ON A GENERAL SOLUTION FOR THE PARAMETERS OF ANY
FUNCTION WITH APPLICATION TO THE THEORY OF
ORGANIC GROWTH

By HARrY SYLVESTER WILL
Part 1

1. The Problem Stated. A type of problem which continually arises in the
ordinary course of statistical analysis is that of determining the numerical values
of the parameters of a function used to represent a series of observational data.
In mathematical terminology, the problem may be stated as follows:

Given, the observational series Yo, Y1, - -+ ¥p.

Assumed, the function y = f(z, a, b, ¢, --- ).

To find, the numerical values of the parameters a, b, ¢, - - - .

If the function f(z, a, b, ¢, - - - ) is linear in the parameters, the desired solution
is easily obtained by familiar methods. In cases where the function is not
linear; the standard procedure is to reduce it to the linear form by expansion
into Taylor’s series, thus:

f(:c, a,bc) = f(x, acboco) + Sfa(x, aocboco)-Aa + Su(z, agbeco) - Ab

(1)
+ fe(x, acboco) - Ac,

where a = ao + Aa, b = by + Ab, ¢ = ¢o + Ac.

The use of this method suffers from the excessive labor involved as the number
of parameters to be determined increases. In cases where satisfactory values
of the first approximations a¢beco are not obtainable; the solution becomes im-
possible. The basic difficulty arises from the consideration that the Taylor
theorem requires that the increments Aa, Ab, Ac shall be very small quantities.

A method of successive approximation which makes feasible the reduction of
gross errors in the corrections will, I take it, be of considerable interest to
mathematical statisticians. Let us, therefore, proceed to the development
of a technique which accomplishes precisely this result.

II. The Theta Technique. Let us begin our development with the follow-
ing restatement of the technical problem involved:

Given, the observational series Yo, Y1, <+ Yaa.

Assumed, the function y = f(z, (¢0 + 6:4a), (bo + 6:4b), (co + 6sAc)).

To find, the values of 6,, 6;, 05.

In this set of relations, a9, be, ¢o and Aa, Ab, Ac are known quantities; while
61, 6, and 6; are each assumed not to exceed =1 in value.© It-follows, therefore,
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that the adjusted values of a, b, and ¢ lie within the bounds a, =+ Aa, by £ Ab,
¢o == Ac. We may, then, write the following:

a = a — Aa; a; = Go + Aa.
bl = bo-—Ab; bz = bo +Ab (2)
a = ¢ — Ac; ¢ = ¢ + Ac.

The values of 6, 6: and 6; are determined by the following procedure:
First, form the function y from all possible combinations of a,as, bibs, cic2,
thus:
ym = f(x, abscy).

Yuz = f (z, a1bics). (3)

Y = f(z, abecs).

In the case of p parameters, we can evidently form 2 distinct sets of n values
for the function ;. Since the assigned values of parameters are mere approxi-
mations to their true values, each computed set of values for the function y;:;
will differ from the true values y = f(z, abc).

Second, form the theoretical residuals yi; — y, and then compute the corre-
sponding standard errors of estimate ;. There will, accordingly, be 27 values
of ¢ determined, each value being a measure of the error committed in assuming
the corresponding approximations to parameters; thus, o111 measures the errors
committed in assuming the combination abic:; oue measures the errors com-
mitted in assuming aibics; - - - ; o220 Ineasures the errors committed in assuming
azbzcz .

Third, taking the squared reciprocal of ¢ as a measure of the reliability of a
given determination of y;;; from the parameters a;b:¢., we may form the follow-
ing comparative tests of the reliability of the 27 sets of the values of y.:, thus:

-2 (-2 —2 —2 -2 . —2
wim = 0111-(0'111 + o112 + ¢ +0222) = ‘111-2 Oisio

2

=072, -2
wuz‘—.ﬂurzﬂ.ns'- (4)
G232 32 0Tt
Omega, we shall term the fest constant. Obviously, Zw;i; = 1.

Fourth, assuraing three parameters, let us tabulate the possible subscripts of
omega according to the following scheme:

w@) - e w(b1) w(b2) w(c) w(ca)

w222

111 211 111 121 111 112
121 221 211 221 211 212
112 212 112 122 121 122

122 222 212 222 221 222
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In this table, the subscripts are in the order of abc; so that 111 denotes
w(aibic) ; 112 denotes w(abice); etc. Comparing columns w(a1) and w(az), we
observe that the bc subscripts are identical for both; while the a; subscripts of
the first column are replaced by the a; subscripts in the second column. Again,
comparing columns w(b;) and w(bs), we see that the ac subscripts are identical
for both; while the b, subscripts of the one column are replaced by the b; sub-
scripts in the other. Finally, comparing columns w(c;) and «w(cz), we note that
the ab scripts are identical for both; while the ¢; subscripts of the one column
are replaced by ¢, subscripts in the other.

Fifth, let us form the column summations Zw(a:), Zw(az); Zw(b1), Zw(bs); and
Zu(e1), Zw(cy). Since the columns w(a1) and w(az) differ only with respect to the
a subscripts, the difference in value between the sums Zw(a;) and Zw(as) can be
due to differences in value between @, and a. only, and are not at all affected
by differences in value between bibs and cic;. Zw(a1) and Zw(az) may, therefore,
be regarded as the weights of a; and a; to be used in determining the ad]usted
value of a; for Zw(a) + Zw(as) =

We may, then, write the followmg relations:

a = Zw(ay) a1 + Zw(ag) a2 = Zw(a)- (a0 — Aa) + Zw(as) - (a0 + Aa)
= Cw(m) + Zw(as)- a0 + (Cw(as) — Zw(m))-Aa = a0 + 0(q)~Aa.

Since precisely similar reasoning applies to the parameters b1, b; and ¢, ¢z,
we have the following definitive formulas for computing the values of theta:

0((1) = Ew(az) - Ew(al).
() = Zw(b:) — Zw(b). 6)
0(c) = Zw(c:) — Zw(c).

(5)

As the adjusted values of parameters, we have:
a = ao + 6(a)-Aa.
b = bo + 6(b)-Ab. @)
¢ = ¢co + 0(c)-Ac.

In this development of the theta technique, we have determined ¢;;; from the
theoretical residuals y;:; — y. This has served well the purposes of exposition;
but, since the true values of the function y are unknown, we must, in practice,
compute o;;; from the observational residuals y:;; — Y. Later in the memoir,
it will be shown how the computation of § may, in numerous cases, be con-

siderably abridged.

