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From this reason, and owing to the proportionally slight dithculties attached to it,
the graphical adjustment becomes particularly suitable where we are to lay dewn new
empirical laws. In such cases we have to work through, to check, and to reject series
of hypotheses as to the functional interdependency of observations and their essential
circumstances. We save much labour, and illustrate our results, if we work by graphical
adjustment.

Of course, we are not oblized to subject observations to adjustment. In the pre-
liminary stages, or as long as it is doubtful whether a greater number of essential circum-
stances ought not to be taken into consideration, it may even be the best thing to give
the observations just as they are.

But if we use the graphical form in order to illustrate such statements by the
drawing of a line which connects the several observed points, then we ought to give this
line the form of a continuous curve and not, according to a fashion which unfortunately
is widely spread, the form of a rectilinear polygon which is broken in every observed
point. Discontinuity in the curve is such a marked geometrical peculiarity that it ought,
even more than cusps, double-points, and asymptotes, to be reserved for those cases in
which the author expressly wants to give his opinion on its occurrence in reality.

XIV. THE THEORY OF PROBABILITY.

§ 65. We have already, in § 9, defined *‘prodability” as the limit to which — the
law of the large numbers taken for granted — the relative frequency of an event approaches,
when the number of repetitions is increasing indefinitely; or in other words, as the limit
of the ratio of the number of favourable events to the total riumber of trials.

The theory of probabilities treats especially of such observations whose events
cannot be naturally or immediately expressed in numbers. But there is no compulsion in
this limitation. When an observation can result in different numerical values, then for
each of these events we may very well speak of its probability, imagining as the opposite
event all the other possible ones. In this way the theory of probabilities has served as
the constant foundation of the theory of observation as a whole.

But, on the other hand, it is important to notice that the determination of the
law of errors by symmetrical functions may also be employed in the non-numerical cases
without the intervention of the notion of probability. For as we can always indicate the
mutually complementary opposite events as the “fortunate” or *unfortunate™ one, or as
“Yes" and “No", we may also uso the numbers 0 and 1 as such a formal indication. If
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then we identify 1 with the favourable “Yes"-cvent, 0 with the unfavourable “No", the
sums of the numbers got in a series of repetitions will give the frequency of affirmative
events. This relation, which has been used already in some of the foregoing examples, we
must here consider more explicitly.

If repetitions of the same observation, which admits of only two alternatives, give
the result “Yes" == 1 m times, against » times “No” == 0, then the relative frequency
for the favourable event is -;—"1; But if we employ the form of the symmetrical functions
for the same law of actual errors, then the sums of the powers are

g == MM, 8 ==y ... === (121)
In order to determine the half-invariants by means of this, we solve the equations
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Compare § 23, example 2, and § 24, example 3.

AN the half-invariants are integral functions of the relative frequency, which is
itself equal o p,. The relative frequency of the opposite result is ;l; - 1—p,; by
interchanging m and =, none of the half-invariants of even degree are changed. and those
of odd degree (from ps upwards) only change their signs.

In order to represent the connection between the laws of presumptive errors, we
need only asspme, in (122), that m and » incréase indefinitely, while the probability of the
ev:nt becomes p == “' — and the probability of the opposite event is represented by

Py 1—p == g. The half invariants are then:

A = p
dy = pq
123
4 = pa(g—p) az9)
4 = pa(g*—4pe+p").
Our mean values are therefore, respectively, the relative frequency and the probability itself.
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We must now first notice here that every half-invariant is its own fixed and
simple function of the probability (the frequency). When a result of observation can be
stated in the form of one single probabilis. properiy so called, we have thereby given as
compléte a determination .of the law of . .5 as by the whole series of half-invariants.
In such cases it is simpler to employ the theory of probability instead of the symmetrical
functions and the method of the least squares,

The theory of probability thereby pets its province determined in a much more
natural and suitable way than that employed in the beginning of this paragraph.

But at the same time we see that the form of the half-invariants is not only the
general means which must be employed where the conditions for the use of the probability
are not fulfilled, but also that, within the theory of probubihty itself, we shall require,
particularly, the notion of the mean error.

Even where the probability can replace all the half-invariants, we shall require all
the various sides of the notions which are distinctly expressed in the half-invariants. Now
we have particularly to consider the probability as the definite mean value, now the point
is to elicit the definite degree of uncertainty which is implied in the probability, and
which is particularly emphasised in the mean error. Otherwise, we should constantly be
tempted to rely on the predictions of the theory of probability to an extent far beyond
what is justly due to them. Finally, we shall see immediately that the laws of error of
the probabilities are far from typical, but that they have rather a type of their own, which
must sometimes be especially emphasised.

All this we shall be able to do heie, where we have the half-invariants in reserve
as a means of representing the theory of probability.

§ 66. In particular, we can now, though only in the form of the half-invariants,
solve one of the principal problems of the theory of probability, and determnine the law of
presumptive errors for the frequency m of one of the events of a trial, which can have
only two events and which is repeated N uiines, upon the supposition that the trial follows
the law of the large numbers, and that the probability p for a siugle trial is known.

The equations (123) give us already the corresponding law of erior for each trial,
and as the total absolute frequency is the sum of the partial ones, we necd only use the

oquations (35) to find:

2, (m) = Np
24 (m) = Npg -- Np(1--p)
4, (m) = Npqlg—p) — Np(l—p)(1—-2p) (124)

4,(m) = Npg(q* —4py-+p*)
= Np(1- p)(1--B+V3)(l -3 V3.
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The ratio of the mean frequency to the number of trials is therefore the probability itseif.
When p is small the mean error differs little from the square root YNp of the mean
frequency;. and if p is nearly == 1, the mean error of the opposite event is nearly equal to
VNy. When the probability, p, is nearly equal to §, the mean error will be about & VN.

The law of error is not strictly typical, although the rational function of the rt»
degree in .(m) vanishes for » different values of p between O and 1, the limits included,
80 that the deviation from the typical formi must, on the whole, be small. If, however, we
consider the relative magnitude of the higher half-invariants as compared with the powers
of the mean error

2y (m) - (g — V%’%

and (123)

A, () (dg (W)~ == 2':1‘-'?;_“*"

the occurence of Npq in the denominators of the abridged fractions shows, not only that
great numbers of repetitions, here as always, cause an approximation to the typical form,
but also that, in contrast to this, the law of error in the cases of certainty and impoasi-
bility, when g == 0 and p == 0, becomes skew and deviates from the typical in an infinitely
high degree, while at the same time the square of the mean errors becomes == 0. This
remarkable property is still traceable in the cases in which the probability is either very
small or very nearly equal to 1. In a hundred trials with the probability = 99} per ct.
the mean error will be about = V. Errors beyond the mean frequency 99} cannot
exceed §, and are therefore less than the mean error. The great diminishing errors must
therefore be more frequent than in typical cases, and frequencies of 97 or 96 will not be
rave in the case under consideration, though hey must be fully counter-balanced by
nuwerous cases of 100 per ct. The law of error is consequently skew in a perceptible
degree. In.applications of adjustment to problems of probability, it is, from this reason,
frequently necessary to reject extreme probabilities.

XV. THE FORMAL THEORY OF PROBABILITY.

§ 67. The formal theory of probability teaches us how to determine probabilities
that depend upon other probabilities, which are supposed to be given. Of course, there
are no mathematical rules specially applicable to computations that deal with probabilities,
and there are many computations with probabilities which .do not fall under the theory of
probability, for instance, sdjustments of probabilities. But in view of the direct application



