating (50) as we did (49), we see that

P�ξt�0� = 1	 ξt�y� = n− 1�

≥ D�y� ∑
u1	���	un

[
E�'∗

t−8�u1	 � � � 	 un��α8�u1�
n∏
i=2

α8�ui − y�
]

− C�10�
[
En+1�t/2� ∨ t

n−2
n−1 − d�1−ε�

2

]
− C88

[
E2n−1�t/2� ∨ t

n−2
n−1 − d�1−ε�

2

]
− C98

−δ�d	n�
[
En�t/2� ∨ t

n−2
n−1 − d�1−ε�

2

]
− C�11��an−1 + cn−1�−1

[
En+1�t/2� ∨ t

n−2
n−1 − d�1−ε�

2

]
�

✷
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Proof of Theorem 1. We assume throughout that n ≥ 3 (for Lemma 11),
t ≥ 1 and d ≥ 2n+4. With δ = δ�d	n� taken from Lemma 15, we choose ζ > 0
such that

ζ <

[
1

�n− 1� ∧ 2
�d+ 2� ∧ δ

�δ+ 1�
]

and set

8 �= t1−ζ�

These three bounds on ζ assure us that

E�t/2� ≤ 2
1

n−1C2t
−ζ	(52)

t
n−2
n−18− d

2 ≤ t−n−ζ(53)

and

8−δ ≤ t−ζ	(54)

respectively. Here we have applied Proposition 1 to get (52). Note that (53),
along with Lemma 11, gives us the inequality

8−d/2 ≤ C�1�E�t/2�t−ζ(55)

for some positive constant C�1� = C�1��d��
We choose ε < 1 small enough so that, for d ≥ 2n+ 4	

t1+ n−2
n−1 − d�1−ε�

2 = o�t−n� = o
(
En�t/2�) (by Lemma 11)�(56)

Lemmas 7 and 16, along with (54) and (56), show that∣∣∣∣∣∣∣∣
d

dt
E�t� +∑

y

q�y��2an−1 + cn−1�D�y� ∑
ui∈�d

i=1	���	n

E �'∗
t−8�u1	 � � � 	 un��

×α8�u1�
n∏
i=2

α8�ui − y�
∣∣∣∣∣(57)

≤ C7

[
En+1�t/2� ∨ t

n−2
n−1 − d�1−ε�

2

]
+ C88

[
E2n−1�t/2� ∨ t

n−2
n−1 − d�1−ε�

2

]
+ C98

−δ
[
En�t/2� ∨ t

n−2
n−1 − d�1−ε�

2

]
≤ C�2�E�t/2�

[
En�t/2� ∨ t1+ n−2

n−1 − d�1−ε�
2

]
(58)

+ C8t
−ζ
[
En�t/2��tEn−1�t/2�� ∨ t1+ n−2

n−1 − d�1−ε�
2

]
+ C98

−δ
[
En�t/2� ∨ t

n−2
n−1 − d�1−ε�

2

]
�
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Here we have applied Lemma 11 in rewriting the first term. By Proposition
1, we have, for some positive constant C�3�, the bound

tEn−1�t/2� ≤ C�3��(59)

Applying (56) to the three terms in (58), as well as (52) to the first term, (59)
to the second term, and (54) to the third term, we see that (57) can be bounded
by

C�4�En�t/2�t−ζ	

for some constant C�4��
Recall that the local central limit theorem gives the bound

sup
x

α8�x� ≤ C�5�8−d/2	(60)

so that we can write∣∣∣∣∣∣∣∣∣∣∣
∑

u1	���	un∈�d

ui=uj for at
least one pair i	j

E'∗
t−8�u1	 � � � 	 un�α8�u1�

n∏
i=2

α8�ui − y�

∣∣∣∣∣∣∣∣∣∣∣
≤ C�6�8−d/2 sup

u1	���	un

E'∗
t−8�u1	 � � � 	 un�

≤ C�7�t−ζ
[
En+1�t/2� ∨ t1+ n−2

n−1 − d�1−ε�
2

]
(61)

