MOMENTS OF ANY RATIONAL INTEGRAL ISOBARIC SAMPLE
MOMENT FUNCTION

By PaurL S. Dwyer

7 Introduction

The problem of moments of moments has been investigated by a number of
authors. The assumption of an infinite universe (or that of a finite universe
with replacements) permits the application of the ‘‘algebraic’”’ method, the
method of semi-invariants as introduced by Thiele (1) and developed by C. C.
Craig (2) and the combinatorial analysis method introduced by R. A. Fisher (3)
and used by N. St. Georgescu (4). A combinatorial analysis method has the
particular advantage that it enables one to compute separate terms of a given
formula.

The formulae for moments of moments have been simplified through the
use of new moment functions. Thiele introduced the half-invariant (1) which
resulted in considerable condensation. More recently Prof. R. A. Fisher (3)
has introduced the sample function ¥ whose expected value is a half invariant.
The most compact formulization presented thus far is his formulation of the
half invariants of the sample k, in terms of the half invariants of the universe.
This very compactness, however, makes it difficult to compare results with
those expressed in the more conventional sample functions. Dr. Wishart has
written a paper (7) in which he shows, among other things, how the Fisher results
can be translated to the more conventional (Craig) results and vice versa, but
such translation is in general no simple matter. It appears that the Fisher
results are not immediately useful to the statistician who desires the formulae
to be expressed in terms of the usual sample moment function. On the other
hand the Fisher formulization is a remarkable discovery toward that harmony
which must be naturally inherent in the field of moments of moments. Soper
(6, 111) expressed the general situation when he wrote, “If the terrifying over-
growth of algebraic formulation accompanying this branch of statistical inquiry
is destined to have a chief utility in induction and going back to causes, then
perhaps Dr. Fisher’s way of estimating a sample will prove to be most fertile,
but if it is to be applied to problems of deduction, say to problems of suc-
cessive eventuation such as propagation, then Mr. Craig’s plain moments seem
to have a firmer hold on the exigencies of time.”

It would appear then that the Fisher formulae and the Craig formulae are
both needed. Georgescu (4) showed a partial connection between them in
applying to the m functions a combinatory analysis somewhat similar to that
applied by R. A. Fisher to the k function. It is the purpose of the present
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22 PAUL S. DWYER

paper to work out a combinatorial procedure for a more general sample function
so that either the Fisher or Georgescu combinatorial results come out as special
cases. In making such a generalization no limitation is placed on the sample
function except that it be rational integral and that all terms are of the same
weight. Thus the results are applicable to m., m, + k., m.k,, etc. as well
as to m, and k. although they are not applicable to /m, or %—' In this way
the important formulae for the moments of a new sample moment function
will be available by simple substitution as soon as any such new function is
defined by a rational integral isobaric expansion of power sums.

It is thus the purpose of this paper to determine the moments of a general
moment function of the sample. This is done by keeping the multipliers of
the various partitions of power sums indefinite until all manipulation is complete.
It is then possible to assign the definite values of these multipliers which are
associated with the desired sample function and to obtain the moment of
the desired moment function in this way. Thus the Fisher result «(42), and
the Craig result Si(vs, v2) are special cases of the new result Au(fs, f2). It
is obvious that it is not possible to carry the results using these general moment
functions as far as Fisher and Wishart (3), (5), (7), have carried the results of
the decidedly advantageous (from the standpoint of simplicity of result) ¥ func-
tion and yet it is surprising to find the simplicity which can be obtained in
the general case. Incidentally the introduction of the more general symbols
clarifies the successive steps of the partition analysis which are somewhat con-
fusing in any specific case because of the insertion of the value of the coeffi-
cients of the power sums in which the sample moment function is expressed.

This paper is divided into three parts. The first part includes the necessary
definitions, the basic formulae, and the general development of the algebraic
method. In order to facilitate the algebraic work there is inserted a table giving
the expected values of all possible partition products of power sums whose
weight <8. The second part deals with the different sample functions which
might be used. The third part gives a list of the various partition formulae,
of weight <8, which contain no unit parts and shows how these can be used in
writing the chief variations of the formulae for moments of moments.

Part 1

1. General Moment Functions. Different moment functions have been de-
fined in various ways, but all moment functions have in common the property
that they may be expressed in terms of the power sums. It appears sensible
to use this expression in terms of power sums as the working algebraic definition
of moment functions. For example the function ks, which is defined by R. A.
Fisher to be that function of the sample whose expected value is the third
cumulant (half invariant) is to be given the working definition of

n(3) _ 3(2) (1) n 2(1) (1) (1)
m=1Dn—-2 ®G-1)®-=-2) " nrn-1)H-2)

ks =
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where the numerical expressions in parentheses indicate power sums of the
sample.

Every term in the definition of a sample function has a “weight” which is
equal to the sum of the power sums whose product is indicated by the term.
Thus the weight of each of the terms of k; is 3. If all the terms of a given
moment function have the same weight, the function is called isobaric and
the weight of the function is equal to the weight of each term. Thus k; is an
isobaric moment function and its weight is 3. Since all the functions so far
proposed are isobaric we limit this generalization of moment functions to iso-
baric moment functions although it is possible that a more complex analysis
could be worked out for non-isobaric functions.

Generality demands the inclusion of every possible partition product of
power sums. Such generality can be obtained by writing

fi = a1(1)
fr = a(2) + au(1)’
fs = 633) + an (@) + am()*
fi = ai(4) + au3)(A) + a2(2)’ + ax(2)(1)’ + an(1)*
and in general
fo= X apngpst (p)™ (p)™ -+ (p)™

where (p)™ (p2)™ --- (p,)™ indicates any partition product of power sums,
a,n ... 5% is its coefficient and the summation is taken for every possible parti-
tion. The number of parts of the partition is p = Zx. It may be assumed,
without loss of generality, that the partition is ordered, i.e.

DZPr=Ps =+ =D

A natural numerical coefficient of each term is the number of ways the r
units can be collected to form the given partition. This value is given by

r ) r!
pripzt - ps’ hH™ (P - - (P D™ mlme! .. !

If we set
g r
'I' x —_ 1 x L
a?ll e et = - - am: ce pet
pl oo p‘

the definition of f, becomes
[ 3% L

=2

In the present paper the capital letters are used to represent the corresponding

11’
) a,,’{x eee p’;c (pl)"l e (p.)"
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functions of the universe as defined by the corresponding power sums of the
untverse. 'Thus

17
Fr= 2 ( o p:-> asf syt (PO - (P

P1

represents the corresponding function of the universe. In the case of the
moment about the mean and the semi-invariant the Greek letters x and A have
been used to represent the corresponding function of the universe. In the
case .of functions whose notation is quite widely established, it is preferable to
use the conventional notation, but in introducing new functions it appears
wise to use the relationship between small and capital letters since the corre-
spondence between the English and Greek alphabets is not exactly one to one.
It should be particularly noticed that this notation does not agree with a pre-
viously accepted scheme of using the small English letter to indicate the function
whose expected value is indicated by the corresponding Greek letter. In the
present paper it is not the expected value property which serves as the basis
of notation but rather the definition of the function in terms of the partition
products of power sums.

2. The Working Definition of Moments About a Fixed Point. The sample
functions defined by

’__(_1_)_ ’_(_2) ’ (3) ’ (r)
T on’ n T o

m
are obtained from f, by placing

1

—whens =1,m =1, and p; = 7.
b b

a,T T, =N

P11t P

0 in all other cases.
The Greek p’ is used to indicate the corresponding function of the universe.

3. The Working Definition of Moments About the Mean. The moments
about the mean are defined by

m{=(i), m2=(_2)_.(1)£1),
n " .

@) _ 3(2)2(1) + 2(13)3’ — (4) _ 4(3)2(1) 4 6(2)3(1)2 _ 3(14)4
n n n n n n n
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and in general m, is obtained from f, by placing
%ifs =1m=1andp =r.

(=)=,
——lfp1> 1,1I'1= 1,S= 2,a,ndpg= 1.

apf .. oo = [ ()7
(=D -1)

p ifpp=1s8=1andm =r.

0 in all other cases.

The corresponding moments of the universe are indicated by the conventional u.
For conciseness moments about the mean are referred to as ‘“‘moments.”

4. The Working Definition of the Half Invariants. The half invariant
moment functions of Thiele, as applied to the sample power sums are [see C. C.
Craig (2, 7-10) and Frisch (12, 20-21)].

r (1) _@_ @@ _ 3 _3@a) , 20)
L b=—— ls = "

n n? '’ —n2+n3

= —,

12(2) (1)* _ 6(D)*

L@ _ Q) 3
nd i

n n? n?

+

and in general

(=1 (p — 1!
lr = 2 nﬂp < 1 Tg

pl Y p.
so that

)(pl)’” (p)™ -+ (pa)™

(=0 -D!

L
‘a?ll...p.l = ne

The corresponding moments of the universe are indicated, after Thiele ‘(1)
and Craig (2), by,A. R. A. Fisher (3) used « while Georgescu (4) used s.
In the present paper these functions are referred to as ‘“Thiele moments.”

