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A CORRELATION INEQUALITY FOR CONNECTION
EVENTS IN PERCOLATION

By J. van den Berg and J. Kahn1

CWI and Rutgers University

It is well-known in percolation theory (and intuitively plausible) that
two events of the form “there is an open path from s to a” are positively
correlated. We prove the (not intuitively obvious) fact that this is still true
if we condition on an event of the form “there is no open path from s to t.”

1. Introduction and statement of results. We consider the usual bond
percolation models on a (finite or countably infinite) graph G = �V�E�: each
e ∈ E is “open” (has value 1) with probability p�e� and “closed” (has value
0) with probability 1 − p�e�, independently of all other edges. We write P
for the corresponding probability distribution on � �= �0�1�E. For general
background see [4].

For s� a ∈ V we write s�a for the event that there is an open path from
s to a, and s �a for the complementary event.

Positive (i.e., nonnegative) correlation of any two events s�a and s� b fol-
lows from Harris’ inequality [5] (Theorem 2.1 below). The correlation inequal-
ity of the title says that this phenomenon persists if we condition on any event
s �t.

Theorem 1.1. For any s� a� b� t ∈ V,

P�s�a� s� b	s �t� ≥ P�s�a	s �t�P�s� b	s �t�


The intuition for this is not very clear. In particular it is not true if we
condition on s� t rather than s�t. (Consider the graph with vertices s� a� b� t
and each of s� t joined to each of a� b.)

From now on we fix s ∈ V, and set, for X ⊆ V�QX = �s�x∀x ∈ X� and
RX = �s �x∀x ∈ X�.

Theorem 1.2. For any A�B�X�Y ⊆ V,

P�QARX�P�QBRY� ≤ P�QA∪BRX∩Y�P�RX∪Y�
(1)

Remarks. 1. Of course we recover Theorem 1.1 from Theorem 1.2 by tak-
ing A = �a�, B = �b� and X = Y = �t�. This is not generalization for its own
sake: the more general form is needed for the proof.
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2. The perhaps intuitively more natural statement obtained by replacing
RX∪Y by QA∩BRX∪Y in Theorem 1.2 is not true: take V�G� = �s� x� y� a�,
E�G� = �sx� xa� ay�ys� and X = �x�, Y = �y�, A = B = �a�.

3. As pointed out to us by the referee, Theorem 1.1 can be generalized to
sets of vertices S�A�B�T by replacing s by S� 
 
 
 � t by T, and interpreting
X�Y as �∃x ∈ X�y ∈ Yx�y�. To see this, simply identify all vertices
in each of S�A�B�T, retaining multiple edges, and apply Theorem 1.1.

4. Note that if we replace A by A\B in Theorem 1.2, the r.h.s. of (1) remains
the same and the l.h.s. does not decrease. So Theorem 1.2 as stated above
is not more general than the case A ∩B = �.

5. The original motivation for Theorem 1.1 was a conjecture we learned from
the late P. W. Kasteleyn (personal communication, circa 1985), a slightly
informal description of which is as follows. LetG = �V�E� be a finite graph,
W some subset of V and G̃ = �Ṽ� Ẽ� a copy of G. For each e ∈ E and v ∈ V,
let ẽ and ṽ be the corresponding edge and vertex in G̃, respectively. Now
we “glue” G and G̃ together by identifying w with w̃ for w ∈ W, and on this
new graph consider any percolation model with p�ẽ� = p�e� for all e ∈ E.
The conjecture is then that, for every a� b ∈ V, P�a� b� ≥ P�a� b̃�.
There is in fact a slight concrete connection with Theorem 1.1, in that a
special case of the latter says that when 	W	 = 2, say W = �v�w�, one
has P�a� b	v �w� ≥ P�a� b̃	v �w�. But we feel that Theorem 1.1 is
more interesting for its own sake and believe it has potential applications
in percolation theory in general.

2. Background. We just recall the two correlation inequalities we will
need in Section 3. For more extensive discussions see [2].