Part 11

III. The Principle of Malthus. Since a determination of the numerical
parameters of a given function by means of the theta technique must, at best,
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involve a considerable amount of computation, I have chosen for purposes of
demonstration a problem which is of much interest in itself. This problem, we
shall state in the form of two questions:

First, what is the most appropriate mathematical form of the law of organic
growth?

Second, how may the parameters of the indicated function be computed?

Thomas R. Malthus, in his famous essay on The Principle of Population Growth
assumed that the proportional growth of human populations is properly defined
by the differential equation,

1 dp _

Z_) : "&Z - b7 (8)
where p is the population under consideration, ¢ is the measure of time, and b is
the stable or geometric rate of growth.

This formula has been destructively criticised on the ground that it fails
wholly to give a mathematical description of the manner in which population
growth is kept within bounds. So far as any implication of the formula is
concerned, populations may grow to infinite magnitudes. An attempt to
represent growth by its use must, therefore, result in a succession of discontinui-
ties which are incompatible with the observed facts of organic growth.

IV. The Symmetric Logistic. In three memoirs published in 1838, 1845
and 1847, it was suggested by M. Verhulst, Professor of Mathematics in the
Ecole Militaire in Brussels, that the rate of population growth might be stated
as a function of the population itself. Assuming the limiting value of p to be
H, this conception of the growth rate Verhulst expressed by the differential
equation,

l . d._.p = — b(l —_ pH‘l). . (9)

Since this equation expresses proportional growth as a linear function of p,
it is the simplest relation of its kind that may be conceived. In representing the
rate of growth as a quantity which approaches zero as the population approaches
its limiting value, it makes, indeed, a significant advance over the Malthusian
formula. Nevertheless, the equation is subject to an interesting limitation,
the nature of which is made evident by an examination of the integral form of the
function, namely:

p = H:[1 + et (10)
This we shall now prove to be rotationally symmetric with respect to the point

of inflection.
Differentiating equation (9) a second time, we have,

d?’p = —bdplp(1 — H'p)ldt
= plp~2dp* — b d + bH-'p d? + bH-'dp df]

= p~idp? 4+ bH'p dp dt.
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Hence,
dp _

= bp(1 — H'p)? — v*H'p*(1 — H'p).

2
Setting i—tg = 0, we get,

1—-2Hp =0.
Or
p=H/2, (11)
which gives the value of p at the point of inflection.
Substituting for p from (10), and solving for ¢, we have,
t; = —a/b, (12)
where ¢; is the point of inflection of the function p.

Denoting the magnitude of the population at time ¢; by p;, its magnitude at
time ¢;4% by piyx, and its magnitude at the time ¢;_; by pi-i, we have,

pi = H:[1 + estb—e®] = H/2, (13)
Pigk = H:[1 4 estdethan] = H:[1 4 eba], (14)
Dick = H;[l -+ ea+b(t—cht)] = H:[l + e-—bkAc]_ (15)

Measuring p in units of H and setting u = "4, we may rewrite these last
three equations as follows:

H'p; = 1/2.
H %o = 1:[1 + u].
H'piw = 1:1 4+ w1,
On the hypothesis of rotational symmetry, we have, by subtraction,
H7'piyr — 1/2 = 1/2 — H7'piy.
In proof, we have:
Ll 4w =1 —1:[1 + w7
w1 + uY
1:(u 4+ 1].
q.e. d.

Part 111

V. Criticisms of the Logistic. Because of its symmetric form, many critics
have called into question the finality of the logistic as a universal repre-
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sentation of population growth. That it applies in particular cases, they con-
tend, is no reason for holding that it must apply in general. Professors Raymond
Pearl and Lowell J. Reed of Johns Hopkins University—to whom we are in-
debted for the rediscovery of the earlier researches of Verhulst—have proposed,
as the proper form of the generalized growth curve, the following function:

p = H:1 + e¢+bt+ct’+dt']' (16)

In their view, this equation is suited not only to representing a single cycle of
growth, but two successive cycles as well. This claim, however, must be
rejected; for, if true, it would mean that one cycle of growth is predictable from
another, a circumstance which is clearly inconsistent with the assumptions laid
down by these same investigators.

Moreover, so far as I can learn from their published writings, these authors
have never considered the implications of the differential form of the function

they propose.
Differentiating (16), we have,

%.@:-(b+2cx+3dx2)(l—H“p).

Here, we find the stable growth constant of Malthus replaced by an expression
which is quadratic in . This means that, for a population which is freed of a
restraining limit, proportional growth tends generally toward infinite values.
If there are any facts to support such a conception of organic growth, I do not
know what they are, and must, perforce, reject the contention that equation
(16) is the generalized form of the Verhulst function.

VI. Fundamental Assumptions. In order to represent the phenomenon
of population growth mathematically, I hold the following assumptions to be

necessary:
(a) Under favoring conditions, population may increase at a constant geo-

metric rate.

(b) Under all circumstances, the rate of growth must be a finite and continuous
quantity.

(¢) The magnitude of a population is always a positive, real number.

(d) The growth of population tends toward restriction within definite bounds.

(e) The growth of population is a function of time.

(f) The basic conditions of growth are free of cataclysmic disturbances.

The first of these assumptions is given in recognition of well known facts
concerning organic growth. The second is necessary because, even when the
size of a population is freed of definite restriction, the pattern of growth is not
necessarily geometric. The third assumption affirms the absurdity of represent-
ing a population as a negative or infinite quantity. The fourth merely asserts
the indisputable fact that the organism must always grow in a finite environment.
The fifth gives place to the concept of growth as the resultant of a complex of
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causes, no one of which can be isolated as an entirely independent variable.
While the final assumption recognizes that major disturbing influences may
profoundly affect the course of growth.

VII. The Skew Logistic. In accord with our fundamental assumptions, we
may form the following differential equations:

=+ == = — [b+ sm - cos (m(t + ¢))] [1 — H'p'] Type a

— [0+ 2sm2(t + ¢) : 1 + m?(t + @)»}[1 — H-'p'] Type g (17)
= —[b+sm¥t+ ¢) : VI+mt+¢)?l[1 — Hp'l Typery

In these equations, p’ = p — L, and measures p from its lower limit as origin.
Ou separating variables, the following integrations may be performed:

- / [dp’:(p'(1 — H'p))] = — log [p’:(1 — H™'p')] = log [(H — p'):(Hp")].
Writing z = m(t + ¢), dz = mdt; so that we have:

b/dt+-s/coszdz=A+bt+s-sinz.
b/dt+2s/[z:(1+z2)]dz=A+bt+s-log(l+z2).

b/dt+s/[z:\/1+z2]dz=A+bt+s‘\/1-|-z2.