5. The k Functions of R. A. Fisher. The k statistics of R. A. Fisher are
defined in terms of the sample power sums by

;@) 2) (1)?
k=25 k’=n—1—n(n—1)’
n(3) 3(2) (1) 2(1)°

ks =

m-—1Dm-2 m-—Dn-=2 " n®

nn+1)@) 4x4+1)BQ 307 12(2) (1)* _ 6(1)*

ki = (n — 1)(8) (n — 1)(3) (,n._ 2)(2) + (n — 1)(,), - n@ "
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These values and values for ks and ks are given by R. A. Fisher (3, 203—4)
while algebraic methods of attaining them are presented in sections 16, 17.
They are referred to as Fisher moments. The corresponding functions of the
universe, if used, would be represented by K,.

6. The h Function. Just as Fisher introduced a sample function whose
expected value is a Thiele moment of the universe, so it is possible to introduce
a function whose expected value is a moment of the universe. Such a function
is defined by

1) @) )’
B = he = -
! T a1 an-1)

- n(3) _ @@ 20
Th-D-2 ®m-Dm-2 " 2®

o= 3)@) _ 4’ -2 4+3)3)1) _3@n —3) (2
4= n - 1)® n@® n®

6(2) 1)  3(1)*
+ (n(—) (1))<a) - n<3 :

h

Methods of obtaining the expansion of this function in terms of power sums
are presented in section 18. The corresponding function of the universe, if it
were used, would be represented by H,.

7. Other Moment Functions. It is possible to obtain an indefinite number of
moment functions. For example one might define a function of weight 2 whose
variance equals ps, (or i3). It is possible by the methods of this paper to
find expressions for such moments.

For reference purposes Table I is provided showing the values of a for each
partition of weight <6 for the functions m’, m, 1, h, k. The values of

( g >
pitpet - pt

are also inserted, in the left hand column, so that it is possible to read from the
table the values for f = m,, m,, l,, k, when r < 6.

8. Products of f Functions. The product of two or more isobaric functions
is also isobaric and of weight equal to the sum of the weights of the functions.
Thus

foft = [@(2) + an@)Olla:(1)] = aa:(2)(1) + anar(1)?
fift = aa1(2)(1)* + anai(1)’.

In multiplying f,, by f., any term of f,, is of weight r; and when it is multi-
plied by any term of weight r;, the result is a term of weight r, + 7.
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TABLE I
Coefficients of Products of Power Sums in the Expansion of Different Moment
Functions
Numeri-
c::flﬁ- a m: My I k- h,
cient
1 1 1 1 1
1 ay - - - - s
n n n n n
1 L ! !
o n n n n—1 n =1
-1 -1 -1 -1
o O I n® o)
1 a 1 1 1 n n
: n n n (n - 1)@ (n - 1)@
-1 -1 -1 -1
Blem | 0w | mone n=D®
2 2 2 2
Lo 1 0 5 7® 7®
1 “ 1 1 1 n(n 4+ 1) n’—2n 43
‘ n n n (n —1)® (n — 1)®
-1 -1 (n +1) n' —2n 4+ 3
4 dar 0 nt n? T = 1D® B n®
-1 -1 2n — 3
2 2 1
6 | am L B R n = 1® n = Do
-3 —6 —6 -3
1 [£33531 0 —1—&7 F W W
1 a 1 1 1 n*(n + 5) n(n® — 5n + 10)
’ n n n (n - 1)@ (n — 1)®
-1 | -1 nin+5) | _n'—5n+10
5| oa Ol w | w | TmoDe n = D@
, -1 n(n — 1) _ n—2
10 ax L A = D® m—D®




28 PAUL S. DWYER

TABLE I—Concluded

Numeri-
cggflﬁ- a m: my I k. hr
cient
o o 1 2 2n+2) | w-—4n+8
dau W w (n — D@ n®
2 2(n — 1) - (2n —4)
15 | am 0 0 ot m = 1D® T e
—1 | -6 6 1
10 | aam 0 Pl ey T D@ T = 1®
4 24 24 4
1 a1 0 pord w n® n®

R. A. Fisher [3, 207) used the product kik. as an illustration of the algebraic
method. The more general f3f; gives

fife = [as(3) + 3an(2)(1) + amn(1)’Tax(2) + au(1)(D)]
= a3n(3)(3)(2) + aian(3)(3)(1)(1) + 6asanax(3)(2)'(1)
+ [6asaman + 2a30201m](3)(2)(1)° + 90513:(2)° (1) + 2asa1m011(3)(1)°
+ [602101maz + 9a5101)(2)*(1)* + [6anaman + 6ain)(2)(1)® + atnan(1)®

which reduces to the value as given by him when the values of a are substituted
from Table I.

9. The Expected Value of Any Partition Product. The expected values of
partition products are well known and are indicated by
E(p) = nup, |
E(py)(ps) = tpiips + (0 — Dy,
E@)(p)(®s) = tpyampins + 71 = 1) [upiambip + Wopytrsing + Hpstoship:]
+ nln — 1) (n — 2) ppbipbps-

and in general

L L3 L T, p;l p;2 e p:‘
E@)" @)™ - (p)™* = D, n° (qm - qm> () (i)™ - (i)™
1 2 Y

1 2 . L4
pl p2 oo p‘

et gt

where 7 = x» + x2 + xs + -+ + x: and < ) indicates the
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number of ways in which the. partition p;* ps® ... p;* can be grouped to
form the partition ¢f* ¢¥* - .- ¢¥*.

The continued application of the result above leads to a large number of
formulae. In order to make these results accessible I present in Table II the
expected values of all partition products of weight <8. The essence of the

1 2 L
P pe ) The numbers
qrt ¢t ... qrt
at the top of each column indicate the subscripts of the u’s which must, of
course, be multiplied by n”. The entries on the extreme left are the numerical
coefficients associated with each row.

table is the evaluation of the expression <

10. The Expected Values of the f Functions. With the use of Table II one
is able to write expressions for the expected values of f, when r < 9.

pi(f) = E(f)) = arnpu

pi(f) = B(fs) = (a2 + aw)nps-+ aun(n — 1)’

pi(fs) = E(fs) = (as + 3ax + am)nus + 3(az + am)n(n — 1)pant
+ amn(n — 1)(n — 2)u;® ete.

If the expected values of the f functions are expressed in terms of the moments
about the mean of the universe, these formulae become, since pr =0

#1(f1) =0
pi(f2) = (a2 + au)np
pi(fs) = (as + 3az + aun)nps
pi(f) = (as + 4as + 302 + 60 + auu)nps
+ 3(az + 2021 + aun)n(n — 1)u; ete.
These may be written more symbolically as
p(f) =0
p1(f2) = bamps
p1(fs) = bsnps
pr(fe = banug + 3ban(n — 1uj ete.
11. The Expected Value of Products of f Functions. The expected value of
products of f functions may be similarly found. For example

wi(f) = E(D) = Ela(2) + au(1)) = 3E(2)’ + 2aauE(@2)(1)(1) + oLE(1)"



TABLE I1
Ezxpected Values of Partition Products

weight = 1
coef. n
T 1
1|1 |1 '
weight = 2
coef. n | n®
2 11
1 1
1 11 11

weight = 3
coef. n | n®@| n®
T 321111
1 3 1
3 21 1'1
1 13 13 |1
weight = 4
coef. n | n®| n®| n®| p@
L 4 |31 22211 1¢
1 |4 1
4 |31 1)1
3 |22 1 1
6 | 211 112 |1 |1
1 11111 |4 |3 |6 |1
weight = 5
coef. n | n®] n® 0G| n® | p@ G
T 5 (41 (32312221 |213| 15
1 5 1
5 41 11
10 | 32 1 1
©10 (311 |1 {2 |1 |1
15 211 f 1|1 |2 1
10 |2111) 1|3 (4 |3 |3 1
1 18 1|5 }|10]10 |15 |10 |1
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TABLE II—Continued

31

weight = 6

coef. n | n® n®| n@| nG n® n@® | n@®] @ | RE| R

x | 6 |51 |42 |33 411|321 29 |313| 2017 21¢] 10

1 |6 |1

6 |51 |11

5 |42 |1 1

0 (3 |1] 1

15 |41 |1]2 |1 1

60 |321 | 1[1 |1 |1 1

5 (2 |1 3 1

20 (35 | 1|3 |3 |13 |3 1

45 212 1|2 |3 |2 |1 |4 |1 1

15 |21« |14 |7 |4 |6 |16]3 |4 |6 |1

1 |1* |1|6 |15]|10][15(60]| 15 [20 [45 [15 | 1
weight = 7

coef. n | n®] 20| @] 2O n®| 2@ | LB 2G| W | VWO [ w® | 1B | p©O | D

x | 7 | 615243 |51 421321 | 327413 3212 [ 291 | 314 |22 19 215 | 17

1 |7 |1

7 le1 |1]1

21 |52 |1 1 )
3 |43 |1 1

21 |52 |1]2 |1 1

105 421 [ 1|1 |1 |1 1

70 |31 |11 2 1

105 |322 |1 2 |1 1

35 |41 |13 |3 |1 |3 |3 1

210 3212 | 1|2 |2 |3 |1 |2 |2 |1 1

105 221 |1]1 |3 |3 3 3 1

3 |31 |14 |6 |5 |6 |12]4 |3 |4 |6 1

106 2213 1 (3 |5 |7 |3 |9 |6 |7 |1 |6 |3 1

91 |21 | 1|5 |11|15|10 |35(20 |25(10 [40 (15 |5 |10 |1
"1 |17 | 1|7 |21|35 |21 0870 | 10535 |210 105 | 35 | 105 | 21 | 1
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Table II can now be used by indicating a3 as a multiplier of E(2)°, 2a:a, as a
multiplier of E(2)(1)(1) and e}, as a multiplier of (1)*. Then at once it is
evident that

pa(fe) = (aF + 2aean + ad)nps + (aF + 2aan + 3al)n(n — Dz
= (a2 + au)’nus + [(@2 + aun)® + 2ahn(n — Dp:
= binus + (b3 + 2bT)n(n — Lus.
Similarly
p11(fs, f) = bsbamus + (bsbs + 3bmbe + 6bubu)n(n — 1)usus

ps(fs) = binps + (9b31 + 6bsba)n(n — L)uape + (b3 + 9b2)n(n — 1)us
+ (9b% + 6bim)n(n — 1)(n — 2)u}

ete.

