ON MEASURES OF CONTINGENCY
By

Frank M. WEmDA

1. Introduction. When we deal with the problem of relation-
ship of attributes, we may classify each attribute into a number
of groups. To illustrate: If the attributes are x; (¢=4,2,3,--,n)
and if the group belonging to X, is xf (i=1,2,3,- - ,m), that
belonging to X S x: €4=1,2,3,---- m,), ..., that belonging
to X, is xf (#=1,2,3---"-,m), ..., we may form an
7, x 7y, % - - - x 7%+ table which contains 777, x 77, x..- x 77 x- -
compartments. In this fashion, it is possible to distribute the total
frequency of the “universe” or the “sub-universe” into sub-groups
which correspond to these 777, x777,x .+ --x 73,x..- compartments.

For such situations, Pearson! and others? have suggested cer-
tain measures of relation between the attributes. We shall in this
paper be interested primarily in Pearson’s measures of contin-
gency. In the case of two attributes, Pearson proceeds as follows:
Suppose that A is any attribute and let it be classified into the
groups A, (c=1,2,3-. - ,s) and let B be another attribute
classified into the groups 5. (4 =423 - - t). Let the total
number of individuals examined be /V . Now, the probability
a-priori of an individual falling into the respective groups A, is
% /p/ where 7z, is the number which fall into 4; . Again, if 7%
is the number which fall into 3, , then the probability a-priori of
an individual falling into the respective groups 45&- is '75-//\/
where 77, is the number which fall into @~ . If the attributes are

Ve
independent in the probability sense, then, if /' pairs of attri-

1 Pearson, Karl, “On the Theory of Contingency and its Relation to
Association and Normal Correlation,” Drapers’ Company Research Me-
moirs, Biometric Series i.; Dulau & Co., London, 1904.

2 Yule, G. Udny, “An Introduction to the Theory of Statistics,” Charles
Griffin & Company, Limited, London, 1927, pp. 17-74.
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butes are examined, the number expected in the (/) compart-
ment is

N- . T T )
N W W v

. Suppose the number observed is 2y Then, if we allow for
the errors of random sampling, ( Ny~ Y i) is the departure
from independent probability of the occurrence of the groups
A,B . Then, any measure of the total departure from indepen-
dent probability is termed by Pearson a measure of contingency.
Consequently, the measure of contingency is some function of the
( 7ty — Ycy) Qquantities for the whole table.

Again, for a given

X))

Pearson has shown how to obtain the probability® /° as a measure
to determine how far the observed system is not compatible with
a basis of independent probability. He calls (/-P) the contin-
gency grade and

'the mean square contingency. Also,

Z(n‘—u:.')
y. Zln

is the mean contingency when Z refers to summation for all pos-
itive terms. ,
In his theory of contingency, Pearson appears to use the defi-
nition of probability used in practically all treatises on the subject.
3 Pearson, Karl, “On the criterion that a given system of deviations
from the probable in the case of correlated system of variables is such that

it can be reasonably supposed to have arisen from random sampling,” Phil.
Mag, Series V. 1. 157-175.
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This definition excludes the whole field of statistical probability.
It appears fairly obvious that the development of statistical con-
cepts is approached more naturally from a limit definition for
probability than from the familiar definitions suggested by games
of chance. It is the purpose of this paper to improve the treat-
ment of Pearson’s theory of contingency and make it more ele-
gant for theoretical as well as empirical discussions. To accom-
plish this we make use of the notion of characteristic function*
and a definition of probability that includes all forms of proba-
bility. It is believed that we have thus idealized Pearson’s con-
ception of contingency. We discuss multiple as well as partial
contingency. We also consider briefly the case of certain dependent
events and the concept of mutual exclusiveness, as well as the
concept of connection.

2. Definitions and assumptions. In our discussion we need
and use the following definitions and assumptions:®

Assumption 1. 1f an event which can happen in two different
ways be repeated a great number of times under the same essential
conditions, the ratio of the number of times that it happens in one
way to the total number of trials, will approach a definite limit
as the latter number increases indefinitely.