From these integrals, we form the following equations:
log [(H — p):(Hp')] = A + bt + s-sin[m(t + ¢)].
log[(H — p'):(Hp")] = A + bt + s-log[l + m*(t + ¢)?].
log[(H — p):(Hp")] = A + bt + s- /1T + m*(t + q)*-

We have, finally, on taking antilogarithms and making the substitutions
p=p +La=A—logH:

p=L+ H:[1 4 eotdtts-sintm(t+)], Type a
p=L+H q1 + gotbete - log(l+mi(t+)n] Type 8 (18)
p = L + H:[1 4 esHr+evViimiGtor], Type v

These equations give the normal forms of the skew logistic.

VIII. Properties of the Skew Logistic. We may deduce the properties of
the skew logistic by examining both its differential and integral forms. Con-
sidering the derivative of Type «, we note that the Malthusian constant b is
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replaced by a trigonometric function whose amplitude is b & sm, and whose
phase depends on the values of m and ¢. When b 4 sm = 0, the derivative
must also equal zero, and a flat point in the curve of p is indicated. When b is
absolutely less than sm, the derivative changes sign and the curve of p reverses
its direction. Thus, the integral form of Type a modifies the symmetric form
of the logistic by a succession of minor cyecles in which the rate of growth is
alternately . accelerated and retarded.

Considering Type 8, we find the Malthusian constant replaced by a function
whose maximum and minimum values are attained when { = m~! — ¢q. Obvi-
ously, therefore, this function passes through a single period whose amplitude
is b = sm, and whose phases are b, b + sm, b, b — sm,b. When b &+ sm = 0,
a flat point in the curve of p is generated. The effect of skewness on the rate of
growth passes through two double phases. Where b and s are of the same sign,
these phases are: first, increasing retardation followed by decreasing retardation
when ¢ + ¢ is negative; and, second, increasing acceleration followed by decreas-
ing acceleration when ¢ + ¢ is positive. Where b and s are of opposite sign,
the corresponding phases are: first, increasing acceleration followed by decreas-
ing acceleration when ¢ + ¢ is negative; and, second, increasing retardation
followed by decreasing retardation when ¢ + ¢ is positive. It is to be noted
that, when sm is absolutely greater than b, the derivative will change sign twice
before the upper limit is reached. Under these circumstances, the function p
passes through a double reversal of direction.

Considering Type v, we find the Malthusian constant of the derivative re-
placed by a function which is aperiodic and which approaches the limits b + sm
as ¢ approaches 4= 0. 'When b and s are of the same sign, skewness passes through,
the two following phases: first, the phase of decreasing retardation when ¢ + ¢
is negative; and, second, the phase of increasing acceleration when ¢ + ¢ is
positive. On the other hand, when b and s are of opposite sign, the correspond-
ing phases are: first, that of decreasing acceleration when ¢ 4 ¢ is negative; and,
second, that of increasing retardation when ¢ 4 ¢ is positive. When sm is
absolutely greater than b, the derivative changes sign, and the function p passes
from a continuously increasing phase to a continuously decreasing phase, or
vice versa.

In general, it may be said of all three types—a, 8 and y—that, if the derivative
is not restricted to a single change of sign, L denotes a lower asymptote of the
function p; while, under the same conditions, H denotes the higher limit ap-
proached by the function p — L. When H is negative, the effect is to make L
an upper, and L — H a lower, asymptote of the curve p.

In the case of Type v, when the function p makes a single change of sign,
either H or L becomes a maximum (or minimum) value instead of an asymptote
of the curve. In this event, it will be noted that the factor 1 — H—'p appearing
in the derivative does'not approach zero as a limit with increasing values of ¢,
but rather passes through a minimum and then approaches the limit 1 in either

direction.
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The parameter s may be positive or negative in sign, and is termed the index
of skewness or, briefly, the skewness of the function. Obviously, m is always
positive, and, since it determines the rate at which skewness develops, is properly
termed the development. The point in time at which skewness passes from an
accelerating to a retarding phase, or vice versa, is fixed by the value of ¢, which is,
therefore, termed the transition. The parameter b, as has already been stated,
is termed the stable growth tendency or, technically, the stability of the function.
And since the position of the curve p on an arbitrary time scale will vary with
the value of @, this parameter I have designated the location.

In all three types of the skew logistic, if e¥® is a continuously decreasing func-
tion and both H and L are positive, the curve of p may be described as of the
rising hillside form. In the case of Type «, if the derivative changes from
positive to negative sign, the curve may be described as mountain formed. If
e¥® increases continuously, the curve is of the falling hillside variety, except
when the derivative of Type v changes from negative to positive sign, in which
event a valley form is generated.

Part IV

IX. Parameters of the Symmetric Logistic. The numerical parameters of the
symmetric logistic (10) are most easily determined by the method of differences.
First, we write,

p;l = C + et (19)

where C = H';A =a —logH;and?=0,1,2,---n — 1,
Assuming At constant, let us give to ¢ the increment kAt, thus:

p?ik = C + eatde+kan (20)
Subtracting (19) from (20), we obtain

Akp? = eA+b(t+kDY) __ pd+bt — BeA+bt’ (21)

where B = ¢3¢ — 1. The quantity A,p;! = pi1; — p;' is termed a first order
difference of rank k.
Giving to t in equation (21) the increment kA¢, we get

Akp?-}-k = BeA+bU+kAr) (22)
Dividing (22) by (21), we have,
ADTi: ATt = F,
Taking logarithms, we obtain
A log A, p7' = log Ay p7sy — log A,p3! = kAL,

which defines the parameter b. We can form n — 2k such equations. Hence,
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b is uniquely determined by the relation
b= [DiZo~*' A, log AP :[k(n — 2k)At
= [Xizr*log AP — X iZa % log A, P7Y:[k(n + 2k)Af], (23)

where k£ = n:3 to the nearest integer. 4
Returning to (21), we have the following relation determining the value of 4:

A =log[Xizo* A, P7Y] — log [BY iZo*te¥]
=log [iTs Pt — Y iz 1P — log [B LTt ], (24)

where k = n:2 to the nearest integer.
From equation (19), we have

C=[Xiza'P — e* Y ize e in. (25)

The values of H and a are, obviously, given by
H = C. (26)
a=A4+logH. (27)

In the relations defining b, A and C, the values of P must be obtained from
the observations. In computing the values of %, the formula is:

k = n(r + 1),

where n is the number of observations, ‘and r denotes the order of reduction
involved in the defining relation.