where b3 = a3 + 3(121 + Gy, bzl = Q21 + a, b111 = ai. The important
special cases are obtained by assigning the proper values to the a’s as given
in Table I. Thus

uilm) = [0 = D + (0 = 20+ 3) (n — 1]

which agrees with the corrected result of “Student’ in 1908 (8, 3) and Tchou-
proff (10, 192). Similarly

p11(ms, me) = %[(n —1)*(n — 2us + (n — 1) (n — 2) (n* — 5n + 10) ]

pa(mg) = %[(n — 1)’ (n — 2)%us 4+ (—6n + 15) (n — 1) (n — 2)’uas

+ (0 — 20 + 10) (n — 1) (n — 2)%u3 + (9n° — 36n 4 60) (n — 1) (n — 2)u3]
ete.

In the same way

2 2
I-t;(kz) - _I;_: + (n — 2n -+ 3)/‘2

n(n — 1)
, _ us (n* — 5n 4 10)uzuz
Mu(ks, kz) = Z + n(n _ 1)
sy pe (=60 4 15)uws | (n® —2n 4 10)us | (90" — 36m + 60)u)
pe(ks) = 71. + n(n — 1) nn — 1) + nn — 1) (n — 2)

etc.
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and
1
pa(my) = - [ + (n — D3l

pyi(ms, my) = % [us + (n — 1)psps

ui(md) = 1 e+ (0 — 1]
etc.

12. The Expected Value of the Products of f Functions in Terms of the
Thiele Moments of the Universe. The formulae giving the p’s in term if the
N's are

M2 = A
M3 = A3
po= M+ 3\

us = N + 10AsA2
ps = s + 15\A2 4 10A; + 15\

..............................................

w2 ( ) (o)™ (g™ -+ ()™

p{‘p;’ ceo Ps

where the summation holds for those partitions having no unit parts. See
the results of Craig (2, 7-11) and Frisch (12, 21). It is at once possible to
express the moment formulae in terms of the Thiele moments of the universe.
Thus the general results above become

ua(fa) = bamhe + [3bzn + (b2 + 2bL)n(n — 1)]As
pi(fs, f2) = bsbamhs + [10bsban + (Bsb2 + 3babs + 6bzbu)n(n — 1)ahs
ps(fs) = banhe + [15b3n + (9bz1 + 6bsbar)n(n — 1)Aede
+ [10b3n + (b3 + 9ba)n(n — 1)]A3
+ [15b3n + (273 + 18bsba)n(n — 1) 4 (965 + 6biu)n(n — 1)(n — 2)IA].
13. The Thiele Moments of the f’s in terms of Thiele Moments. It is

now possible to reduce to the Thiele moments of the f’s by means of the usual
relations

N(fr) = wa(fy) — w'(f)
)\ll(ffnffz) = “;l(ffx )‘frz) - /‘{O(frnfrz)ﬂl;l(ffnffz)
)\3(fr) = .U-;(fr) - 3F;(fr)/‘;(fr) + 2/-‘{3(.’7)

ete.
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so that the results become
Me(f2) = banhs + 2[bzin + biin(n — 1)]A;
Mi(fs, f2) = bsbanhs + {3[bsban + bubsn(n — 1)] + 6[bsban + babun(n —1)]}Ashe
M(fs) = banke + {6[bin + beban(n — 1)] + 9[bin + bin(n — 1))} A
+ 9[bsn + bam(n — 1)]A3 + {9[bin + 2bsban(n — 1) + byn(n — 1) + bzin™]
+ 6[bin + 3bun(n — 1) + biun(n — 1)(n — 2)]}A3
ete.

The formulae as written are adapted to the partition representation of Part III.
When the f’s are equal to the m’s we have

(n — 1)\ + 2n — 1)x§.

Nalmg) = —— —
Ai(ma, 1) = (n — 1) X — 2% 6(n — 1) f:: — 2aAe
N(ms) — (n — 1) 7(;» — 2) + 9(n — 1)(:; — 2%
LA =D =2’ 6 — D — 9N

nt nd
ete.

which are the results as previously given by C. C. Craig (2, 55). In like manner
when the f, = k,

M 2)\2
Ne(ke2) ——n'+n_ i
As . 6 As:
AMulks, k2) = - + o
Che, 9N | 9N 6n A}
Az(ka)__ﬁ_i_n— 1+n— 1+(n— D(n -2
ete.

as given by R. A. Fisher [3, 210] while

N(m]) = ;l-l(m + 22)
Ml(mgy mg) = j’l;()\s + 9MaAg)

N(m)) = % O + 150ds + ONE + 15AD).

ete.
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14. Various Formulization of Results. Although different moment functions
of the universe may be used it is customary to express the results in terms of
universe moments about a fixed point, in terms of universe moments, or in
terms of uniyerse Thiele moments. It is possible to express results in any of
the nine forms

w'(fr) (moments about a fixed point (u’)
w(f>) ¢ in terms of < moments (u)
A(S) ) lThiele moments (\)

where f, represents the isobaric sample moment function of weight . One
purpose of such varied formulization is to discover the most compact form
and also the one best adapted to use in the case of a normal universe or a uni-
verse whose moments obey some discoverable law. As suggested above Craig
(2) has shown the relative compactness obtained by using A(m,) and Thiele
moments of the universe while R. A. Fisher (3) has shown the great additional
compactness obtained by taking f, = k,.

15. The Application of the Algebraic Method to Az (f;, f2). Before leaving
the algebraic method it is perhaps wise to outline the steps in the case of a
more involved problem. We take the example which R. A. Fisher (3, 207)
has used in the case in which f, = k.. To find Aa(fs, f2).

The value of f§ f2 was found in section 8. To find its expected value it is
only necessary to enter the coefficients of the different partition products in
this expansion at the left of the corresponding rows as indicated in Table II.

The coefficient of any moment partition of the universe is found by multi-
plying each column entry by its corresponding left row entry and then by
multiplying by n” as indicated at the top. Thus the coefficient of us is

(a§a2 + a§au + 6azaz102 + 603021011 + 203011102 + 961;10«2 + 2a3a11011 + 6020210111
+ 94100011 + 6anaman + aiua: + atuan)n
which after some algebraic work reduces to
(as + 3az + 0111)2(02 + a)n = bibon.

In this manner it is possible to write the result either in terms of universe
moments about a fixed point or in terms of universe moments. If moments
are used, one may neglect all column partitions involving unity.

It should be noted that the a’s defining k. as given in Table I can be inserted
here if desired. If these multipliers are introduced throughout the rows and
columnar partitions involving unit parts are not used one will arrive at Table I
of R. A. Fisher [3, 208] though there are some slight typographical errors in
his rows for (3)* (1)* and (3) (2% (1).

Determining all the coefficients in this manner we find after considerable
algebraic manipulation that
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po1(fs, f2) = bibanus + [bibe + 9bibe + 12bsbubyy + 6bsbaibeln(n — 1)ueus

+ [2b3by + 18b3iby + 18baibyy + 6bsbaby + 12bsbarbuln(n — 1)usus

+ [2b3by + 9b3iby + 18b5ibyy + 6bsbabeln(n — 1)uf + [36b31be

+ 54b3iby + 6bsbabs + 12bsbarbyy + 12bsbinby + 72bmbinby

+ 18bubgJn(n — 1)(n — 2)uaus + [b3bs + 6bsbaibs + 12bsharby
+ 27bsiby + 90b31by + 36baybinds + 72baibinby + 36bibuln(n — 1)(n — 2)ulu
+ [9b31bs + 18b31bys + 36beibiinby + 6b31ibe + 36bibuln(n — 1)(n — 2)(n — 3)us.

If f, = k. the proper values of b are inserted and the expression above becomes
that given by R. A. Fisher (3, 208). For example the coefficient of uj3 is

(97° — 63n® + 240n — 420) (n — 3)
n¥(n — 1)?(n — 2)

when
1 1 1
b, = - b = - by = — 2l = D)
1 2
bu = — n(n — 1)’ bu = nin — 1) (n — 2)

The algebraic results involved in changing the general formula above to
other functions are too extended to present here. A symbolic means of attaining
them is included in later sections of the paper.