Definition I. The limit described in assumption I we call the
probability that the event shall happen in the first way under these
conditions.

Assumption II. 1f an event can happen in a certain number
of ways, all of which are equally likely, and if a certain number of
these be called favorable, then the ratio of the number of favor-
able ways to the total number is equal to the probability that the
event will turn out favorably.

Assumption 1II. 1f an event depend on n independent varia-

4 The characteristic function of A is that function which is equal to
unity for the elements of A and zero elsewhere. Usually A is assumed to
be a sub-class of some class on which the characteristic function is defined.

8 Coolidge, J. L., “An Introduction to Mathematical Probability,” The
Clarendon Press, 1925, pp. 1-12.



FRANK M. WEIDA 31

bles X | )(2" o, X" which can vary continuously in an 72
dimensional continuous manifold,there exists such an andlytic
function /(X ,---+-,X ) that the probability for a result corre-

sponding to a group of values in the infinitesimal region

X,IédX, » th —é—dxz)......’ an—é‘dx"

differs by an infinitesimal of higher order from

F(X :Xz). e Xn) a X d X;-' d X" ]
Definition 1I. 1f a variable X take the different values X_
(£=1,2,--- ,n) with the respective probabilities . (c=4%,---,7)
and these are all the possible values for that variable, then

@Zﬂx;

is called the mean valuc of the variable X.

Definition I11. Two variables are said to be independent if the
probability that one lie close to a given value is independent of the
value of the other.

3. Pcarson’s mean square contingency. Let the attributes be
X and Y . Let #.; be the number of individuals having the
group value X, of X and Y. of Y . The total number of
individuals having the group value Y. of Y is ?‘; 8 and the
total number of individuals having the group value X; of X is

‘ g . . Y
)5‘_,/. . The total number of individuals examined then is f‘_}

Now, suppose it is true that

¢ = Py

4

ﬁcf >

Let /f; > ¢v.v é})

s

—, _l
2 ¢¢.}

A
. o ; ’
be, respectively, the mean values of /f; R ¢{.}. ) fl{}. ) f‘f - ﬂ; .

where £ = ;Zflj;é

Gy T z

6 A repeated index means summation for all possible values of such
repeated index.
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Since, in the case of independence, the mean of the product is the
product of the means,” we have

@ % Y

Now, if ¢, ; is the characteristic function of the observation, ; J
has the value unity if the event succeeds and zero if the event
fails. Let 4,; be the probability that the event succeeds and ¢,

the probability that the event fails. Then, the mean value ?‘; / of
4, is given by

({5). . ¢€/. = 7@// * §;0 = 2, -
Simildrly,

4 4 ‘. " .0 = °
( ) LJ ﬁij' l + ?Aol ?‘.’
(5) ¢‘; H ﬂ; o+ ;‘; O = F‘#

Zé if o i
(6) ¢L7 E ﬂ;’. [ + 7‘}- O = ﬁ} ,

But 7&3 =/ , hence, in the case of independence, /_E; =Ry -
Hence, from (2), (3), (4), (5), and (6), in the case of inde-
pendence, we have

i
In the case of dependence, we have that
. Y P S

where M ( ¢L; ¢L; ) is the mean value of ¢; ¢L; s

The quantity (7@;/. - 7@; 7&,;) represents the departure be-

tween the mean value ¢(_ has and that which it should have in
the case of independence.
Let us now consider the square of the departure relative to

7 Coolidge, J. L., “An Introduction to Mathematical Probability,” The
Clarendon Press, 1925, p. 62.

8 Tschuprow, A. A., “Grundbegrific und grundprobleme der Korrela-
tionstheorie,” B. G. Teubner, Berlin, 1925, pp. 39-63.
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iJ' C 3 :
Py Py
For all cases, we have

4

9 6 - (v,

4 r* #
which is Pearson’s mean square contingency and y{;{ @ = % .

Hence, it appears that we may interpret Pearson’s mean square
contingency as a coefficient of dispersion, namely, a measure of
the deviation between the mean or expected number a cell should
have in the case of independence and the mean or expected number
it actually has relative to the mean or expected number a cell
should have in the case of independence as a unit of measure
summed for all cells.