In my first treatment of the subject, I assumed that the value of k¥ for all
orders of reduction might be determined from the reduction of highest order
involved; but I have since found that I erred in this view. The point is that the
function ¥(p) = k*(n — k), discussed in the original memoir, must be maxi-
mized with respect to k separately for each order of difference involved; or, in
other words, the rank constant k must be given a separate determination for
each parameter defined if the most accurate results are to be obtained.

X. Parameters of the Skew Logistic. I shall now show how the method
of differences may be used to abridge the computations involved in applying
the theta technique to the determination of the parameters of the skew logistic.
In this, as in the preceding section, we assume At constant.

Operating on Type v of equation (18), we write

p; = L + H:[1 4 estdtre VizmGrot], (28)
To begin with, let us write the transformation of ordinate

G =log[H(p — L)~ — 1].

F = ~14mt + ).

Also, let us write
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We may now rewrite equation (28) in the form

G; = a + bt 4 sF.. (29)
Giving to ¢ the increment kAt, we have
Gie = a + b(t + kAL) + sFiy. (30)
Subtracting (29) from (30), we have,
MG = kAt + sAcF;. (31)
Again giving to ¢ the increment kAt, we obtain
AGite = bEA(L + kAL) + sALF 4. (32)

Subtracting (31) from (32), we obtain
AGirw — MG = (bkAL — DEAL) + s(ArFipw — AWFY),
or
AlG; = sAGF;. (33)

We can form n — 2k such equations, and may, therefore, form n'— 2k ap-
proximations to the value of the parameter s, as follows:

8‘ = [AiG‘]:[Alch']; i= 0, 1, A ,n— 2k—— 1.
Taking the mean value of the set s; as its most probable value, we have,
so(HL-mq) = Zs8;:(n — 2k); k = n:3 to the nearest integer (34)

In this determination of so, the only parameters directly involved are H, L, m
and ¢, the parameters a and b having been eliminated. By assigning values to
H,, Lo, mo and g0, we may, on setting up the arbitrary corrections AH, AL, Am
and Aq, write down the following:

H1=H0—AH; H2=H0+AH; L1=L0—AL; L2=L0+AL,
my = mo — Am; me = Mo + Am; @ = qo — Ag; q: = Qo + Aq.

Since so is a function of H, L, m and ¢, we may, by entering the subscripts of
the combination HL-mgq, tabulate the possible determinations of s, as follows:

11-11 11-12 11-21 11.22
12-11 12-12 12.21 12.22
21-11 21-12 21-21 21.22
22-11 22-12 22.21 22.22

In this tabulation, the subscripts of parameters are in the order of HL-mg;
so that 12-21 denotes so(H1L2 m2q1), ete.

From the table, it is seen that we may compute 2¢ = 16 distinct sets of approxi-
mations to so(HL-mq). Since the true values of H, L, m and ¢ are unknown,
each set of approximations s; will show a characteristic variation about its mean
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value, so. This variation is most conveniently measured by the mean deviation
€= (s, — 80)2N":N = (s; — 5)2N"":N, (35)

where the second relation serves as a check on the computation by the first;
N = n — 2k; N’ denotes the number of items s; which are less than s, in value,
and N”, the number of items s; which are greater than soin value; while s, denotes
the mean of the N’ values of s; which are less than sy, and sj, the mean of the
N’ values of s; which are greater than s,.

The reliability of a given value of s as a measure of the central tendency of
the corresponding’ set s; is sufficiently determined by ¢2, which serves at the
same time to measure the reliability of the combination HLmq figuring in the
computation of the given set s;. We may, therefore, compute the values of the
test constant, w, directly from the values of €2 by means of the relation,

w(HL-mg) = :[e1]. + €1Ta 4 -+ + 300l = H2?, (36)

where j = 11-11,11-12, - .., 22.22; 3w = 1.
Since four values of theta are to be determined, we must arrange the sixteen
values of omega in four ways, as shown by the following tabulation of subscripts:

w(H 1) w (H 2) w(Ll) w (Lz) w (mx) w(mg) w(ql) w (92)
11-11 21-11 11.11 12-11 11-11 11-21 11-11 11-12
11-12 21-12 11-12 12-12 11-12 11-22 11-21 11-22
11-21 21.21 11-21 12.21 12-11 12-21 12-11 12-12
11-22 21-22 11-22 12-22 12:12 12-22 12-21 12-22
12-11 22-11 21-11 22-11 21-11 21-21 21-11 21-12
12-12 22-12 21-12 22-12 21-12 21-22 21-21 21-22
12.21 22-21 21-21 22-21 22-11 22-21 22-11 22-12
12.22 22.22 21.22 22.22 22-12 22-22 22-21 22-22

Knowing the values of omega, we have at once,

0(H) = Zw(Hy) — Zo(Hy);  6(L) = Zw(Ls) — Zw(L);

0(m) = Zw(my) — Zw(mi);  6(g) = Zw(gs) — Zw(gy). @37
H=Hy+ 6(H)-AH; L = Lo+ 6(L)-AL;
m = mo 4 6(m)-Am; g = qo + 6(g) -Aq. (38)

The process of adjustment should be repeated until errors in the parameters
diminish to negligible proportions.

With H, L, m and ¢ known to a sufficient approximation, we may form anew
the functions G(H, L, m, q) and F(H, L, m, ¢). We can then write n — 2k
equations of form (33), viz.:

AiGt = sAzFi.
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Summing these equations, we have,
ZALQ, = sZALF,, (39)
where ZA;G; = D IZ301G — 22T G, 4 Yo i RG,;
DAL = DUIHIF — 2215 + ISR

where & = n:3 to the nearest integer.
The approximate value of s is now obtained from the relation

s = [DiTv P ALG]: iz P taAlR). (40)
Returning to equation (31), we solve for bkAt, obtaining,
bkAt = AkGi — SAkF',;.