Part II. The Determination of Specific f Functions

16. Functions Determined by the b’s. In Part I it was shown how various J
functions are defined by giving definite values to the coefficients of the power
sums. It is the purpose of this part of the paper to show how functions can
be specified by means of their expected values in terms of moments of the
universe. This is essentially the method used by R. A. Fisher in defining his
k function and it is here extended to other functions. In this case the b’s are
first determined and the a’s are then found from them. The first moments
of f1, f2, f5 were given in section 10. To these we add, as shown by Table II

p1(fe) = (as + 4as + 3az + 6az; + ann)nps + 4(as + 30 + ann)n(n — 1psu;
+ 3(a22 + 20211 + ann)n(n — Dus® + 6(azn + am)n(n — 1)(n — 2)uzur’
+ alllln(n - 1)(’"« - 2)(" - 3)/-'-;4

ete.
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These can be written more symbolically in terms of the b’s
pui(f)) = b

p1(fe) = bamps + bun(n — L)p’

p1(fs) = bsnps + 3ban(n — Dusps + bun(n — 1)(n — 2)u;°

wi(f) = bins + 4ban(n — Duspt + 3ban(n — e’ + 6baun®papn” + 60V,

and in general
.
)b,,{x e oo 1 () )™ -+ ()™

1
’
ﬂl(fr)= <’_ - x
2 pllpzz...p"

The expansion of the function in terms of the power sums of the sample demands
the determination of the a’s. This can be accomplished by solving the equations

a = b1
a + an = by
an = bu

as + 3as + o = bs
a2 + am = by

a = b
as + 4031 + 3022 + 60211 + aun = by
Q31 + 3azn + aun = ba

as2 + 2a211 + @un = bae

etc.
The solutions are
a = b
a; = b, — by
an = bn

as = by — 3ba: + 2bm
an = by — bu
o = b
ag = by — 4bs; — 3bee + 12boyy — 6y
as = bgy — 3ban + 2bun
azz = bz — 2benn + bun
@ = ben — bunr

ayun = bun.
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The values of a,, at least for r < 4, follow the law

o= 3 :

r

and

an = laza;| where lgya,! indicates that a; = b, — by is multiplied by a; = by,
the rule of multiplication being suffixing of subscripts. Similarly az = laya, =
l(be — bu) (by — bu)! = bz — 2ban + buu.

This statement illustrates a general theorem which will be established later
in another paper by a different approach that for all cases

r

1
ar = (=1 (o — 1) 1b,71 ... )7
2 <p;rl .. pr,) p1 p

8

and that

an‘1 Ry r‘ = la,-l a,-z e a,.‘l.

This theorem enables one to write, with comparative ease, the coefficient of
any product of power sums in a sample function whose expected values is defined.
For example the functional coefficient of (3)(2) in f5 is

|a,3a2| = I(ba — 3ba 4+ 2bm) (bz - bu)I = bz — bsu — 3bem + 5bain — 2biun

while that of (3)(1)(1) is lazaiar! = bsun — 3baus + 2buna.  If the expected value
of the function is known the b’s are determined and the values of the above
expressions can be found by substitution.

17. The Values of the Fisher Moments (k functions). The k functions have
been defined to be these functions whose expected values are the Thiele moments
of the universe. Thus ui(k,) = A, and since

] (.
pr'p2’ --- Ps
it follows at once that by comparison with ui(f,) in the last section, that

_ (DG - Dt

bp’{‘ﬁ’ epye = e

r

) (=1 (o = D! (up) (pe)™ « -+ (up)™,
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The insertion of these values in the formulae of section 16 gives the values of
a such as those indicated in Table I and in section 5. Thus the coefficient of

(3)(2) in fs is

1 2 6 30 48
10(bsz — bsu — 3baz1 + 5beyy — 2byun) = — 10 [n‘”’ + @ + @ + 7 ® + W]
(n— 1)@
The coefficient of (3)(1)(1) is
2 18 10(2n + 4.)
10(bsy — 3bains + 2byun) = 10 [ = T @ n® + n(“)] N R

18. The h Functions. It is also possible to define a function whose expected
value is the moment of the universe. Thus u{(h,) = u, where

17‘
b = 2( o p:.>*“p'ﬂ T ) )™ e )

p
and
l1if s=1,m=1and p, = r.
(D)™ if p1>1,m=1s=2and ps = 1.
(=)@ -1 if pp=1,s=1andm =
0 in all other cases.
Comparing with the value of u1(f,) in section 16 we have

A pil --- e

x L —
bbll...b‘a = n(P)

The substitution of these values of b in the results of section 16 gives the expan-
sions of h, in terms of power sums as illustrated by the formulae of section 6
and Table I. Thus the coefficient of (3)(2) is
10(bs2 — bsuu — 3baz1 + 5bainn = 2byun)
1 5 8 —10(n — 2)
= _10[0+W+0+W+W:|= -1
Similarly the coefficient of (3)(1)(1) in ks is

3 8 10(n* — 4n + 8)
10(bs11 — 3bainr + 2byy) = 10[ @ + porty + 775] = ®

19. The ' Functions. One line of attack calls for the introduction of new
moment functions which will result in simpler formulae. Thus for example,
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C. C. Craig wrote (2, 37) “It rather seems that the best hopes of effectively
further simplifying the problem of sampling for statistical characteristics lie
either in the discovery of a new kind of symmetric function of all the observa-
tions which may be used to characterize frequency functions and which will
be more amenable than either moments or semi-invariants for use in sampling
problems, or in, what may very well prove to be much better and more
feasible, the abandonment of the method of characterizing frequency functions
by symmetric functions of all the observations altogether.”

R. A. Fisher has shown that it is possible to introduce symmetric functions
which do simplify the resulting formula appreciably. It is the purpose of this
section to introduce an additional symmetric function which simplifies the
resulting formulae to a much greater extent. It is admitted that this function
does not have all the properties (such as invariance with respect to change of
origin) possessed by the Thiele and Fisher functions, but it does not have the’
property of making the resulting formulae simple. It also has the advantage
that u(h,) = w'(hs).

The basic idea is to find a sample moment function whose expected value s 0.
A first attempt, placing every b = 0, is of no avail since every a is also equal
to 0 and there is no function. A second attempt is based on the idea of finding
the function h whose expected value is p;". If the universe is assumed to be
measured about its mean, as is conventional, it follows at once that u; = 0
and pi(h) = 0 so that

l‘l!"(hfl‘l ) hi"z) = I‘:ltv(hfl'l ) h:,)-

This function then has the property that its moments about a fixed point and
its moments are identical.
In-order to discover its expansion in terms of power sums, we note

pi(hy) = w’

and it follows at once by comparison with u(f,) in section 16 that by = n—(-lr)

and b,7i... ,% = 0 in all other cases. The a’s are determined in the usual
way. Thus

1
a2 = by — by = — ;{(7{_—1)
‘ 1
an = by = ;L—(';L—:—i—)
so that
b= — (@) - (O]

n(n — 1)
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Similarly

’ 1 3
B = 5 [20) — 301 + (1)

hi= — 7—% [6(4) — 8(3)(1) — 3(2)(2) + 6(2)(1)(1) — (1)']

and in general'

W= S0 ! > () = DI = DI - [pe — 1) I

n(r)
1
< L2 r.) (pl)ﬂ tte (pvﬂ)'.}'
Prt - Pg

In order to show the simple form in which results can be given we substitute
the values of the b’s in the results obtained above. Not only does w(hy) =0,
but by section 11

2 2
n(n — 1) K

)\u(h:,c, hg) = Ilu(h;, hy) = Mil(h;, hg) = 0

)\2(}',;) = yz(h;) = M;(h;) = n(n — 1)6(7), — 2) Il;

Rz(h;) = #2(h;) = Mé(h;) =

while from section 15

36 s 36(n — 3) p2
le(ha, hz) = #21("—3, hz) = #21(h3, h2) ni(n — 1)2 (3n2 2) n2(n — 12 (n _2 2)-

It is to be noticed that these formulae contain very few terms and that the
terms themselves involve very low moments of the universe. This simplicity
has been attained without making any assumption such as normality, regarding
the nature of the universe.

20. Table of Values of b for Different Functions When r < 6. This process
of defining functions by means of expected values could be extended indefinitely.
Perhaps it has been applied to enough functions to suggest the breadth of the
applicability of the theory developed in Part I and Part III.

