ON THE CORRELATION BETWEEN CERTAIN
AVERAGES FROM SMALL SAMPLES*

By
ALLEN T. Crarc

1. Introduction. It is well known that no correlation exists
between the arithmetic mean and standard deviation of samples
drawn at random from a normal universe. However, there seems
to be in the literature no treatment of the correlation between
other averages either for normal or non-normal universes. In the
present paper, a few simple theorems are established which make
possible the determination of the type of regression of the median
on the arithmetic mean, of the range on the median, and of the
range on the arithmetic mean. In case the regression is linear,
the coefficient of correlation may be computed.

We shall understand a probability function &) of a real
variable x to be, for all values of x on a range of 22 a single-

valued, non-negative, continuous function with fie)ax=1,
b (4
Then / f(x)dx is the probability that a value of x chosen

Q

at random lies in the interval (@, 4/) where ¢ and & are in 2
and @< & ; and F(x)dx is, to within infinitesimals of higher
order, the probability that a value of x chosen at random lies
in the interval /%, x+a%). It will prove convenient to classify
probability functions according as A’ is the range foo, ), (Q ),
or (Q #4) #4>0O. In accord with this classification, we shall
refer to probability functions as of the first, second, and third
kinds respectively. In a similar manner, we define a probability
function / (%, y.) of two independent variables.

*Presented to the American Mathematical Society, Dec. 28, 1931.
1C{. L. Bachelier, Calcul des Probabilités, p. 155
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128 CORRELATION BETWEEN CERTAIN AVERAGES

2. The correlation between the arithmetic mean ¥ and the
range W,

Theorem 1. Let #x)be the probability function of the vari-
able x . Let /i’Ki}V/be that of the orithmetic mean % and the
range W in samples of three independent values of = . If frx)
is a probability function of the first kind, then

2+%B-/ ‘
B, W)= 18 Floe,) ¥ (%,- W) F(T% -2+ W, .
2*?’

Proof. Let x,, x,,x,, be the three observed values of x .
Write
- J%,
=W,

xJSx sx,.

X +x2+tJ
€4

-

x -

~

For % assigned, - co< X< oo , and W assigned, O < W<oo we
must have

- W - 2W
)6+3-5x,5x,+——3 ,
Xy = %, - W,

If we consider all possible arrangements of x,, x,, x,, we have

4
g Waz dW=6_/ ’ ?‘;4))‘&2) flo,)dx, dx, 2z,.
2%
Let
X, =X,

x,=IX-%,-%,,
X z,-UV.

The absolute value of the Jacobin is 3. Hence the theorem.
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In the case of samples of four independent items x, x,, x,,

x,, the probability function 4 (% W)is given by
W

FlE W)= 45/ f&,/f/z D (4 22, -, s W) F e, - W) g, t,

x+— X -3, + W
mﬂ’ 4%-3x,42W

+ 48/ /fﬁ\: V136, ) F(2%-2x,- ey + W Fl,- W), at,.

We note that the probability function is made up of the sum of
two parts depending on whether ¥, is m the interval [ % » %—’
x+-—)or in the interval [+ ;—’ F2% ——) Moreover, it may be of
interest to note the overlapping of the ranges of integration of
%, . To prove that £7£W)is given as stated, we take

X X, + 2, wu4-4x,

(1) XS %, %%,

)61 ~ x4 =W
From (1) it readily follows that
2) Cx,+xytxy = 4i+ W,
For assigned values of % and W, the upper limit on x, is found
from (2) by taking x,-x, =x, = x,- W . Thus X, =%+ ‘—32”—’
Similarly, the- lower Inmlt on x, is found from (2) by taking
¥% =% =x . Thus %, -2+ . But %, may not always
be as large as x, for all values of x, . This may be seen by taking
%=x, and x,-x,-x,-Win (2) This leads to x,. 2+ ¥