Since we can form n — k such equations, the approximate value of b is given
by the relation

b= [EA;;G; — sEAkF.-]:[k(n —_ k)At] (41)
= (282276 — 250776 — (i — 28R [k(n — K)ad],

where k = n:2 to the nearest integer.
From equation (29), we obtain the approximate value of a as follows:

a=[2is7G—b2 Tt — s 2 iT R . (42)

Comparing the abridged method of computing the values of theta here out-
lined with the general procedure of section II, it will be seen that we have been
able to reduce the number of values of omega which it is necessary to determine
from 2" = 128 to 2* = 16. In cases where L may be assumed to equal zero,
the number of values of omega which must be computed is further reduced to

28 = 8.

Part V

XI. Symmetric Pdarameters for the Population of the United States. I
have determined the numerical values of the parameters of both the sym-
metric and the skew forms of the logistic from the population figures for the
United States given by the Bureau of the Census. The only departure in the
data from the census figures consists in the interpolation of all items to June
1st as the date of observation. The values of the symmetric parameters are
computed from the data of Table I, as follows.

Setting £k = 15 + 3 = 5, we have, by equation (23),

48, log APt = 3 2 log AsP7 — 38 log A P7!
= 0.71878n — 5.14555n = —3.42677.
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TABLE 1
Data for the Symmetric Logistic
It P AgP1 log AsP1
0 0.25582 —0.19724 1.29500,
1 0.18939 —0.14627 1.16516,
2 0.13885 —0.10704 1.02955,
3 0.10431 —0.07838 2.89421,
4 0.07770 —0.05776 2.76163.,
5 0.05858 —0.04269 2.63033.,
6 0.04312 —0.02996 2.47654,
7 0.03181 —0.02098 2.32181,
8 0.02593 —0.01650 2.21748,
9 0.01994 —0.01182 2.07262,
10 0.01589
11 0.01316
12 0.01083
13 0.00943
14 0.00812
= 1.00288 —0.70864 14.86433,
TABLE II(a)
Data for the Skew Logistic
: G Gz Fu F
0 4 1.67998 4 1.71132 6.47765 3.35261
1 4 1.54968 4 1.57779 5.68859 2.60000
2 + 1.40690 4 1.43878 4.90306 1.88680
3 + 1.27698 4 1.30927 4.12311 1.28062
4 4 1.14130 4 1.17416 3.35261 1.00000
5 4 1.00816 < 1.04179 2.60000 1.28062
6 + 0.85948 4 0.89428 1.88680 1.88680
7 4+ 0.70540 -4 0.74193 1.28062 2.60000
8 + 0.59699 4 0.63515 1.00000 3.35261
9 4 0.44841 4 0.48956 1.28062 4.12311
10 + 0.30840 4 0.35346 1.88680 4.90306
11 + 0.17992 + 0.22981 2.60000 5.68859
12 + 0.02885 -+ 0.08647 3.35261 6.47765
13 — 0.09590 — 0.02968 4.12311 . 7.26911
14 — 0.25808 — 0.17670 4.90306 8.06226
T +10.83647 -411.47739 49.45864 55.76384

10%

1.00000
0.72934
0.53193
0.38796
0.28295
0.20637
0.15051
0.10978
0.08006
0.05839
0.04259
0.03106
0.02265
0.01652
0.01205
3.66216

Fa

9.65194
8.45931
7.26911
6.08276
4.90306
3.73631
2.60000
1.56205
1.00000
1.56205
2.60000
3.73631
4.90306
6.08276
7.26911
71.41783

Fa

4.90306
3.73631
2.60000
1.56205
1.00000
1.56205
2.60000
3.73631
4.90306
6.08276
7.26911
8.45931
9.65194
10.84620
12.04159
80.95375
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TABLE II(B)
Data for the Skew Logistic

AG AfG AjFy A§Fr AfFy A§Fn
—0.02794 —0.01880 3.16445 5.69443 4.77932 9.04807
+0.01064 -0.01904 4.51499 4.51499 6.99562 6.99562
+0.02495 40.04139 5.69443 3.16445 9.04807 4.77932
—0.01290 40.00929 6.24622 1.84451 10.16552 2.60213
—0.01360 -40.01834 5.69443 0.81604 9.04807 0.87607
—0.01885 40.06926 25.31452 16.03442 40.03660 24.30121

MW~ ™

We note that k(n — 2k)At = 5(156-10)1 = 25; hence,
b= —3.42677 + 25 = —0.1370708.

Next, set £ = 15 + 2 = 7, to the nearest integer; then, by equation (24), we
get

Sia P = HP - 3T Pt = 0.10330 — 0.86777 = —0.76447;
B =100 _ 1 = 10-0mwomex7 _ ] = _(.89022; 3.5 10" = 3.39884.

Hence,
A = log [—0.76447] — log [—0.89022 X 3.39884] = 1.4025324.

We have next,
o Pt = 1.00288; ot 10* = 3.66216; 104 = 0.25266.
By equation (25), then, we obtain
C = [1.00288 — 0.25266 X 3.66216] <+ 15 = 0.0051747.
By equation (26), we get
H = C! = 193.25.
Finally, by equation (27), we obtain
a=A + log H=1.4025324 + 2.2861136 = 1.68865.
The point of inflection of the curve is given by
t; = —a:b = 1.68865 + 0.1370708 = 12.319.
XII. Skew Parameters for the Population of the United States. Assuming
L = 0, we form

H, =198.0 — 7.0 = 191.0; H, = 198.0 4 7.0 = 205.0.
m; =1.0—-0.2=0.8; me =104 0.2 =1.2.
@1 = —6.0—-2.0= -8.0; g2 = —6.04+2.0= —4.0.
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Next, the primary data of Tables II(a) and II(b) are computed. Setting
k=15 + 5 = 3, n — k values of the 23 sets of s; are determined and entered
in Table I1I(a). The values of sy, ¢ and w for each set are computed by equa-
tions (34), (35) and (36).