As the b’s are the quantities which are used in the formulae I have provided
Table III giving their values for the six functions, m,, m,, l., k., h., h, when

= 1,2, 3,4,5. When the a’s are known, the b’s are computed from them
according to the formulae of section 16.
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TABLE III
Values of the b’s forr < 5
m‘ b m:_ my 1 ky he h:
1 1 1 1 1 1
K n n R
1 n—1 n—1 1 1
o L P e a | a0
T 1 1 1 1| 1
1 bu | 0 ~w ~w T a®| T n® | n®
1o |1 m—1)(n—2) n—1)(n—2) 1 1 0
il nd n? n n
T (n—2) n—2 1 1
3| ba | O i T Ta®| T n® 0
T 2 2 2 2 1
1| bm |0 e n n® n® | n®
1 (n—1) (n? — 3n + 3) (n — 1) (n? — 6n + 6) 1 1
1] b | = . . = - | o
n. n n n n
' (nt — 3n +3) (n? — 6n + 6) 1 1
4 b |0 - i Rl o B
T on —3 (n* — 4n + 6)
3| bm |0 n I S “aw| 0 0
T n—3 2(n — 3) 2 1
6| bwm | 0 - e 2 | pw |0
o 3 6 6 3| 1
1 {.bun | O T T Ta® | T @ | n®
1 b 1 |(n=1)(n —2)(n?—2n +2)|(n—1) (n—2) (n*—12n+12)| 1 1 0
L ns nd n n
(n® — 4n? + 6n — 4) (n® — 14n2 + 36n — 24) 1 1],
5 bn 0 - ns hand ns - W b 1"’—(5
T n? —4n 4+ 4 (n® — 8n2 + 24n - 24) 1
10| bu |0 — - P —aw| 0 |0
T " — 3n + 4 2nt — 18n + 24 2 1
10 | bsn | O I — 3 e n® 0
T 2(n — 2) on? — 12n + 24 2
15 | b |0 - o am | 00
T n—4 6(n — 4 6 1
10 | ban | O Il Y3 Ta®| T @ 0
- — £ 2 24 | 4 | 1
1 |{bum | O por’ pry n® 7® | n®
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Part III. Combinatory Methods

21. Partition Representation of Expected Value of f Functions. The formulae

7 ’
Ml(fl) = binu,
pi(f2) = bz + bun(n — Dur’
pi(fs) = bymps + 3ban(n — Dpsus + bum(n — 1)(n — 2)u’
p1(fs) = binus + 4ban(n — 1)ugus + 3ban(n — 1)

+ 6b2un(n - 1)(” - 2)#;#;2 + buunw#{4

are “synthetically” given by the column partitions

1
2 1

1
3 2

1 1

1

4 3 2

1 2 1

1

The partition parts represent both the subscripts of the moments and the
subscripts of the b’s. If p indicates the number of parts, the n multiplier
is n”. The numerical coefficient is obtained by taking the sum of the entries

in the column (the weight) and dividing it by the factorials of all entries times
the factorials of all repeated entries as indicated by

iy r!
pipit - plt) @D (@D )T mlmt e

The translation from the synthetic partition form to the expanded form is
accelerated if the coefficients are known. These are provided in the following
partition representation of the formula for p1(f,) when 7 < 8 and the results
are expressed in terms of the moments of the universe

,Ul(fx)I 0
.U;(fz)i

1
2
p(fs): 1
3
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pa(fa): 1 3
4 2
2
ﬂ{(f5)5 1 10
5 3
2
pi(fe): 1 15 10 15
6 4 3 2
2 3 2
2
p(fr): 1 21 35 105
7 5 4 3
2 3 2
2
wi(fs): 1 28 56 35 210 280 105
8 6 5 4 4 3 2
2 7 4 2 3 2
2 2 2
2

The proper formula can be stated immediately from its synthelic representa-
tion. Thus for example

,u;(fe) = benus + l5b42n(n - 1)#4#2 + 10b33n(n - 1)#§
+ 15b222n(n - 1)(n —_ 2)#2.

22. Partition Representation of the Expected Value of a Product of f Func-
tions. Two column partitions may be used similarly to represent the expected
values of the products of two f’s, three column partitions for the expected value
of the triple product, etc. In order to obtain all terms it is only necessary to
combine every partition of each f in every possible way. The synthetic repre-
sentation of E(mg, my) is

1 1 2 1
21 20 11 10
01 10 10

01

The sum of the entries in each row indicates the proper moment while the
number of rows indicates the number of parts as in the preceding section.
The n coefficient associated with a p rowed partition is then n”. The b coeffi-
cient is indicated by the columnar entries. Thus

pi(fo, fi = bobmus+ [bobs + 2bubiln(n — Duopt + dubm(n — 1)(n — 2)ui’.
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We verify this by the algebraic method
pu(fe, 1) = E{ [a(2) + au(1)(D))[ax(1)]}
= E[aa(2)(1) + auai(1)’]
= am[nus + n(n — 1)ugu
+ anailnps + 3n(n — Dugut + n(n — D(n — 2)u’]

(@2 + an)amps + (a2 + an)an(n — 1usu

+ 2anamsu; + anam(n — 1)(n — 2)u;’

= bbinps + bebin(n — Duspi + 2bubm(n — 1)usus

+ bubln(n - 1)(n — 2)/1{3
as indicated.
It thus appears that the partition representation is a mnemonic device for
indicating the solution as obtained by the algebraic method. A more formal
justification is based upon the property that if

E(f) = 5:(2) + bu(1)(1) and E(f) = (1)

then E(f,, f1) can be obtained by a symbolic multiplication of b3(2) + b1 (1)(1)
by bi(1) where the b’s are multiplied but the power sums are collected in all
possible ways. Thus

E(f2, i) = babil(3) 4 (2) (D] + bubi[2(2)(1) + (1)7]
which gives
E(fo, f) = bobinus + bebin(n — Dusuy + 2bubin(n — 1)uous + bubin@us’

as before.

This symbolic multiplication is generally true and serves as the real algebraic
justification of the partition representation. It will be established in a later
paper dealing with the more general case of a finite population. The general
type of partition analysis has been used previously by Fisher (3) and Georgescu
(4). Each has established it through analytic rather than algebraic means.

23. Determination of the Coefficients. Methods of determining the numerical
coefficient have previously been given by such authors as Fisher (3), Wishart (5)
(7) and Georgescu (4). If the f’s are of different weight, the coefficients of any
partition (an interchange of rows is not looked upon as changing the partition)
is given by writing in the numerator the factorials of the different r’s and in
the denominator the factorials of all the different entries and the factorials of
all repeated rows. Thus the coefficient of

210
111 s
111

41312!

2Ty 2! -~ 2.
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In case two or more functions have the same weight additional equivalent
partitions are formed by interchange of columns. The reader is referred to the
above papers for rules for determining the coefficients in the more involved
cases though the coefficients are presented for all the two way partitions of the
next section.

An alternative method of finding the coefficients is that given by C. C.
Craig (2, 24-25) since it appears that the symbolic formulae used in the present
paper are essentially his formulae for »’s in terms of A’s. For example his for-
mula for vy (2, 22) is given symbolically by the formula for 44 in the next
section. The only difference revealed is that the subscripts-of the N’s are read
by rows rather than by columns and that they are sometimes interchanged.
The more precise formulization is needed for the present interpretation although
it is not needed for Prof. Craig’s purpose.

A third method utilizes the symbolic multiplication process stated in sec-
tion 22. Subscripts of the b’s are used to indicate which power sums are col-

lected. Thus [b2(2) + bu(1)(1)])* gives
boba(4) + babea(2)(2) + 2[2baob11(3)(1) + bangbon(2)(1)(1)] + 2bubu(2)(2)
+ 4b110b101(2) (1) (1) + buooboors (1)(1)(1)(1)

where the underscored terms indicate the products given by [B:(2))%, 2[b2(2)]
[Bu(1)(1)], and [bu(1)(1)])* respectively. This is represented by

1 1 4 2 2 4 1
22 20 21 20 11 11 10
02 01 01 11 10 10

01 01 01

01

The underscored terms are the only ones remaining when ur = 0.
This method is especially useful when a large number of formulae are to be
computed, as in the next section.

24. The Partition Representation of Formulae of Total Weight < 8. The
partition representation of ui(f;) when r < 8 are given in section 21. The
partition representation of the remaining formulae of total weight < 8, which
do not contain unit parts, are given below.