≤ C�8�En�t/2�t−ζ	(62)

by (55) and (56). Similarly,∣∣∣∣∣∣∣∣∣∣∣
∑

u1	���	un∈�d

ui=uj for at
least one pair i	j

E

{
n∏
i=1

ξt−8�ui�
}
α8�u1�

n∏
i=2

α8�ui − y�

∣∣∣∣∣∣∣∣∣∣∣
≤ C�9� sup

k=1	���	n−1
�n− k+ 1�n8−d�n−k�/2

[
Ek�t/2� ∨ t

n−2
n−1 − d�1−ε�

2

]

≤ C�10�En�t/2�t−ζ�(63)

Here we have applied (42) to arrive at the first inequality. The variable k
indicates the number of distinct sites in the summation. Equations (62) and
(63) allow us, with an error of order En�t/2�t−ζ , to apply equation (43) and
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replace (57) with

S

∣∣∣∣∣ ddtE�t� +∑
y

q�y��2an−1 + cn−1�D�y�

× ∑
ui∈�d

i=1	���	n

E

{
n∏
i=1

ξt−8�ui�
}
α8�u1�

n∏
i=2

α8�ui − y�

∣∣∣∣∣∣∣∣
≤ C�11�En�t/2�t−ζ�

(64)

We continue by writing

∑
ui∈�d

i=1	���	n

α8�u1�ξt−8�u1�
n∏
i=2

α8�ui − y�ξt−8�ui�

=
[∑
u1

α8�u1�ξt−8�u1�
]

n∏
i=2

[∑
ui

α8�ui − y�ξt−8�ui�
]
�

We can then use the variance estimate (Lemma 12) to bound the error involved
in replacing the expectation of this product of sums with the product of the
expectations of the sums. As a first step, we have∣∣∣∣∣∣∣∣

∑
ui∈�d

i=1	���	n

E

{
n∏
i=1

ξt−8�ui�
}
α8�u1�

n∏
i=2

α8�ui − y�

−E
{∑

u1

α8�u1�ξt−8�u1�
}
E

{
n∏
i=2

[∑
ui

α8�ui − y�ξt−8�ui�
]}∣∣∣∣∣(65)

≤
[

Var
(∑
u1

α8�u1�ξt−8�u1�
)] 1

2
[

Var

(
n∏
i=2

�∑
ui

α8�ui − y�ξt−8�ui��
)] 1

2

�

By Lemma 12 and (60), the first variance is bounded by C4C
�5�t

n−2
n−18− d

2 .
For the second variance, we use the bound Var�X� ≤ E�X2�, where

X2 =
2n−2∏
i=1


 ∑
ui∈�d

α8�ui − y�ξt−8�ui�

 �

As seen previously in this proof, we use (42), Lemma 13 and (60) to show that
the expectation over the sum of the terms with k ≤ 2n − 2 distinct ui’s is
bounded by C�12�[Ek�t/2� ∨ t

n−2
n−1 − d�1−ε�

2
]
8−d�2n−2−k�/2, so that, again by (55),

Var�X2� ≤ C�13�
[
E2n−2�t/2� ∨ t

n−2
n−1 − d�1−ε�

2

]
�
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From (53) and Lemma 11, we see that[
t
n−2
n−18− d

2 E2n−2�t/2�
]1/2

≤ C�14�En�t/2�t−ζ�
In addition, (53), (56) and Lemma 11 show that[

t
n−2
n−18− d

2 t
n−2
n−1 − d�1−ε�

2

]1/2
≤ C�15�En�t/2�t−ζ�

The result is that (66) is bounded above by C�16�En�t/2�t−ζ�
Continuing to split up the product of expectations in this manner, we arrive