In Table ITI(b), the several values of w are arranged according to their associa-
tion: first, with H,, H.; second, with m,, me; and, third, with ¢1, ¢.. The column
sums yield the weights Zw. The values of § and the adjusted values of param-
eters are computed by equations (37) and (38):

TABLE III(a)
Data for the Computation of ©

i | san 8(1.12) s(1.21) 8(1.22) 8(2.11) 8(2.12) a(2.21) 8(2.22)
0 | —0.00883| —0.00491} —0.00585 —0.00309| —0.00594| ~0.00330, —0.00393| —0.00208
1 | 40.00236| +0.00236/ +0.00152| 40.00152( 40.00422( 40.00422| +0.00272|+0.00272
2 | +0.00438| +0.00788] +0.00276| +0.00522| +40.00727| +40.01308| -+0.00457|+40.00866
3 | —0.00207| —0.00699] —0.00127| —0.00496| +0.00149| 4-0.00504| +0.00091|-0.00357
4 | —0.00239] —0.01667| —0.00150, —0.01552| +-0.00322| +40.02247| +4-0.00203|+-0.02093
z | —0.00655 —0.01832] —0.00434| —0.01683| +0.01026| +0.04151| +0.00630|-+0.03380
sg | —0.00131| —0.00366] —0.00087| —0.00337| +40.00205| +0.00830| -0.00126|+0.00676
e | 4+0.00374] 4+0.00703| +40.00241] 40.00550, +0.00342| +0.00404| +0.00222(+40.00643
w | 40.10624( +0.03012| 40.25711| +0.04919 +0.12708] +0.09137| +0.00290+0.03061
TABLE III(B)
Data for the Computation of ©
w(hy) w(he) w(my) w(ms) w(q) w(gs)
0.1062 0.1271 0.1062 0.2571 0.1062 0.0301
0.0301 0.0914 0.0301 0.0492 0.2571 0.0492
0.2571 0.3029 0.1271 0.3029 0.1271 0.0914
0.0492 0.0360 | 0.0914 0.0360 0.3029 0.0360
z 0.4426 0.5574 0.3548 0.6452 0.7933 0.2067
TABLE IV(a)
Summary of Adjustments
Parameter Estimated A o A0 Adjusted
Value Value
H +198.0 +7.0 40.1148 +0.8036 +198.80
m 4+ 1.0 +40.2 +40.2904 40.05808 --1.05808

q - 6.0 +2.0 —0.5866 —1.1732 —7.1732
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TABLE IV(8)
Final Transformations

7 G(Hmg) . F(Hmgq)
0 1.69772 7.65559
1 1.56410 6.60800
2 1.42495 5.46440
3 1.29526 4.52752
4 1.15991 3.50336
5 1.02722 2.50753
6 0.87921 1.59408
7 0.72613 1.01784
8 0.61866 1.32865
9 0.47182 2.17626
10 0.33408 3.15374
11 0.20842 4.17075
12 0.06189 5.20418
13 1.94223 6.24580
14 1.78913 7.29229
z 11.20073 62.54999

Finally, the functions G and F are formed anew from the adjusted values of
H, m, g. The adjusted values of s, b and a are computed by equations (40),
(41) and (42), as follows:

s = [T18G; — 220G, + DG [18F, — 22 3F: + 2.0F]
= [0.33574 — 2 X 3.72304 + 7.14194] + [26.06676 — 2 X 8.62436
+ 27.85887]
= 0.03161 <+ 36.67691 = 0.00086185.
b= [Zé‘lGi - ZgGi - s(Ei‘F‘. - ngi)]:[k(n — k)At]
= [1.42623 — 9.04837 — 0.00086185(29.57167 — 31.96048)] + [7(15 — 7)1]
= [-7.62214 — 0.00086185 X (—2.38881)] + [56] = —0.13607.

a =[2G — b o't — s 0 Filin
= [11.20073 — (—0.13607 X 105) — 0.00086185 X 62.54999] =+ 15
= 1.69561.

In the present case, the values of Ho, mo and go were known within definite
limits from previous experimentation. The values of the corrections, 6-4,
were, on this account, smaller than should ordinarily be expected from a first
application of the technique. Always, it is necessary to take A sufficiently
large to insure § < 1. As a preliminary step, it is not infrequently advantageous
to compute trial values of ¢ by holding constant each two of the parameters
H,, mo and qo while experimenting roughly with the third.
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Year
1940
1950
1960
1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130

Year Census Symfnetric Perc.enf.age
Count Ordinates Deviations
1790 3.909 3.88 —0.78
1800 5.280 5.28 —0.03
1810 7.202 7.16 —0.52
1820 9.587 9.69 +41.07
1830 12.866 13.04 +1.37
1840 17.069 17.45 +2.22
1850 23.192 23.15 —0.20
1860 31.443 30.38 —3.36
1870 38.558 39.36 +2.09
1880 50.156 50.18 +0.05
1890 62.948 62.61 —-0.31
1900 75.995 76.79 +1.05
1910 92.329 91.76 —0.62
1920 106.001 106.96 +0.90
1930 123.068 121.66 —1.14
TABLE V()
Ezxtrapolations
Forecast Sym. O. Sk. O.
137.20 135.22 136.26
149.29 147.18 148.78
159.88 157.33 159.52
168.71 165.66 168.42
175.83 172.33 175.59
181.46 177.52 181.25
185.82 181.52 185.63
189.14 184.55 188.98
193.11 186 .82 192.97
193.54 188.52 193.40
194.94 189.77 194.83
195.98 190.72 195.87
196.75 191.39 196.64
197.31 191.88 197.22
197.73 192.25 197.64
198.03 192.52 197.94
198.25 198.17
198.42 198.34
198.54 198.46
198.63 198.55
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TABLE V(a)
Ordinates of Fitted Curves

Skew

Percentage

Ordinates Deviations

3.87
5.27
7.15
9.67
13.02
17.42
23.13
30.37
39.31
50.07
62.60
76.64
91.72
107.16
122.23

Year

1780
1770
1760
1750
1740
1730
1720
1710
1700
1690
1680
1620
1610
1600
1590

—0.01
—-0.25
—0.73
+0.88
+1.20
+2.09
—0.28
—3.42
+1.95
—0.18
—0.55
+0.86
—0.67
+1.09
—0.69

Sym.O.  8k.O.
2.844 2.850
2.083 2.095
1.523 1.539
1.113 1.130
0.813 0.829
0.594 0.608
0.434 0.445
0.316 0.280
0.231 0.238
0.168 0.173
0.123 0.127
0.090 0.092
0.065 0.067
0.048 0.049
0.035 0.036
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Part VI

XIII. General Considerations. The technique of solution for the numeri-
cal values of parameters presented in the foregoing pages is generally applicable
to continuous functions of real variables. The abridged procedure may be
followed whenever the given function involves a component which is linear in
certain of the parameters: for, in such cases, it is always possible to effect a
transformation of ordinates which will permit of the elimination of the param-
eters of the linear component. In any event, the equation of the function
may be solved for a single parameter which may then be employed, as in our
illustration, as a means of determining the values of the test constant, omega.