4. Multiple and partial contingency. In the case of thrée vari-
ables, suppose that it is true that

_ ‘ 4 *
(10) /L;},Q = %& ) ¢q{ . ?Sgk>
L;j"
where /f;k = %. ¢g‘#'

As before, in the case of independence,

1 CoL gl gt gR
an Fe b By B

Again, if ¢9-ﬁ is the characteristic function of the ohserva-
tion,

= & : T4 " — % * — gk gE
12 - . ~ L ¢ L, - . LA A
(12) 5@% 75’& ’ 54;//\« B 73;/&7 %'/{ h /f‘;,-ﬁ 4 ¢g‘fr' 7%%/ é;/ ) 73{ /.

From (10), (11), and (12), in the case of independence, we
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find that

1 ¢ P *
(13) ﬁyk = 7&4;{(' 7“7.;/&' 7”.'}'& )

and in the case of dependence, we have

(14)’ Pt M(¢o.;-,( P ﬁ,ﬁ) # 73‘, 1},( 7",/«

. B P ) - . * _
The quantity (79"* 76‘/ . 7*3 - f’y k) represents the depar
ture between the mean value ¢ o has and that which it should

have in the case of mdependence
We now consider the square of the departure relative to

s e '3
P Togn Fgr »mamely,
v/" (#% - 7”,& ‘f’m 7"M)
Gk f,{k 70,;»('

_For all cases, we have

. gk
(15) gz B (%k))

which we call the mean square multiple contingency in the case of

three variables or attributes.

In general, in case we have 7o attributes:
. . 2
[3 [3

(16) y/" ISRy I _..._ﬁ;b-:..g") )

'"
Lot oy
12 n .o . .
ﬁi L'" ﬁ'&""“n
and for all cases:

(17) Sp - (V{L«n) )

which we call the mean square multiple contingency in the case of

n attributes.
Let us again consider the case of three attributes. We may

)c‘" 9

write
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{(m} ()T fony.
18y 35; - ( ’Vf;):

is the partial mean square contingency between two attributes for
an assigned third attribute.
If ¢& =0 for every *% (,e =12 g), then

(éf,) o. I

Similarly, if f and @ are zero for every ¢ and every J ,
respectively, then

2 2 ‘
é s (f,, ) = (0 ,and
2 2 4
g - (95,' ) =
We have thus proved the theorem, namely,

Theorem 1: The necessary-and sufficient condition for the three
attributes to be independent is that

(p (@;){i 0 , or
(19) ¢z ( @:)': =0  or
@2 (@:)’

It is fairly easy to see that in the case of »u attributes, we have

- o) ” } .

2

1

"

h

!l
Q
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For agivenset ¢, ¢, ", ¢,

3
, \ b
(20) $ooe = (Wi )i

where @'_3 (e is the partial mean square contingency between
two attributes for an assigned set of (77-z) attributes.

If ¢‘:3"": =0 forany pair ¢ Lz ,and for every associated

. .

set Y ,then .
= (¢ S
= é. . . = O.
é ij"c..bﬂ)

Hence, we have the
Theorem 2: The necessary and sufficient condition for com-
plete independence in the case of 7z attributes is that for every
pair ¢, lfz , it is true that
L’J (1’ YA

21) $- (8. ..) -o

4 o,

Again, it is fairly easy to see that in general different values

assigned to the set L; 5 Ly, =", L, will result in corresponding

2
different values for .. - . Hence, if .. .
¢L31,4-.--¢_)1 w_@pab“ ...... "ﬂ.
is the weighted arithmetic mean of these different values where
the respective weights are the relative numbers of individuals in

each sub-set, then we say that

@2
w b3b4"'b_".

is the partial mean square measure ‘of contingency.