22 1 1 2
22 20 11
02 11

32 1 1 3 6

32 30 12 21
02 20 11
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42

33

222

52

43

322

62

322

300
020
002

15
40
20
02

1
40
02

31
02

220
002

50
02

41
02

320
002

300
011
011

60
02

30
40
11
11

8
31
11

22
11

12
211
011

10
41
11

12
32
11

311
011

102
020
200

12
51
11

120
31
20
11

6
22
20

30
03

201
021

10
32
20

23
20

12
221
101

12
021
101
200

16
42
20

46
22
20
20
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4
30
12

21
12

111
111

40
12

40
03

122
200

12
201
020
101

50
12

10
30
30
02

6
21
21

20
11
02

200
020
002

10
22
30

13
30

022
300

12
111
011
200

30
41
21

60
30
12
20

3
20
20
02

6
11
11
11

6
200
011
011

20
31
21

12
31
12

301
021

24
210
101
011

20
32
30

120
30
21
11

12
20
11
11

110
011
101

10
30
20
02

18
22
21

220

102

12
120
101
101

15
40
22

90
21
21
20

20
30
11
11

12
30
11
02

12
121
201

24
111
101
110

20
31
31

156
12
20
20

03
20
20

12
211
111

156
20
20
20
02

60
21
20
11

18
21
20
02

90
20
20
11
11

36
12
20
11

36
21
11
11
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44

422

53

156
40
11
02

44

40
02
02

422

400
022

400
020
002

300
120
002

200
200
020
002

3
51
02

60
31
11
11

12
42
02

96
31
11
02

420
002

16
310
112

400
011
011

16
300
021
101

24
200
110
110
002
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15
42
11

90
22
20
11

16
33
11

36
22
20
02

411
011

220
202

16
310
110
002

12
210
210
002

200
200
011
011

10
33
20

15
13
20
20

41
03

72
22
11
11

16
321
101

12
211
211

32
310
101
011

24
021
201
200

48
200
110
101
011

1
50
03

30
31
20
02

48
32
12

48
30
12
02

222
200

12
202
200
020

12
120
102
200

24
110
110
101
101

16
41
12

10
30
03
20

40
04

16
30
03
11

401
021

022
200
200

16
300
111
011

30
32
21

30
30
21
02

16
31
13

72
21
21
02

320
102

24
211
200
011

48
201
120
101

10
23
30

60
30
12
11

18
22
22

144
21
12
11

122
300

24
220
101
101

96
210
111
101

b
40
13

90
12
21
20

20
20
02
02

24
212
210

48
211
101
110

24
111
111
200

30
31
22

90
21
21
11

72
20
11
11
02

16
311
111

48
121
200
101

24
210
201
011

456
20
20
11
02

11
11
11
11

60
20
11
11
11

49
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332

2222

1 1 9 12
332 330 222 321
002 110 oO11

2 9 18 6
301 220 211 310
031 112 121 022

9 18 6 12
220 220 310 301
110 101 020 020
002 011 002 011

1 6 12 9
300 300 300 210
030 012 021 120
002 020 011 002

9 18 36 6
200 200 200 110
110 101 110 110
020 011 011 110
002 020 011 002

1 4 24 24
2222 2220 2211 2201
0002 0011 0021

6 12 48 96
2200 2200 2011 2011
0020 0011 0011 0101
0002 0011 0200 0110

24 48 96 16
2001 2010 2100 0111
0201 0201 0111 0111
0020 0011 0011 2000

1 12 32 12
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6
312
020

12
310
011
011

18
210
102
020

36
110
110
101
011

32
2111
0111

48
1111
1100
0011

48
1011
1110
0101

48

2000 2000 2000 1100 1100

0200 0200 0101 1100
0020 0011 0110 0011
0002 0011 0011 0011

0110
0011
1001

2
302
030

18
202
110
020

36
210
012
110

3

18
212
120

112
200
020

36
201
111
020

24

2200 2011
0022 0211

16

32

1011 0111
0111 1101
1100 1010

18
221
111

72
211
110
011

18
201
021
110

1111
1111

320
012

18
112
110
110

36
210
101
021

12
311
021

36
211
101
020

72 36
210 111
111 111
011 110
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25. The Formulae for the Sample Moments about a Fixed Point in Terms
of the Moments of the Universe. The partitions of section 21 and section 24
can be immediately interpreted to give the formulae for the moments of the
sample function. For example

p11(fs, f2) = bsbanus + (bsbz + 3basby + 6babu)n(n — 1)usus

and the value of us(fs, f2) as given in section 15 can be read by inspection.
The value of the b’s are to be inserted for any specific function. The coeffi-
cient of uj in the expansion of us(f2) is

(b3 + 6b:b11 + 8bi)n(n — 1)(n — 2).
In case fo = ma, by = 1"—;&_2—1, and by = ;—21 so that the coefficient is

(n — 1) (n — 2) (n® — 30 + 9n —'15)
nB
as indicated previously by Tchouproff (10, 192) and Church (9, 82).

The partitions of section 21 give the 8 formulae u,, (»y Which Tchouproff
gave (10, 155). In this case f; = m, and every b is 0 except those having single

subscripts and these equal %

The partitions of section 21 give the formulae »,, vy which were given by
Tchouproff (10, 186). In this case it is only necessary to take f, = m, and to
give the b’s the proper values. Tchouproff has arranged his results according

to decreasing powers of n. As an illustration we derive his result for v, (v =
u{(m4). From section 21

wi(f) = banps + 3ban(n — 1)uj
and from Table 11

2 —
(n—l)(n‘—3n+3) and bn_2n43
n n

by =

so that
) 4 6 3 6 15 9
w1 (1ma) =<1—7—L+——1§>#4+(;l——;+7?)#§

n2
1 2 1 2 1 2
=m+ - (6uz — 4us) — e (1542 — 6ps) + o (9uz — 3ua)
as indicated by him.
The partitions of section 24 also give formulae which have appeared before.
For example the partitions
1 1 2
22 20 11
02 11
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which symbolize the formula
pa(fa) = banue + (b3 + 2bh)n(n — L)p}
become

itm) = P= B (n — D + (07 — 20+ 3
which was early derived by ‘“Student” (8, 3) and Tchouproff (10, 192). Simi-
larly the partitions of 222 and 2222 give the formula for and us(ms) and us(me)
which were given by Tchouproff (10, 192-193) and Church (9, 82).

Sections 21 and 24 can then be used to write the moments about a fixed
point of a sample function in terms of the moments of the universe. In the
case of new functions the b’s must first be determined. Formulae involving
unit columnar partitions are not included. If the formulae were desired in
terms of moments about a fixed point of the universe, it would be necessary
to write in addition all possible partitions. See for example the last formula

of section 23.

26. The Formulae For Moments of Any Sample Function in Terms of Mo-
ments of the Universe. The partitions of sections 21 and 24 are also useful in
writing the formulae for the moments of the sample moments. It is necessary
to make the usual adjustments in changing from moments about a fixed point
to moments:

w(f) = wa(f) — w'(f)
l‘ll(ffx ’ ffz) = I‘{l(frl ’ frz) - #;O(fn ’ frz)ﬂl;l(frx ’ ff2)~

The particular two way partitions which are involved in this adjustment are
immediately recognizable. They are the ones which have an entry which is

the only entry in the row and in the column in which it is. Thus 3 gives
220

002

one of the terms contributing to us(fz) p1(fz). In addition its coefficient is the
same, if sign is not considered, as the coefficient of us(f2) u1(f2) in the expansion
of u3(f) in terms of moments of fo. This has to be true since each is the number
of ways of forming 220. And so in general the remaining function of » accom-
002
panying this adjustment is the product of the coefficient associated with 22
and that associated with 2. The sign is plus when odd numbers of moments
are multiplied and minus when even numbers of moments are multiplied.
Hence 3 contributes —3n°bs to the adjustment to moments and the total
220
002
contribution of 3 to the value of us(f2) is 3b3[n(n — 1) — n’] = —3bjn. More
220
002
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extensive study leads to the following general method of using the formulae of
section 24.
A. Write the coefficient of every two way partition according to section 25.
B. Block off each single entry by drawing a line through its row and column.
For example "
6

ggg

The resulting partitions, 22, 2, 2 are called component parts.

C. Form new partitions by eliminating component parts one at a time, two
at a time, three at a time, etc. from the original partition in all possible ways.

D. Form the coefficient of the resulting parts according to the methods of
section 25. Multiply by (—1)°"" where s is the number of resulting parts.
The values of b will not change.

E. Multiply in addition by s — 1 when the component parts are all taken

separately.
6

As an example we find the contribution of the partition 2200 to the value
0020

0002
of uy(f2). It gives
6bsn(n — 1)(n — 2) — 3n’(n — 1) + 2n*Juspops = 12nbauau; .
Similarly 1 contribu
2000
0200

0020
0002

bin® — 4nn® + 6n*(n — 1) — 3n'lus = 3b3(n — 2)us.

We use the method in finding the coefficient of u} in the expansion of us(ms).
We find first the coefficient of uj in the expansion of us(fz). It is indicated by

the partitions

1 6 8
200 200 110
020 011 011
002 011 101

so that the coefficient of uj is

bin(n — 1)(n — 2) — 3n*(n — 1) + 20n°] 4 6bblin(n — 1)(n — 2) — n*(n — 1)]
+ 8bin(n — 1)(n — 2) = b3(2n) + 6bbhi(— 20’ + 2n)
+ 8bin(n — 1)(n — 2).
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p— p— _ 2 _
When b, = 2 3 1 and by = ——21 this becomes 2(n 1)(n . 12n + 15) as
n n n
previously given by such authors as Tchouproff (10, 194), Church (9, 82),

Carver (Richardson) (11, 271).
The general Tchouproff-Church formulae for the third and fourth moments

of the variance may be written out in this way as may many other moment
formulae. which have not been printed.

27. The Thiele Moments of the Sample Function in Terms of the Moments
of the Universe. It is possible also to write the Thiele moments of the sample
function in terms of the moments of the universe. The technique is very
similar to that of the previous section. The basis of the transformation is
now the formula for Thiele moments in terms of moments about a fixed point
rather than moments in terms of moments about a fixed point. The results
are the same as those of the last section when a double or a triple product of
f’s is involved, but they differ with the introduction of a larger number of
products. The partitions having component parts are broken up into these
component parts as before but the parts are combined in all possible ways.
Multipliers are determined as before with the exception that there is a multi-
plication by (—1)*~'(s — 1)! where s is the number of resultant parts. Thus the
2000

term 0200 contributes bs[n® — 4nn® — 3n’(n — 1)* 4 12rn°(n — 1) — 6n']us =
0020
0002

—6bsnus to the value of A\y(f2).

28. The Moments About a Fixed Point of the Sample Function in Terms
of the Thiele Moments of the Universe. We return to the problem of section
25, only we wish to express the results in terms of the Thiele moments of
the universe. We must use the formulae of section 12.

My = Z < ) (Apl)'l PPN (AP.)'O
where p; x 1.

Thus u, will contribute to all partitions of r and inversely the contributions
to a given partition are composed only of these terms which are obtained by
combining the different elements of the partition. Since the numerical coeffi-
cient in the expansion of u, is the number of ways in which the r units can
be collected to form the partition, it follows at once that the complete A coeffi-
cient can be obtained by grouping the parts of the partition in all possible
ways, determining the coefficient of each according to the methods of section 25,
and adding. In this way the formulae of section 21 can be used to give expan-
sions in terms of partition moments. For example the representation’ of u1(fs)

r

Ts

1
pl ...p'
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1 15 10 15
6 4 3 2
2 3 2

2

gives at once
be’n)\s + 15[bsn + b42n(n - 1)])\4}\2 + 10[bsn + bssn(’n - 1)])\§
+ 15[bgn + 3ben(n — 1) + bagn(n — 1)(n — 2)IA3.