XIV. An Interpretation of Results. The equations of the symmetric and
skew logistic curves as computed for the population of the United States are,
written to the natural base, as follows:

p = 193.25:[1 - ¢388826—0.31562¢]
p = 108.80:[1 - 3-90420—0.518511-+0.0019845 /T 0B8TH(—7.17527

The amount of skewness in the second of these equations, as measured by
the value of s, is small; but, owing to the fair size of the parameter m, it de-
velops rapidly and affects the form of the curve sensibly. The major effect
is to raise the value of the limiting population as given in the first equation. by
about six millions and to prolong the period of growth by about forty years.
The approximate limit of 193 millions in the symmetric form is reached about
the year 2090; while the approximate limit of 199 millions of the skew form
is not arrived at until about the year 2130.

The positive sign of s makes for a decreasing acceleration of the rate of in-
crease during the earlier phases of growth and for an increasing retardation of
this rate during the later phases, the value of ¢ fixing the point of transition
in the year 1861. This general epoch has often been cited by sociologists as
marking the shift from a dominantly rural-agricultural civilization to a domi-
nantly urban-industrial one, The point at which the change takes place has,
to my knowledge, never before been defined mathematically.

Both curves fit the observations excellently, as shown by the percentage
deviations of Table V(a). The forecasted growth presented in Table V(b)
is based on the skew ordinates, the formula being

P, = p(Pu/pi)V 10, (43)

where P denotes the actual population series, observed or predicted, and p,
the skew ordinates. The assumptions of the formula are two: first, that it
is the observed population P4 which initiates the forecasted series; and, second,
that the influence of the correction factor Pys/pi diminishes with the time.
The extrapolations of both the skew and symmetric formulas contrast with
the results obtained by Doctors Dublin and Lotka, who predict a stationary
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population of 150 millions by 1970. For the same year, the ordinates of both
the skew and symmetric curves exceed this figure, the one by 15.66, and the
other by 18.42 millions.

The limit of 150 millions referred to was arrived at by analysis of current
tendencies in birth and death rates. The argument is that current birth rates
are spuriously high and current death rates spuriously low because of the
abnormally high proportion of men and women in the reproductive ages. This
circumstance is due, in part, to the influx in the past of immigrants from com-
munities having a high normal birth rate, and, in part, to the high birth rates
of preceding generations of parents in this country.

After computation of the necessary corrections has been made, the true rate
of natural increase of the white population for the registration area of the United
States for the year 1920 is seen to be only about 5.4 per thousand instead of the
10.7 per thousand indicated by the crude rates. For the year 1930, the actual
rate of increase is 7.5 per thousand; while the corrected or true rate turns out
to be virtually zero. Under the interpretation of the authorities cited, the
spurious excess of births over deaths will be entirely dissipated by the year
1970, with the result of the stationary population predicted.

The hazard peculiar to this method of infererice arises from two assumptions
that are made: first, that the present collection and registration of vital statis-
tics is sufficiently reliable to make precise estimate of the true rate of natural
increase possible; second, that the tendencies of fecundity and mortality ex-
hibited by current data are stable.

With respect to the first assumption, the authors have this to say:

“One factor of safety of unknown magnitude remains. There is still some
degree of laxity in the registration of births, and the figures of the true rate of
natural increase may, on that account, be somewhat larger than recorded
above.”

The caution of the authors in this statement is in contrast with the uncritical
acceptance of their results by those who fail to grasp the implications of
technique.

Concerning the second assumption, it may be pointed out that many of the
tendencies exhibited by current data must be regarded as statistically re-
versible. Falling birth rates due to drift of population to cities, to postpone-
ment of marriage on the part of professional classes, to the increasing cost of
child culture, to the ubanization of rural life and to the restriction of immigra-
tion may be definitely altered by reversals in tendency. The flow of popu-
lation may move into extraurban and subrural districts, where birth rates are
more favorable to increase. The cost of child culture may, in part, be socially
assumed. Improvement in economic conditions may lessen the drain on the
resources of the family. The tendency for rural birth rates to fall may be
checked. Immigration may increase with improving economic conditions.
Death rates may be further reduced in many age classes and for many causes.

In fine, when we attempt to project into the future the .components that
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determine the trend of natural increase, we encounter risks which vastly exceed
those involved in the projection of the population series itself. Most of the
data from which component trends must be determined cover but a brief period
of time; while population data extends back for a century and a half. In this
connection, it is not impertinent to inquire the criterion of relevance that will
warrant a rejection of the items of the very series we are seeking to forecast.

It is a cardinal principle of logistic theory that the growth of population
depends primarily on the continued supply of basic resources, physical and
social, and that the dissipation of these resources is registered in the growth
rate of the population itse¢lf. Any tendency of a population series toward
skewness, that is, toward departure from the symmetric type of growth, is
more likely to persist if it is systematic in character. The skew forms of the
logistic function which we have developed permit us to measure any existing
systematic tendency of the data toward skewness, and, therefore, to improve
on the symmetric expectation of future growth..

In the case of the United States population, the evidence of skewness, insofar
as it bears on the problem of expectation, is adverse to the conclusion that the
ultimate limit of growth will be less than the symmetric asymptote. Conceding
the light that the analysis of current tendencies may throw on the probable
occurrence of future deviations from trend, the best criterion of long-time
growth remains the logistic projection.

This statement, to be sure, does not relieve us of the necessity for recognizing
the nature of the hazard that inheres in making a prediction from a trend
extrapolation. The hazard involved in this type of inference arises from the
assumption that the basic conditions of growth are stable, or, in other words,
that the values of the parameters of the forecasting formula will remain sub-
stantially unchanged with the inclusion of new observations. Time alone can
provide the final test of the continued validity of this assumption.

XV. The Law of Organic Growth. The law of organic growth in its most
general form may be written:

p = L + H:[l + ea+bt+uu1+szuz+a;us], (44)
where u; = sin[m(t + ¢)]; u2 = log[l + m2(t 4+ ¢)%; us = V1 + m2(t + )%

For most practical purposes, the evaluation of thirteen parameters is out of
the question; hence, the restricted forms «, 8, and v, equation (18), will be the
ones most generally employed.

