SOME EFFICIENT MEASURES OF RELATIVE DISPERSION!
By N1r.AN NoORRIS

For some time it has been known that the coefficient of variation (in the sense
of the ratio of the standard deviation to the arithmetic mean) is not an efficient
statistic for distributions departing materially from normality.® At various
times there have been proposed certain supplementary estimates of relative
variation, such as those involving ratios between sums and differences of upper
and lower quartiles, and ratios of mean deviations to medians or to arithmetic
means. Some of these have appeared in certain textbooks.” But there appears
to have been no attempt to found their use on considerations of minimum
sampling variance.

The point of departure of this paper is that of using the Method of Maximum
Likelihood to derive two efficient measures of relative dispersion, together with
expressions for their standard errors. These optimum estimates of true or
parametric variation are the ratio of the arithmetic mean to the geometric
mean (the arithmetic-geometric ratio) for Pearson Type III distributions,
and the ratio of the geometric mean to the harmonic mean (the geometric-
harmonic ratio) for Pearson Type V distributions. The usefulness of these
measures is suggested by the generalized-mean-value-function approach to the
analysis of averages, especially the theorem of inequalities among averages.*

! Presented before a joint meeting of the American Statistical Association and the
Institute of Mathematical Statistics at Chicago, Illinois on December 28, 1936.

2 The term “‘efficient statistic’’ is used here in the sense of R. A. Fisher, that is, of a
parameter-estimate which tends towards normality of distribution with the least possible
standard deviation. For a discussion of the inefficiency of certain commonly used statistics
as applied to distributions departing from normality, see R. A. Fisher, ‘“On the Mathemati-
cal Foundations of Theoretical Statistics,’”’ Philosophical Transactions of the Royal Society
of London, Serics A, Vol. 222, 1922, pp. 332-336.

3 See, for example, William Vernon Lovitt and Henry F. Holtzclaw, Statistics (Prentice-
Hall, Inc., New York, 1929), p. 184; Herbert Arkin and Raymond R. Colton, Statistical
Methods (Barnes and Noble, Inc., New York, 1935), revised ed., p. 41; and Herbert Soren-
son, Statistics for Students in Psychology and Education (McGraw-Hill Book Company,
Inc., New York, 1936), pp. 153 f.

¢ Nilan Norris, “Inequalities among Averages,”’ Annals of Mathematical Statistics,
Vol. VI, No. 1, March, 1935, pp. 27-29; and ‘“Convexity Properties of Generalized Mean
Value Functions,” Annals of Mathematical Statistics, Vol. VIII, No. 2, June, 1937, pp. 118-
120. Professor John B. Canning appears to have been the first to point out the possibility
of making use of certain ratio measures of relative variation. See “The Income Concept
and Certain of Its Applications,”” Papers and Proceedings of the Eleventh Annual Conference
of the Pacific Coast Economic Association (dwards Brothers, Ann Arbor, 1933), p. 64.
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This theorem states that if t; < &, then ¢(f;)) < ¢(f2), where the unit weight or
simple sample type of generalized mean value function is defined as
1

M o) = (zi‘-f- o+ -+ xi)z-

n

The z; are restricted to positive real numbers not all equal, but ¢ may take any
real value. A necessary and sufficient condition that ¢(— =) = ¢(¢) = ¢(x)

is the excluded trivial case that z; = 22 = -.- = z,. When the z; are not all
equal, the ratios between various pairs of averages as generated by ::E—?% yield
1

ratio measures of relative dispersion, the usefulness of which depends, in part,
on their efficiency as estimates of population-characterizing constants (param-

eters). The arithmetic-geometric ratio may be written i% = %; and the
geometric-harmonic ratio may be written q;?f?i) = g In certain cases it

may be of convenience to reverse the order of each of the ratios. The standard
errors for the two forms which each of the ratios may assume are presented
below.

The demonstration that these ratio measures of relative dispersion are 1009
efficient statistics for their appropriate distributions, and the derivation of use-
ful expressions for their respective standard errors both may be accomplished by
the ordinary method of differentiating the logarithm of the likelihood.

Let digamma of x = Fp(z) = t—% log !,

2

and trigamma of z = Fr(z) = dix’ log z!

For Pearson Type III distributions, the frequency with which the variate z
falls into the range dz is given by
1 fz\° -Zdz
df = == a =,
@ y= L(2) e
The parameter @ measures the absolute dispersion of the distribution, and the
parameter p determines the general shape of the frequency curve. The relative
variation may be regarded as a population parameter, 6, defined as the ratio
of the population arithmetic mean to the population geometric mean. Let the
logarithm of the likelihood for this distribution be represented by L, we have

3) L= —nlogp!—np+1loga+ Zlogz; — le—Ex.-,

where the summation is taken over the » individuals of the sample. It follows
that
oL

n 1
4) %2 = —(—z(p+ 1) +a—22x,‘,, and

'L

n 2 .
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When L is maximized with respect to a by equating to zero the first derivative
of L with respect to a, we find

()

It also follows that

2:‘ alp + 1).