The partitions of section 21 can be made to give the formula p1(l,) which
were given by Thiele (1, 45-46). For example the formula for u;(f;) is indi-

cated by

1 3
4 2
2
so that
F;(f4) = by + 3[bin + b22n(n - 1)])\3
and since
2
b(___(n—l)(n:—ﬁn-l—-ﬁ) and bﬂ____2n:3
n n
’ m=1)"m —6n+ 6N 6 — 1A
Ml(l4) = 3 - 3 y
n n

which agrees with the result as given by him (1, 45).
The two way partitions of section 24 can be used similarly. This device

for changing to the N’s is due to the ingenuity of R. A. Fisher who applied it to

the case where f, = k..
As an illustration we write from section 24 the value of us(f;) in terms of N’s.

The partition representation

1 1 2
22 20 11
02 11

gives at once
binhe + [b3n + bin(n — 1)\ + 2[b3n + bim(n — 1)]A3

which agrees with the result of section 12. The other illustrations of that

section may be written out similarly.
As a final illustration of this technique we find the coefficient of A; in the

expansion of us(fs, fz). The partitions are
2 9 18 6

301 220 211 310
031 112 121 022



56 PAUL S. DWYER

and the coefficient is
2[b3ben + bibun(n — 1)] 4 9[b3ben + baban(n — 1)]
+ 18[b3ben + babun(n — 1)] + 6[b3ben + bsbuben(n — 1)].

If the b’s are inserted to form the %’s, the first and last terms become 0 and the
27n — 45

2l — I This agrees with the value as gi;ven by R. A. Fisher

others give
(3, 208).

29. The Moments of the Sample Function in Terms of the Thiele Moments
of the Universe. The partition representations of section 21 and section 24
can be used similarly to write formulae for the moments of the sample function
in terms of the Thiele moments of the universe. It is only necessary .to use the
general plan of section 26, but to write the coefficient of every resulting parti-
tion according to the method of section 28. For example the partition

z.g
gives the coefficient

bsln + 4n® + 3n® + 60® + n®] — 4b3[n® + 3n’(n — 1) + n’(n — 1)(n — 2)]
+ 6bs[n° + n*(n — 1)] — 3bin' = biln' — 4n' + 6n* — 3n'] = 0.

30. The Thiele Moments of the Sample Function in Terms of the Thiele
Moments of the Universe. The partition representations of section 21 and
section 24 can also be interpreted to give the Thiele moments of the sample
function in terms of the Thiele moments of the. universe. The scheme is
similar to that of section 29 except that the formulae for changing to Thiele

2000
moments are used as in section 27. For example the partition 0200 has now

0020

0002

associated with it
bsln + 4n® + 3n® + 6n® + ) — 4bi[n® + 3n*(n — 1) 4+ n*(n — 1)(n — 2)]
— 3bin’(n — 1)° + 12b3 [n® 4+ n? (n — 1)] — 6bin* = 0.
The application of this méthod enables one to write the formulae of section 13
(and others which they typify) with relative ease. It is now possible to com-
plete the task left unfinished in section 15. We do not take the space necessary

to write all the terms of \s:(f3, f2) since the lengthy expression can be obtained
quite readily from the representation of section 24. One term, say the coeffi-

cient of )z, is represented by
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1 9 12 6
330 222 321 312
002 110 011 020

meand- gives
9[b3ben + baben(n — 1)] + 12[b3ben + bsbabun(n — 1))
+ 6[b§b2n + bsbaben(n — 1)]

which becomes _2 when b; = b = 1 and by = by = _ =1 . This
nn — 1) n nn — 1)
agrees with the result given by R. A. Fisher (3, 209).

For simplicity of form it is logical to use this formulization of results, Thiele
moments in terms of Thiele moments, and it has been used by Thiele (1),
Craig (2), Fisher (3) and Georgescu (4). They however have used different
sample moment functions. Thiele and Georgescu used the Thiele moments
of the sample, Craig and Georgescu the moments while Fisher introduced the
k function.

The present discussion deals with the corresponding partition moments of
any rational integral isobaric moment function of the sample. The results
indicated here give many of the results of the previous authors as special cases.
For example the symbolic formula 44 of section 24 gives the m"Ag(us) of Thiele
(1, 45), the Se(vs, »:) of Craig (2, 57), the x(44) of R. A. Fisher (3, 210) as
special cases when the formula 44 is given the interpretation of this section.

Some may prefer the Craig attack (2, 21-35) to the partition method. It
should be noted that the formulae of sections 21 and 24 can be used in place
of part of the Craig method. Thus his formulae (2, 22)

Vg = >\a{) + 28 )\eo)\zo + 56 )\50)30 + ete.
vas = Mg + (12 Mzhoz + 16 Aghu) + ete.

are immediately obtainable from the symbolic formulae by writing N’s in place
of b’s and by using row, rather than column, subscripts. It is then necessary
to compute the values of A, ... as given by him (2, 16-17, 40) and to insert
in his expansions of Sy (vm, v») in terms of »’s. For example

Su(Va, Vz) = 1% [Vso + (n - 1)1132 - nllaoVoz] (2, 32)

and from the symbolic formulae of sections 21 and 24
vse = Nso + 10As0A20
vae = Asz + Azohoz + SAizheo + 6Aahu
V3o = Ao

Ve = Aao
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so that _
Su(vs, v) = ?1;[)\50 + (n = DXa2 -+ Maodzo + (7 — 1)(6Nadus + 3hado)] (2, 30)

which agrees with that given by Prof. Craig (aside from an obvious typographical
error). The insertion of the values of A\ gives the value as indicated by
Au(ms , mg) of section 13 and by the first method of the present section.

31. Special Rules for the Determination of the Coefficients in the Case of
the Fisher and Georgescu Analyses. R. A. Fisher (3) gave a number of simple
rules which assist greatly in the determination of the coefficients accompanying
the partitions. Georgescu (4) also introduced special rules for the evaluation
of the coefficients of the different partitions he used. It is not to be expected
that all these rules are applicable in the more general case under present con-
sideration, but the vanishing of such coefficients as that of 2000 leads one to

0200

0020

0002
suspect that there might be some rules which are applicable to this general
case. A sensible method of procedure is to examine the rules of Fisher and
Georgescu and determine if they hold in the more general analysis. The special
rules of R. A. Fisher might be given somewhat as follows.

A. If a partition has a column with a single entry, that column may be
eliminated and the factor n™* introduced.

B. Any partition having a row with a single entry may be neglected.

C. “We may exclude any partition in which any set of rows is connected
to its complementary set by a single column only.”

D. In determining the algebraic coefficient of a partition the ‘“‘pattern’ is
sufficient and precise entries are not needed. Thus the partitions 21 and 35,

11 42
although they have different numerical factors, have associated with them the
same function of n. This value is indicated by the pattern zx which has asso-

zx

ciated with it the function e T As a result of this property Fisher was able

to provide a table (3, 223-226) of useful patterns which is of great assistance
in writing the value of the coefficients.

E. Formulae of moments of k functions involving k; can be derived from
corresponding formulae not involving k.. ““The effect upon the corresponding
formula of adding a new unit part to the partition is (1) to modify every
term in the formula by increasing the suffix of one of its « functions by unity
in every possible way, and (2) to divide the whole by n.” (3, 206).

Two of the important Georgescu rules may be stated.

A’. The numerator function (aside from numerical coefficient) is not altered
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if columns are changed to rows and vice versa. Thus the coefficient of s in
S@3%) = (%VIV(N-I-_T;) and the coefficient of s3 in S(2°) is %142
has replaced n by N + 1. ,

B’. All partitions which can be broken up into component parts have coeffi-
cients of 0. This is extended to include all partitions which have as component
parts other partitions. Thus

Georgescu

2100
1100
0012
0034

has a coefficient 0 as does the equivalent

2010
1010
0102
0304

32. Special Rules for the Determination of the Coefficients in the More
General Case. In the more general case we have

A. If a partition has a single column with a single entry, ¢, that column
may be eliminated and the value b, inserted as a multiplier. This is imme-
diately evident since the contribution of that column to each term in the
expansion is b, times its value if the column were eliminated.

B. The coefficient of any partition having an entry which is the only entry
in its row and column, is 0.

This rule, which saves considerable labor in that it makes unnecessary the
computation of the coefficients of many of the partitions of section 24, is estab-
lished in this way. Without loss of generality the partition may be repre-
sented by

Ciu Ci2 Ci3 ::* Cw
Cop C2 Cg3 -+ C2o

Tutl,v41 = €31 C32 C33 +++ Cav

...................