I have made use of the term law of organic growth with reference to the logistic
forms developed because I believe these functions to be the best means yet
devised for the representation of the sequential changes which living organisms
regularly manifest as individuals or societies. It states, in a quantitative form,
all that is qualitatively implied by the so-called “law of diminishing returns’” as
this is commonly invoked by economists. The special sense in which I have
used the term law may be expressed as follows:
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A statistical law is a mathematical generalization on the behavior of a system of
observations such that the implications of the formula are in accord with the assump-
ttons basic to the phenomenon observed, and such that evaluations of the parameters
of the formula determined from random samples are mutually consistent.

A statistical law, then, posits a system of relations manifesting itself in the
form of observations which must.be subjected to analysis before the true nature
of their interrelations can be inferred. It expresses a probable, rather than a
certain, inference; but, within the limitations of its claim to precision, it leaves
reason no more free to reject its specification of reality than does a law of
mechanics. Indeed, the point is still in dispute as to whether any law of science
can be more than a statement of probabilities.

In contradistinction, the term empirical formula is properly restricted to cover
the representation of the single set of observations at hand, and bears no neces-
sary relation to any larger system. A sufficient test of an empirical formula is,
therefore, the test of fit.

We may fit an indefinite number of formulas to a population series and obtain
satisfactory results so far as agreement is concerned; but, on extrapolating, the
same formulas will yield results that are patently absurd. The backward
extrapolation for the population of the United States shown in Table V(b)
represents the known facts as closely as could be expected when we take into
consideration that census enumerations include aboriginal and immigrant
populations as well as native born. Certainly, no random empirical formula,
selected on the ground of goodness of fit, could be expected to yield as satis-
factory a result.

Logistic theory does not, then, profess to guarantee infallibility of prediction.
A population is not a mere aggregate of unrelated individuals inhabiting a
restricted area, but a unified organization which grows by the utilization of
total resources. When the supply of resources is profoundly disturbed or the
basis of organizational unity destroyed, then the basis of prediction also is
destroyed. And such reasoning is by no means peculiar to the sphere of social
organization; for the integrity of any purely mechanical system is likewise
conditioned by the assumption that the basis of coherence persists.

At this point, those in whom the speculative disposition is strong may query:
if statistical prediction does not yield a certain result, is it, in the final analysis,
superior to the ready and far less expensive method of guessing?

In answer, I can only say that, a posteriori, we can always, among a sufficiently
large batch of guessers, find someone who has guessed well; but how, a priori,
are we to know the good guesser from the poor? A population series consists
of definite magnitudes, and any prediction of its development must result in
the selection, out of a vast array of possible magnitudes, that which is most
consistent with all the known facts. The gambler may elect to hazard his
stake on the result of a random estimate; but the prudent will give heed to the
exacting, if laborious, procedure of mathematical analysis.
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ADDENDUM

Another solution of the theoretical problem stated in Section I may here be

noted.

Given, as before, the function y = f(z, a, b - - - ), we may, by assigning three
approximate values to each parameter, compute 37 sets of values for the function
y, thus:

yu = flx, @b ---);  yu=fx,abe---); yiz = (x, bz ---); ete.

From the observations ¥, we may compute 37 sets of the residuals y — Y;
and from these several sets of residuals, the corresponding standard errors of
estimate, ¢, may be computed for each set of values of the function y; thus, we
have:

ou = ¢(Y, z, a;by)
o12 = ¢(Y’ z, a'lb2)
013 = ¢(Y) z, alb3)

Restricting the parameters to a, b, and holding a constant, we observe that
the values 61, , 015, 015 must vary with the assigned values of the parameter b,
and take a minimum value when b takes its true or most probable value. As the
errors in the approximation to b increase positively and negatively without limit,
the computed values of ¢2 will tend toward the infinite. They may, therefore,
be assumed to lie on the arc of a parabola whose equation is a quadratic function
of za;b; hence, we may form the following equations of representation:

011 = ku + luay + mya}.
03y = kg + Loas + mpal.
0‘%3 = kla + lnal -I- mlaaf .
By addition, we have,
oi1+ oty +ots = ku A ki + ki + (y + b + l)ar 4+ (mu + mie + my)al.

By appropriate variations in subscript, similar equations may be written in
az and a3, thus:
031+ 035 + 035 = ko + koo + ko + (121+122+123)a2+(mn+mzz+mgs)a§..
031+ 032 + 035 = ka4 kae + Kas + (In + lee + lss)as + (may + Mg + mgs)al.

These three equations are all of the quadratic form, and may be conveniently
written as follows:

A = Kl + L1a1 + Mlaf.
A, = K1+L1a2+M1a§.
Az =K1+L1a3+M1a§.
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By precisely similar reasoning, the following equations in b may be developed:
B, = K; + Lsb, + M3b?.
B: = Ky + Loby + Msb3.
By = K; + Lsbs + M:b3,
where .
By = o1, + 03, +031; Ba= ol + 035 + 032; Bs = 0l; + 035 + 035.

Since the values of a,, a2, a; and b, bz, b; are assigned, the two sets of equations
may each be simultaneously solved to obtain values for K;, L;, M;and K;, L2, M,.
To obtain the conditions for A = a minimum, B = a minimum, we differentiate
with respect to a and b, as follows: '

D,(A) = L1 + 2Mq; Dy(B) = L, + 2Myb.

Setting these two equations equal to zero and solving, we obtain the adjusted
values of a and b, thus:

a = —L1:2M1; b = —L2:2M2.

The extension of this method to the case of p parameters is obvious. Assign-
ing three approximations to each parameter, we hold constant a value of one
parameter (say a;), we form all possible combinations of subscripts for the
remaining parameters (bbsbs with cicoc; with ete.). This will yield 37! values
of a2, each of which is associated with a;. Repeating this process, we can form
similar sets of values of ¢% by association with a; and az. We can then form the
sums A; = o(Yzabc ---); Ay = o(Yzasbc ---); A3 = o(Yzagbe --- ). In all,
3 X 371 or 37 distinct determinations of ¢? will be required. In like manner,
the equations for By, By, Bz and Cy, C, C3, etc. are formed. The solutions for the
adjusted values q, b, ¢, - - - follow directly.

Since the method of solution given in Part I requires the computation of but
27 values of ¢?, it is evident that the method of this section is the more onerous
when considering the determination of a single set of adjusted values of param-
eters, the excess being of the order 37:2? = (1.5)». However, being more pre-
cise, the present method will require fewer approximations to arrive at satisfac-
tory values of the parameters sought. In other words, the mathematical
advantage of economy lies with the theta technique; while the advantage of
precision lies with the quadratic technique.
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