/]
Thus, for Zrgsx,s%+5 , we see that z, is the upper limit

on x,. To detfermme the lower limit on x, for this region of
variation of x, , we select x, as near x,-x, -W as is possible
without causing x, to exceed x, . But x, = 4%2-2x,-x, + W .
At most, then 4x ~x, %, + Ws X, OF %,=4%-3%, +W.
Thus we have established the limits of integration used in the
first part of the sum of which £/% W) t;onsnsts A similar argu-

ment shows if x+;vs X, s X » -Z-, that

%-Wsx, s d@-3x,+2W.
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If f(x)is a probability function of the second kind, we

observe in samples of three independent items x,, x,, x,, for %

assigned, that O < W=3%. If O W's 3%/2, we have
vy W< x, £ v 2W
x+7- y S x*—;——,

% =J%-2%,+W,

%=x-W

, we have

Ws x, 24-'2;-]1’,

%, = 32-2x, +W,

¥ = x,-W,

I < w < gz

Accordingly,
P14 -
F (%, W)= 8f e V(e - W)F(3%- 2, + Wi, OsW's 55,
2W

x *3 -
- 17 Tt ) o, W F(37-22, + W, , s Ws I%:

In samples of four independent items x,, x, , x, , %, , drawn
from a universe characterized by a law of probability of this kind,
we find

2+ ¥ %,

FlaW)=t8) o f . Flu, i) #8520,y o Wb Wil

z+— 4%-3x6,+ W
LW'445 ~Jx +dW

z+
+4<9/ / f&,}f/z IF(43-2x,-x, + W) e, W)alx, 2,

o osws %,
=464‘ / f(x)fﬂu )F(4i-2x,- %, W) fre,-W)dx, a%,
42 '3‘,*W

2+ 25.’ 1E-2x,+W
*48/ ffx,)f/a;,)f/li-?x, -5+W/f/z,-W) ax, dx,,

fSW‘zi,
i+ w 42-Jx, +2W
’40/ / f/x)f/x o) P42 -2%, - %, + W) F(%,-W)dx, oz,

2x=sW=s 4%,
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Finally, consider 7/%/ to be a probability function of the
third kind. In samples of three independent items %,, %,, %, ,
for O< % < /r/J’ , we obtain O «W=s3% ; forkf3<z<k/5,
we obtain O < W= & ; for ZA’/J‘ < Zs hk , we obtain
OsWs 3(k-2) Itis fairly easy to see that for x and W
assigned as indicated, the following regions of selection of x, are
valid :
for Os 2= k)2 and OsW=3%/2
or for 4/2 <<k and Os= Ws3(h-2) /2 , then
B+ W/3sx, =%+ 2W/3F;
for O< %<k/3 and 3%[2 < Ws3%,
or for 4f3<%=<k/2 and F2[2=< W= J/A'-E//Z, then
Wsx, s = + PW/3;
for 2k/3 < % = k& and 3(h-2)[2 < W's Ih-2)
or for A/ < 2 s 2k)3 and 3 4-2)[2 < Ws3%/2 , then
xz+ W/ Isx,shk;
for /7 s % k/2 and 3/ /r-a?//Z < Wk k,
or for A/C s%=2k/F and &[S s Ws k , thenWsx <k

Thus,
Xt é}‘f
7 (W)= 1&/ Wf/a; ) F(x,- W) F(3%-2xt W),
z+
J

z+ 3
<18f )bt WIH 8-, W )l
W

K
28) 1) f(x,-WF(G-2x+ W),

i+¥
' L4
=18 L £, )f(x,-W) F(3%-2.0,+ W),

over those regions of the ZW -plane indicated above.

In case of samples of four independent items x,, x,, X,,
%, , drawn from a universe characterized by a probability function
of the third kind, for Os % s k/4#, we obtain Os Ws4z ;
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for h/4 2% <3k/4 , we obtain O<Ws k ; for Shds &< k
we obtain J < Ws4(k%). Let us denote as follows the regions
of the ZW -plane bounded by the given lines:

4z
% =0 W =3
(A)jw= 42 (ENW =2(k-2)
3
iﬁr_xz W = 4(k-x)
=—7_£Z W = _4??."2
= X 4 JW = X
(B) ‘\:/: % (F) o 4;%_2)
W=2ck \W = 2(k-%
(C)l - 4% W = 4
- Onw= 22 o)
W = 3-