at ∣∣∣∣∣∣∣∣
∑

ui∈�d

i=1	���	n

E

{
n∏
i=1

ξt−8�ui�
}
α8�u1�

n∏
i=2

α8�ui − y�

−E

 ∑
u1∈�d

α8�u1�ξt−8�u1�



n∏
i=2

E


 ∑
ui∈�d

α8�ui − y�ξt−8�ui�


∣∣∣∣∣∣

≤ C�17�En�t/2�t−ζ�
The approximation in (64) now yields∣∣∣∣∣ ddtE�t� +∑

y

q�y��2an−1 + cn−1�D�y�∑
u1

E �α8�u1�ξt−8�0��

×
n∏
i=2

E

{∑
ui

α8�ui�ξt−8�0�
}∣∣∣∣∣

=
∣∣∣∣∣ ddtE�t� +∑

y

q�y��2an−1 + cn−1�D�y�∑
u1

E �α8�u1�ξt−8�u1��

×
n∏
i=2

E

{∑
ui

α8�ui − y�ξt−8�ui�
}∣∣∣∣∣

≤ C�18�En�t/2�t−ζ�
Notice that∑
y

q�y��2an−1 + cn−1�D�y�

= ∑
y

q�y��2an−1 + cn−1�

×
∞∑

m=0

�1 − an−1 − cn−1�mP�s #→ S0
s and n− 1 copies of s #→ S−y

s

meet exactly m times during �0	∞��
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= ∑
y

q�y��2an−1 + cn−1�

×
∞∑

m=0

�1 − an−1 − cn−1�mP�s #→ Sy
s and n− 1 copies of s #→ S0

s

meet exactly m times during �0	∞��

= �2an−1 + cn−1�
∞∑

m=0

�1 − an−1 − cn−1�m

×∑
y

q�y�P�s #→ Sy
s and n− 1 copies of s #→ S0

s

meet exactly m times during �0	∞��

= �2an−1 + cn−1�
∞∑

m=0

�1 − an−1 − cn−1�m

×∑
y

q�y�P�n copies of s #→ S0
s meet exactly m times during

�0	∞� � the first of the n particles to move jumps to y�

= �2an−1 + cn−1�
∞∑

m=0

�1 − an−1 − cn−1�m

×P�n independent copies of S· collide exactly m

times after the first walk leaves 0�

= �2an−1 + cn−1�
∞∑

m=0

�1 − an−1 − cn−1�m�1 − γn	d�mγn	d

= �C1�d	n��−�n−1� /�n− 1�	
where

γn	d �= P
{
n independent copies of S· never coincide after the

first walk leaves 0
}
�

Thus, for t ≥ 1	∣∣∣∣ ddtE�t� + �C1�d	n��−�n−1�

�n− 1�
[∑

u

α8�u�Eξt−8�0�
]n∣∣∣∣ ≤ C�18�En�t/2�t−ζ�(66)

As in the proof of Lemma 16,

E�ξt�0� � �t−8�
≥ ∑

v∈�d

∑
%≤ξt−8�v�

P
{
S

�v	%�
8 = 0 and the path s #→ S

�v	%�
s does not simultaneously

coincide with n− 1 other paths s #→ S
�ui	ki�
s

for any s ≤ 8	u1	 � � � 	 un−1 ∈ �d	 ki ≤ ξt−8�ui�
}

≥ ∑
v∈�d

∑
%≤ξt−8�v�

α8�v�
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−n ∑
u1	���	un

∫ 8

0
't−8�u1	 � � � 	 un�

∑
z	z′

αs�u1 − z′�α8−s�z′�q�z− z′�

×
n∏
i=2

αs�ui − z�ds	

since P�A∩B� ≥ P�A�−P�A∩Bc�� Taking expectations and applying Lemma
13 and equation (56), we see that

Eξt�0� ≥ E

{∑
v

α8�v�ξt−8�v�
}

−C�19�8En�t/2��

Raising both sides to the nth power, expanding the right hand side and using
Proposition 1 to bound the terms in the expansion, we have

�Eξt�0��n ≥ �Eξt−8�0��n +
n∑

k=1

(
n

k

)
�−8En−1�t/2�C�19��k �Eξt−8�0��n−k Ek�t/2�

≥ �Eξt−8�0��n −C�20�En�t/2�t−ζ�
Here we have again used the fact that E�t� is decreasing in t and that tEn−1�t�
is bounded above by a constant. In addition, we know that