0 0 0 0 Cutl, v41

and m, , may represent the partition containing the first » rows and the first v
columns. We determine the coefficient of 7u41,+4+1 in terms of the coefficient
of m.». Consider first any grouping of the u rows of ., ,into w rows. There
will be w corresponding groupings of 41,041 in Which the last row is added, in
turn, to each of the w rows and another w + 1 rowed term in which it is not
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added. In each of the first w cases the coefficient by rule A is multiplied by
beys1,04:- In the case of the w 4+ 1 rowed partition the coefficient is multi-
plied by be,,,,..,, and 2™ is replaced by »‘**’. A final adjustment takes
care of the transition from the moment about a fixed point of the sample
function to the Thiele moment of the sample function. This adjustment de-
mands the multiplication of the coefficient of 7. ,, by bc,,,.,+; » and the sub-
traction from the sum of the other terms. If B, is the coefficient of the w
rowed form, it follows at once that the corresponding coefficient is

Bubeit,vir [wn'™ + 2 — nn™] = 0.

This holds for the expansion of any term of ,,, and hence the coefficient of
Tut1, 041 18 0. Of course the argument holds if the partition has more than 2
component parts.

It thus appears that this rule holds not only for %. and m, as Fisher and
Georgescu have noted, but for f,.

‘C. The coefficient of any partition which can be broken into component
parts is 0. In this sense a component part is any group of rows or columns
which have no entry in common with any other group of rows or columns.
It corresponds in matrix language to a matrix which results when one matrix
is zero bordered by another matrix although rows and columns may thereafter
be interchanged.

The proof of this more general case follows the general line of the simpler
case although the reasoning is more complicated. For example the coefficient of

Ci1 Ci2 --- Cip 0 0

Cu Com---Cy 0

€y Cg---Cy O 0

Ca Cug -+ Cup O 0

0 0 ---0 Cut1,041 Cut1,042
0 0 ---0 cCutz,vi1 Cut2,ot2

is 0 since any w rowed term of the =, ,, contributes
(w) (w+1) (w)
Bwbcu-i-l s v+1HCu+2 5 w41 b°u+2 v o+2HCut2 0 vt2 [wn + n — nn ]
(w) (w+1) (w+2)
+ Bwb°u+l v v+1%u+2 0 vt2 b°u+1 » v+2Cu+2 0y vt2 [w(w - 1) n + 2wn + n
—nfn — 1) n™] = 0.

Other special rules of Fisher and Georgescu do not hold in the general case.
Thus Fisher rule B is not generally true since.the partitions

12 and 22
30 20
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have respective algebraic coefficients of byben + bsibsn(n — 1) and
bsban + bngzn(n - 1)

and these are not in general equal to 0.

The Fisher rule C is replaced by the somewhat less general C of the present
section.

The Fisher rule D is not applicable in the general case. The Fisher rule D
is applicable in all cases in which the value of the b,m1 ... ;7 is completely deter-
mined by the number of parts for in this case the particular value of each
part is not pertinent. We may say then that the Fisher rule D is applicable
to all cases in which b,m,7: ... ,% is a function of p, n where p is the number

P 2
of parts. This condition is satisfied by b,m1 ... ;7 = (_—1)—7—2(7’:)——_&! and the
coefficients are worked out for it in Fisher’s paper. The same method is
applicable to other functions satisfying the general condition although the
values of the coefficients will of course vary with the definition of b.

The Fisher rule E is not applicable to the general case. Its validity, from
an algebraic standpoint, depends upon the Fisher property B which is not
generally applicable. The Fisher rule E as applied to the more general case:
gives correct terms but it does not give all the terms. For example the Fisher
rule E applied to N\a(k.) gives

Mo, 2\
Ao(ke) = ‘;-i-n —1
s 4N3\2
Malle, ) = 5+ S = 1)

The application of a corresponding rule to
Ne(f2) = binhs + 2[bin + bun(n — DIN;

would give
Ar(fo, /1) = bibimhs + 4[bzbin + bhibin(n — 1)[Ashe

while the correct result is indicated by

1 4 2 4
221 210 201 111
011 020 110

and is
Aa(foft) = bibinhs + 4[b3bin + bebubin(n—1)As\e + 2[b3bin + bibin(n — 1)\she
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The difference is due to the vanishing of the two ndiddle terms in the case of
the k& functions.

The rule B’, which Georgescu found most useful in computing and checking
his formulae, is not generally true. It is not even true in the case of the %
function, as can be discovered by using it on the list given by R. A. Fisher
(3,210). It is interesting to note that the Georgescu method, while not being
able to utilize many of the special rules of the Fisher method, does use this rule
which is not in general adaptable to the Fisher method.

33. Special Rules in the Case of the i’ Functions. Special rules can be
worked out for other sample functions. As an illustration we examine the

function A, which was defined in section 19. It is recalled that by = 7-—1—};—) and

that b,7 ... ;% = 0 for all other cases. It follows at once that
A. Any partition having any entry other than unity (or zero) may be
neglected.

B. The value of by is —3—
n p)

As an illustration we write the value Ay(hs, k). From the partitions of
section 24 we select

36 36
111 110
111 and 110
110 101

011

as being the only partitions making a contribution. The result of section 19
follows at once.

34. The Case of a Normal Universe. A normal universe is characterized by
the relationship that A, = 0 when r > 2. It follows that it is only necessary
to compute the coefficients of those partitions giving powers of A.

Wishart (5) (7) has developed the partition analysis of the k function in
the case of a normal parent while Georgescu has studied the corresponding
m function. It is not the purpose of this section to make extensive study of
the case of the normal parent but simply to indicate that the results of section 24
are immediately applicable. As an illustration we write the values of M(fy),
A2(f2), Ns(f2) and Ay(f2) in the case of a normal universe. The terms are given

successively, by

1 2 8 48
2 11 110 1100
11 011 0110

101 0011

1001
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and hence
M(f2) = banke
Ae(fe) = 2[b§n + bfln(n - 1)])\;
N(fe) = 8[b3n + 3bbiin(n — 1) + bhn(n — 1)(n — 2)IA3
M(f2) = 48[bin + 6bIbhn(n — 1) + bim(n — 1) + 4bdin(n — 1)(n — 2)

+ 2bim(n — 1)(n — 2) + bin(n — 1)(n — 2)(n — 3))A3.
It is only necessary to substitute the b’s to obtain the results for different values
of f. This is done in Table IV.

TABLE IV

The first four Thiele moments of fe for various sample functions in the case of a
normal universe

Sample
f";l.lnc- M(f2) N(f2) Ns(f2) A(f2)
10N
_ _ / _ 4 _ 4
my (n = 1) X 2(nn2 1) A2 8\nn3 1) N 8(nn4 1) A
" \ N2 8\S 48\
? ? n—1 (n — 1)2 (n — 1)
L n—1) \ 2(n — 1) \2 8(n — 1A 48(n—1)As
n 2 2 2 nd nt
, 23 8\ 48\3
™ he o ) o
o\ 8\s 483
he M — = 1 = 1y
B 0 22 8(n — 2)A 48(n* — 3n + 3)A:
? n(n — 1) n¥(n — 1)? nd(n — 1)

One surmises that the general value of
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where B represents the b coefficient of the r rowed partition. This induction
appears consistent with the fact that
2’7‘ ! xg+l
p = —"
wlk) = 2
as shown by Jobn Wishart (7). The whole subject of the Thiele moments of
the general function in the case of a normal universe would make an interesting
subject of investigation.

35. Summary and Conclusion. The contributions of this paper include

1. The definitions of specific moment functions in terms of power sums.

2. The use of indeterminate multipliers in representing a general isobaric
moment function.

3. The finding of the expected value of products of these functions by alge-
braic methods.

4. The use of tables in writing these expected values in terms of moments
(or of moments about a fixed point) of the universe.

5. The finding of the expected values of specific moment functions by sub-
stitution.

6. Means of establishing the expansion of new moment functions which are
defined by their expected values.

7. The introduction of the sample function of weight r whose expected
value is g..

8. The introduction of the sample function of weight r whose expected
value is pi".

9. The two way partition formulae of weight < 8 which do not involve
unit parts.

The use of these partition formulae in writing:

10. The moments about a fixed point of f, in terms of moments.

11. The moments of f, in terms of moments.

12. The Thiele moments of f, in terms of moments.

13. The moments about a fixed point of f, in terms of Thiele moments.

14. The moments of f, in terms of Thiele moments.

15. The Thiele moments of f, in terms of Thiele moments.

16. Special rules in the case of Thiele moments.

17. The applicability of these results to a given sample moment function
and hence the derivation of varied results, of such authors as Thiele, Tchouproff,
Church, Fisher, Craig, and Georgescu, from the same partition formulae.

18. The simplicity of the formulae when k. is used as the sample function.

19. The application of the synthetic formulae to the Craig method.

20. The applicability of the theory to a normal universe.

The introduction of such general procedure opens up a wide field for future
study. It is impossible in a single paper dealing with so broad a subject to do
more than to outline the general scheme by which two way partitions can be
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used as a central formulization of the various formulae for moments of moments.
More detailed proofs and more extensive analysis of the more important of the
special cases will undoubtedly be supplied by later writers.

In later papers the author will show how the partition representation can
be used in the case of multivariate distributions and how it can also be used,
in connection with the sampling polynomials introduced by H. C. Carver (11),
to represent the more complex formulae obtained in the case of finite sampling.

It is obvious that t}.e author is indebted to the classical moment studies of
Fisher and Craig. He also wishes to acknowledge his indebtedness to Prof.
Craig and to Prof. Carver who have read the manuscript and have made
valuable suggestions.

THE UNIVERSITY OF MICHIGAN.
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