Further, let
O=Flx,) F(e,) Fla, - W) F (4 %-2x,- %, + W)

6 pd b
//dezdz’=( ) 14
a ¢
a C

It is then not difficult to verify that

and let

(2.3 4% 3¢, . 2W

v o} )

Nl A

) /7
= 4z- foW R‘,’f

£l W)- M[(”*W

- W ,
48 T+ %, o+ er 4% - dx, +20 ], (B)

W 4z-3x,+W, “‘*2 -W

. IW . P
) ¥ 44!-3&’,*“/ 9J C
'M[{W Z"W 2 ( )

e d2-3x +2W]
4 ) ( , D
6 ( r%’ 4% Jx +W, z?+— ( )
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’Mtéf;-" 4£-x\;x,+W)]6 ’ (E)
'wt iv*/%, 42-?x,+W ]6 ’ )
wlls “e. ©
(A PR

As illustrations of these theorems, let us find the correlation
between the range and the mean for universes of specified types.
Example 1. Let 7(x)=e™® Osx<oo.

For samples of three items, we have

FgW)e 6We ™™ oswsIE,
< 28(%- gyje ~a:? %‘:‘ s Ws 3%,

The distributions of the marginal totals of W and % are obtained
by integrating /5/2 W)with regard to £ and W respectively. We
readily find
2 .-
ple)- G2 5% 052 <o,
and
YW)-2¢ 2 1) 0 We oo,

as previously given by the writer.? For Z assigned, the mean
of the array of W is W = "%! . Thus the regression of W

on X is linear and , = ﬂf-?

2American Journal of Mathematics, Vol. 54 (1932), pp. 359, 366.
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Example 2. Let 7/%/< 1//\’, Osxsh.
For samples of three items, we have

£w)- 9%
LX),
L th-z-¥)
-2 (W)

over those regions of the ¥ W-plane indicated above. The mar-
ginal totals® are distributed in accord with

_, 27zt -
¢/x)-z{7. Osxsf,
9 2 el 4 2k
-z—p ["’62 *6/(3-/( ’ 3525:-’—,
27 2 <k, 2
‘2—/(7//(-2), 75&5/\',
and Y- 6/.,—';,/4'-14'7, oW k.
We readily find
We‘g‘!’ 05253,"':

3Cf. H. L. Rietz, On a Certain Law of Probability of Laplace, Proc.

Int. Math. . Toronto (1924), pp. 795-799. )
! J.a 0. CI?\E;TSSOn the Fr( uz%ngcy Distributions of Means, etc, Bio-
trika, Vol. 19 (1927), pp. 225-239. i )
e l.IP H:ll, Th(e Dis)tri l)tion of Means for Samples of Size N, Bio-

trika, Vol 19 (1927), pp. 240-245. N ]
e l"J. Ne;man 'aS‘ld E.)S.ml)’earson, On the Use and Distribution of Certain

Test “Criteria, Biometrika, Vol. 20 (1928), p. 210.
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ShI-2THR L 2ThES ko 2k
6k?-36hkz+ 3622 37" 3’
ag/k-i/, '-23/-(51'\?5/\’.

Thus the regression curve of W on X is continuous, but the
regression is non-linear for § X< -23/1

3. The correlation between the arithmetic mean % and the
median & .

Theorem II. Let £(x) be the probability function of the
variable x . Let /(% F)be that of the arithmetic mean % and
the median & in samples of three independent values of x . If

Fix) is a probability function of the first kind, then

)18 18) ) | F) H(32- -5 )t £2,
3%-2
-10#(E)f " f,) £ 55 B, ), E<E.
r

Proof. Let %, % ,%,,be the three observed values of x .
Write

For z and & assigned, ¥ < % , we must have
Ix-2F<x, <00
%=
%,=3%-§ - x,,
and for % = £,
Fsx <o
x,=&

xasai-f-x,.
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If we consider all possible arrangements of x, , %, ,

R (ef)aids - OHEMSE J/x i) F1y) ey b,

x, , we have

Es
- éf/(/d{/;ﬂv,} Flx,)ax, dx,, Zsf.
£

.