An event � (i.e., a subset of �) is called increasing if � � ω ≤ ω′ implies
ω′ ∈ A. (Here ω ≤ ω′ means ωe ≤ ω′

e for all e ∈ E.) The following correlation
inequality is due to Harris [5].

Theorem 2.1. For any increasing � �� ⊂ �,

P���� ≥ P�� �P���


Of course this is equivalent to saying that for any increasing� and decreasing
�, P���� ≤ P�� �P���.

There are a number of significant extensions of Harris’ inequality, notably
that of Fortuin, Kasteleyn and Ginibre [3]. (We are informed by the referee
that the inequality was essentially given a bit earlier in [6].) Our main tool is
the considerably more general Ahlswede–Daykin (or “four functions”) theorem
[1], namely:

Theorem 2.2. Let N be a finite set and let � �N� denote the set of all
subsets of N. Suppose α�β� γ� δ � � �N� → R+ satisfy

α�S�β�T� ≤ γ�S ∩T�δ�S ∪T� ∀ S�T ⊆ N
(2)
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Then
∑
α�S�∑β�S� ≤ ∑

γ�S�∑ δ�S� (where the sums are over all
S ⊆ N).

3. Proof of Theorem 1.2. We assume G is finite. (If G is countably infi-
nite, the result follows from the finite case by obvious limit arguments.) The
proof is by induction on the number of vertices 	V	. If 	V	 = 1, the result is
trivial. Suppose it always holds if 	V	 ≤ n and consider a graph G with n+ 1
vertices.

Set X ∩Y = Z. If Z = � then (1) follows from the Harris inequality:

P�QARX�P�QBRY� ≤ P�QA�P�RX�P�QB�P�RY�
≤ P�QAQB�P�RXRY�
= P�QA∪BRX∩Y�P�RX∪Y�


If Z �= � we proceed as follows: set N = �y �∈ Z� y ∼ Z� (where y ∼ Z
means y is adjacent to at least one vertex of Z). Define the (random) set

S = �y ∈ N� there is an open edge from y to Z�

We use S�T for possible values of S and write P�S� for P�S = S� and P�·	S�
for the conditional distribution given S = S. We may expand

P�QARX� = ∑
S

P�S�P�QARX	S�

(where the sum is over all subsets of N) and similarly for the other terms in
(1). Thus if we define

α�S� = P�S�P�QARX	S��
β�S� = P�S�P�QBRY	S��
γ�S� = P�S�P�QA∪BRX∩Y	S��
δ�S� = P�S�P�RX∪Y	S��

then (1) becomes
∑

α�S�∑β�S� ≤ ∑
γ�S�∑ δ�S��

where S runs over the subsets of N. Theorem 2.2 says that to verify this we
just need to establish (2), which, since (as one can easily check) P�S�P�T� =
P�S ∪T�P�S ∩T�, is the same as

P�QARX	S�P�QBRY	T� ≤ P�QA∪BRX∩Y	S ∩T�P�RX∪Y	S ∪T�
(3)

Let P′ refer to the percolation model for the graph G′, obtained from G by
removing Z, with edge probabilities as in our original percolation model on
G. Then it is easy to see that for any C�W ⊆ V\Z and S ⊆ N,

P�QCRW∪Z	S� = P′�QCRW∪S�
(4)
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Now we obtain (3) as follows: Let X′ = X\Z and Y′ = Y\Z. We have

P�QARX	S�P�QBRY	T� = P′�QARX′∪S�P′�QBRY′∪T�
≤ P′�QA∪BR�X′∪S�∩�Y′∪T��P′�R�X′∪S�∪�Y′∪T��
≤ P′�QA∪BR�S∩T��P′�R�X′∪Y′�∪�S∪T��
= P�QA∪BRX∩Y	S ∩T�P�RX∪Y	S ∪T��

where the first equality follows from applying (4) twice (with W = X′ and
W = Y′, respectively), the first inequality from the induction hypothesis
[which says that (1) holds for G′], the second inequality from �S ∩ T� ⊆
�X′ ∪ S� ∩ �Y′ ∪ T�, and the second equality from again applying (4) twice
(with W = � and W = X′ ∪Y′, respectively). ✷
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