5. Mean square dependence. Rietz® invented games of chance
which give a meaning to correlation in pure chance. The writer
believes it important at least formally to propose a measure of

9 Rietz, H. L., “Urn schemata as a basis for the development of cor-
relation theory,” Annals of mathematics, Vol. 21, 1919-20, pp. 306-322.
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dependence based upon a probability schemata. As hefore, let the
attributes be X and Y .
Let us assume that

/L::. = /:(?f;b-) 9{)';, ‘3/) . Then,
- F (¢L bl ¢[: 5 L; J) , whence,

’P{/' /;>

where /‘3 is the mean value of / (¢°J > ¥ )J) and 7b(}
is the mean value of /:J
The quantity (75 - F) represents the departure from de-

¢ ..
pendence for the particular F ( % )</2. y 64 ) under discussion.
We now form the quantity DL.J, defined as
z
2
_D . = (————7% _ Zf ))

(22

which is the square of the departure relative to /:’

For all cases, we have

2 [
23) §°- (D))
which we call the mean square dependence.

Our concept of dependence may be extended to cases of more
than two attributes and measures of multiple as well as partial
dependence may be obtained in an analogous fashion. It thus
appears that we have, at least formally, a general criterion for
dependence and an approach to a general criterion which may
serve as a measure of goodness of fit.

We also note that in every contingency table the events desig-
nated by the £2 or 7 are mutually exclusive for every ¢ and 4 .

6. A wmcasure of connection. We here propose to idealize
Gini's measure of connection which has been fully discussed by
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the writer elsewhere.’® Gini’s measure of connection is of interest
and importance since one of his special indices of connection is
Pearson’s correlation ratio and one of his special indices of con-
cordance is Pearson’s correlation coefficient. These facts are es-
tablished in my paper referred to above.

As before, let ¢"f represent the number of individuals having
the group value X, of X and Y of Y in case we have the two
attributes X and Y . The total number of individuals having the
group value Y. of Y is ¢‘; and the total number of individuals
having the group value X; of X is @ . The total number of
individuals is ﬂij . The frequencies of Y are distributed accord-
ing to a set of “partial” groups which correspond to the respective
modalities of X . If all the “partial” groups are similar to the
“total” group of frequencies of Y , then the distribution of mod-
alities of Y is independent of the modalities of X and Y is not
connected with X . In other words, Y is not dependent upon X
but is independent of X in the probability sense. Again, if at
least one of the ‘‘partial” groups is not similar to the “total”
group of frequencies of Y , then the distribution of modalities of
Y is dependent on the modalities of X and Y is connected with
X . In other words, Y is dependent on X and is not independent
of X in the probability sense.

We now multiply the frequencies of each “partial” group by
a number W, such that the total frequency of each “rartial” group
is the same as the number of cases examined. For a given cell,
the frequency is then w; }5‘-#- ang' the total frequency of this “par-
tial” group is then w; @i, = &

Let us now consider the quantity G,_—J; defined by

- l‘ — '
G;.'}' h ¢1 : Mé Q/' .
The mean value of ¢; is 7

22 and the mean value of w, @, is

£3

10 Weida, F. M., “On various conceptions of correlation,” Annals of
Mathematics, Vol. 29, No 3, July 1928, pp. 276-312.
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7%- I /‘ZJ- is the mean value of GL-J' then

R
(24) /‘79' = 7499. - 7{}. .

We now consider a quantity & [, defined by
: ‘
25 .= .

which is Gini’s simple index of dissimilarity and may be regarded
as the sum of the absolute values of a set of mean values.

We now consider the quantity é}. d‘; . The mean value of

;é; d/ is fvl; d/ .

For all cases, the mean value /. yx is given by

(26) I (£ 4),.

which is Gini's measure of comnection of Y on X . Thus, Gini’s
measure of connection may be regarded as the mean value of a
set of sums of absolute values of mean values. An analagous dis-
cussion holds for I Xy which is Gini’s measure of a connection
of X onY.

It is fairly easy to see that the process may be extended to
derive measures of multiple, partial and complete connection. This
the writer intends to accomplish at a future date.

7. Conclusion. It is believed that we have shown that the
theory of contingency, dependence and connection may be based
upon a definition of probability that includes all forms of proba-
bility. Fluctuations in random sampling appear to be neglected in
such a treatment, however the experiments may be carried out
with the probability schemata in case we desire the inclusion of
fluctuations in random sampling.
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