Xi

The change of variable =z, = 3Z-§-x, establishes the theorem.
In case of samples of five independent items %, , %, , x,,
%, , %, , the probability function /4 (% &) is given by

Je-4F 00 '4
/3’/&()-1.50/‘0’/ / / File M, gy MG, 3, D al, at,
r  Leapyeopay
00, 0.4
ff”f/f)/ / f[v,/f@/f/z;)f[fi-}'—g-g—g}dgdgdx,, F<x
S SR-2f-x¥,
00
19011E) / / Fle e ) e O -f-n 2,0 Jaly an ale, Z<E,
¢ SBdFgy

This follows immediately from the fact that for Z and ¢ as-
signed, F<z, we may have either

< x,<52- 45
Ix -IF-x,
ox -2F-x,

< %, <o,
% <y, <4

%=,

= JE--n-%,-x

X

or

Ji-4fsx,<oo,

s x, <oo,

TR-RE-% -2, <% 4§
5=y

X208 -§-0,-%,-%,
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and for x = F , we must have

Fsx, <00
fs X, <00,
JELE-x, -%,< %, 2,
ok
X e I%-&-2-2,- %,

If #7%/ is a probability function of the second kind, it is clear
that O< &< ‘5‘2 in samples of three items. Then
IE-&
e }‘/slé’f/{‘// Pl )t(3e-§-n )ax,, — O:&sx %,
-2
Fx-F

-Idf/(// e 5o Jt, efe .

In case of samples of five independent items drawn at ran-
dom from a universe characterized by a probability function of
the second kind, /4 (%,£) can best be expressed in a form employ-
ing the notation used previously. Thus we write

P f/&/f/@/f/ﬁ/f/cfi-ﬁ %%, %, A
-.=J2-4}'—z Sy -x,

J?

/ bar
/ fdxdz ax - (ace)
Then

Yo Yy ¥ “%o “1 “%
gad)-25018) | ( #+ ) '

( U Y2y ( Y Yt “1:). P
+ *

Uy Uy1 Y22 -
+ ( i, Oo=F= 2,

\”.m ; 0,

and
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- /Jﬂf/ﬁ[( 0 “2 ) e “'Jo “u “12) P

+/fzo Uy ‘4:2) J:l' is(s%‘f,
Y £ O

=150f/f)[(;"" :f‘ ‘3’) f]. Lep=F

Finally, consider 7/x/ to be a probability function of the
third kind. In samples of three independent items, for O= Zsk/d,
we obtain Os &= Jg/2 ; for #/32 2 s2k/3 , we obtain
(Fe-k)fesfe I/2; for 2&/3 <%= & , we obtain ﬁx-/r)/Zs{s/r
It is not difficult to verify for £ and & assigned as indicated,
the following regions of selection of x, are valid:
for Os< z < A'/J’ and O=<¢& =< 2,
or for /3 <% < k/2 and FE-ks&s<i ,then
32-2}'5 z,s.ia?-g’;
for h/3s 2 < k/2 and (Fe-#)[2sF<T%-k,
or for 4/2 s 2 < k and /J‘a?-k)/és &F < z ,then
3z2-2Fsx,sh;
for Os 2s A/ and 2= F s F%/2,
or for k)2 %< 2k/Fand Fi- ks ¢ s /2, then
f‘ x, £ 3%-&;
for 4/2 sz <2k/Fand s F< IE-A,
orior?k/d.«. 2k and = F < A, thensx <k

Thus
Iz-&
RIEE)= 18F(E)[ o) f(3%-F-5)ax,
Ie-2f

#
=18 (&) / Flae,) (385 x,) e,
rE-2F
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Je-&
=187(¢)) Flx,) F(Or-F-x,)ax,,
£

&
<18 f/;“}/' o, )F(3e-£-x, ), ,
¢

over those regions of the £J -plane as indicated above.
With samples of five items, the correlation surface is defined
in so many parts that we shall not take the space necessary to

consider it.
As illustrations of these theorems, we shall find the correla-

tion between the median and the mean for universes of specified

types.
Example 1. Let F(x)-e ™™, Osx<o.
For samples of three items, we have

B(oF)<188e % 0Osfsz
- 18(3%-28)e % s ;sgf

The distribution function of the marginal totals of & is given by*
HE)Ge “1-ef) OcFeoo.