Eξt�0� ≤ E

{∑
v

α8�v�ξt−8�v�
}

= Eξt−8�0��

Using these two inequalities, we get the bound∣∣∣∣[Eξt�0�]n − [
Eξt−8�0�]n∣∣∣∣ ≤ C�20�En�t/2�t−ζ�

Equation (66) then becomes∣∣∣∣∣ ddtE�t� + �C1�d	n��−�n−1�

�n− 1� En�t�
∣∣∣∣∣ ≤ C�21�En�t/2�t−ζ	 �t ≥ 1��(67)

We would like to rewrite this bound in terms of En�t�� Lemma 11 guarantees
that there exists some C�22� > 0 such

lim inf
t→∞

E�t�
E�4t� ≤ C�22��

To see this, assume that for all C > 0 there exists an M�C� such that E�4t� <
E�t�/C for all t ≥ M�C�� For any k > 0 and t = 4kM�16�, we could then write
E�t� ≤ E�M�16��/16k = O�t−2�	 contradicting Lemma 11.

For ease of notation, we set

C�23� �= �C1�d	n��−�n−1�

�n− 1� �
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Without loss of generality, we take C�22� ≥ 1 large enough so that(
1 +C�22�

)n−1
≥ 1 + �n− 1�C�3�

(
1 −C�23�

)
	(68)

where C�3� is as in (59). Choose T0 large enough so that

T
−ζ
0 C�21�

(
4C�22�

)n
≤ 1(69)

and
E�T0�
E�4T0�

≤ 2C�22��

Define

T �= inf
{
t ≥ T0 � E�t�

E�2t� ≥ 4C�22�
}
�

Note that T ≥ 2T0, since, for T0 ≤ s ≤ 2T0, we have

E�s�
E�2s� ≤ E�T0�

E�4T0�
≤ 2C�22��

We want to prove that T = ∞� Assume the contrary, that T is finite, in
which case we can write

E−�n−1��2T� −E−�n−1��T� = �n− 1�
∫ 2T

T
E−n�s�dE�s�

ds
ds

≤ �n− 1�
∫ 2T

T

[
C�21�s−ζ E

n�s/2�
En�s� −C�23�

]
ds

≤ �n− 1�
∫ 2T

T

[
1 −C�23�

]
ds	

where the first inequality is from (67) and the second inequality follows from
(69), since T0 ≤ s/2 ≤ T. At this point, we have

E−�n−1��2T� −E−�n−1��T� ≤ �n− 1�T[1 −C�23�]	
so that [

E�T�
E�2T�

]n−1

≤ 1 + �n− 1��1 −C�23��TEn−1�T�

≤ 1 + �n− 1��1 −C�23��C�3� �by (59)�
≤ �1 +C�22��n−1 �by (68)��

This provides the desired contradiction, since T is defined so that E�T�
E�2T� ≥

4C�22� > �1 +C�22���
We have now proven that there exists a positive constant C�24� such that[

E�t�
E�2t�

]n
≤ C�24� for all t ≥ 0�
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We express equation (66) as∣∣∣∣∣ ddtE�t� + �C1�d	n��−�n−1�

�n− 1� En�t�
∣∣∣∣∣ ≤ C�25�En�t�t−ζ	 �t ≥ 1��

Integration gives

E−�n−1��t� −E−�n−1��0� = −�n− 1�
∫ t

0
E−n�s�dE�s�

ds
ds

= �C1�d	n��−�n−1�

�n− 1� �n− 1�t+O
(
t1−ζ) �

Then

E�t� = C1�d	n�t− 1
n−1
[
1 +O�t−ζ�]− 1

n−1

= C1�d	n�t− 1
n−1 +O

(
t−

1
n−1 −ζ

)
	

using a binomial series expansion to estimate �1 +O�t−ζ��− 1
n−1 � This gives (5).

Results (4) and (6) in Theorem 1 then follow from (40) and (39), respectively. ✷
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