For % assigned, the mean of the array of & is
}: JZ
AR 267
Thus the regression of & on Z is linear and 7= = v

Example 2. Let F(¥)<f, Osx=k.
For samples of three items, we have

glar)-%

:g/é*jjfz‘r},

+Cf. American Journal of Mathematics, Vol. 54 (1932), p. 364.
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L8 52-28),
i
. i—‘f (#-£)

over those regions of the Z & -plane indicated above. The distri-
bution function of the marginal totals of & is given by®

¢/;“/= /k- I O=Fs= k

We find
- J"
R
Ji"/.?x ©)? k .02k
o402 TR
0’2 ) 2k
- _.?*__, Tszs/r

Thus the regression curve of & on Z is continuous but the re-
gression is non-linear for 3/—( £ Xs %’t
4. The correlation between the median & and the range W.
Theorem III. Let (x/be the probability function of the
variable % . Let @'/{ Wbe that of the median & and the range
W in samples of Zm+1 independent values of x . If f(%)is o

probability function of the first kind, then

) B sk % 4 o
‘y (W e T AR f/ fﬂ,//fx,-”//[ fﬁ‘jdf] ’me/f/df] da\ﬁ,
L)1) } o
Proof. We have
X "X et ™ w;
Xmed = £
;5 xl’ ..... R xm < x"

2 -Ws a2 5

sCf. P. R. Rider, On the Distribution of the Ratio of Mean to Stand-
ard Deviation, etc., Biometrika, Vol. 21 (1929), pp. 136-137.
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Hence the theorem.
If fix)isa probability function of the second kind, then

(2mil)l % p’r md .
LW AL / fm% W, ;fﬁ‘,b’/] x'_if;‘/a’t] o, W=,

,MV % ey 7
/,?mff}/ 7 f/x,)f/ W fﬁ‘/df]‘[/f/z‘/af] ax, FsW.
[/ 1! ﬂ' {4 W

Finally, consider #/%) to be a probability function of the
third kind. We observe for < F < & ,that 0= W=k . For
assigned values of & and W, the following regions of selection
of x, are obvious:
for Os £ < k/2 ,and Os W< &,
or for k[2 < X<k and Os W= 4-F , then &< x, s FrW;
for Os Fshf2 and ¥ < Ws k-2 , then Wsx, s FsW;
for O« s 4/2 ,and 4-F s W= k,
or for /r/.?s;"sk and £« W<k , then Wsx, = 4;
for /2 = F < k and /-F <W< ¥, then Fsx, < k.

If we write -1 , ~ m-t
t, ’
4 =f/z,)f/z;-W)[ / f/f}dt] ‘ V f/t}dz‘] ,
{4 L4
we have
/zm )/ i
/;W = 2 j/’z f/;) Va’z,,
&
(2mel)! 14
T ", Vs
(R mrl)!
T o

/me-l//
/m—!)’z [(/Vd
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over those regions of the & W-plane previously indicated.
We shall consider two simple examples.
Example 1. Let f/x)=e™* Osx<ow.

With samples of three items,

A5 WeFe _sze“-’e'u), Ws?f,
de V1) rew

The regression is readily shown to be non-linear.
Example 2. Let fﬁt): 7, Osxsk
With samples of three items,

over those regions of the ¥W-plane which have been previously
given. The mean of the.array of W corresponding to an assigned
g is W = -- . Accordingly, there is no correlation between the
median and the range in samples of three items drawn from this
universe.

It is easy to employ the type of argument used in establishing
Theorem III to obtain the probability function of the median and
lower quartile. Thus, if 7(%/ is a probability function of the
second kind and 4 /& n/is the probability function of the median
£ and the lower quartile 1 in samples of £17+7 items, then

(4mel)/ 0 2 » m
aren //zm//m//m- 2 Uzl /V /’/4’5’ Io/ "/?-‘/dt‘]

P 4 m-l
[/ fft/a'f ,

Wr&?