73% = —nFp(p) — nloga + Z log 2;;

(6) 2 2
.._.L = —nF ( ) and \a_Ii = ._a_L = _r
ap* TPl dadp dpoa a’

When L is maximized with respect to p by equating to zero the first derivative
of L with respect to p, we find

1
) (Ilz)™ = ae>®

The optimum estimate p of p is therefore found from (5) and (7) to be given by
the equation

—Fpp) _ 2T ,17__4
® @+ e =2 [(zys = 4

But (p -|— 1)e "2 is the parameter §. Hence we find the optimum estimate of

6 to be ek which can be expressed in terms of the generalized mean value func-
o(1)
¢(0)°

the optimum estimate of 6, the ratio of the arithmetic mean to the geometric

tion as Therefore, for distributions well graduated by a Type III curve
L A
mean, is given by et

If only p is being estimated, (a given) the variance, or square of the standard
o°L 1

deviation of p is obtained from — pt ,andis V(p) = ") To a first approxi-
mation, the variance of g, the estimate of 0, is found from the usual relation
between the variance of a function and the variance of the argument, namely
d 2
(9 vl = [ 49 v,
Since
1
10 — (@) =6 — — F ]
(10) P e
therefore
1 2
. (2) - IR
G nFz(p) ’
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or the standard error of g- is the square root of the last expression, if only p is

being estimated. If it is more convenient to do so, one may reverse the terms
in the ratio to obtain

2
F s
2 1<§)=04[ ® ~ i
A nFr(p) ’
and extract the square root of the last expression to obtain the standard error
G
of Z .

If @ and p are being estimated simultaneously, there exists the matrix of
negative mean values

-5(2) ()
6a2 aaap _

(13)
(22 ()

from which the variance of g can be computed. In fact we have

|
)
+

nFyr (P)

o1 3

.\ p+1 _ 1
p+1

and consequently

(15) V(g) _ 02[ r(p) - P+ 1]

n

The standard error of g is equal to the square root of the expression in (15),

if both a and p are being estimated. If the terms in the ratio are reversed,
one obtains

(16) V<g> =¢" [FT(p) - “-F’i]

A

The square root of the last expression may be taken to derive the standard

error of % Since the digamma and the trigamma functions have been tabu-

lated for considerable ranges,’ these standard error formulae, and those de-
veloped below for the Type V case should be quite useful.

& British Association for the Advancement of Science: Mathematical Tables (Office of the
British Association, London, 1931), Vol. I, pp. 42-51.
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For Pearson Type V distributions, the frequency with which the variate z
falls into the range dz is given by

- 1 (a\*** -tdx
a7) df=;!(—) L3

X a

The parameter a measures the absolute dispersion of the distribution, and the
parameter p determines the general shape of the frequency curve. The relative
dispersion may be regarded as a population parameter, ¢’, defined as the ratio
of the population geometric mean to the population harmonic mean. Let the
logarithm of the likelihood for this distribution be represented by L. Then

(18) L=—nlogp!+n(p+1)loga—(p+2)210g:c.~—a2‘,a—t‘,

‘the summation being taken over the sample of n individuals. It follows that

%% = —nFp(p) + nloga — Z log z;;
o’L
(19) oL _2p4+1) -3k
da a z;’
o’L n

oL _ 7L _=n

apda  dadp a

Let L be maximized with respect to p to derive the geometric mean, and let L be
maximized with respect to a to derive ¢(—1), or H, the harmonic mean. It is

clear that for the Type V distribution, the relative dispersion, as we have defined
Fp(p) 1

it, is the population parameter §' = ; | Therefore, if $(0) = G = (Iz,)",
and ¢(—1) = H = 1—1—]— , it follows, by an argument similar to that used in the
n? |

case of a Type III curve, that the geométric-harmonic ratio, g, is an optimum

estimate of the parameter @', for distributions well graduated by the Pearson

Type V curve.
If only p is being estimated, the variance of p is given by V(p) = 1Tl(p5’ and
T

_ -
= V<§> = LFT(pip:(lz;)—ﬁ] ’
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or the standard error of G is the square root of the last expression, if p alone is

H
being estimated, a being given. If the terms in the ratio are reversed,
1 2
F -
(21) V(§> = 0'2[ U 1]
G nFr(p) ’
and the square root of the last expression yields the standard error of -}i

G
If a and p are being estimated simultaneously, there exists the matrix

'L o°L ’ n n
- (Eﬁ) — (aaap> a? @+ “a

(22) =
o f &L a2L> n
) =GH)| | -4 o
from which the variance of % can be found. In fact
i 1
(23) V(p) = ]
F -
n[ 2 p+ 1]
and hence
(24) V) = ‘f[n(p) - —1—]
n p+ 1]
The standard error of —g is then given by the square root of the expression for
V(6'). 1If the terms in the ratio are reversed,
H\ _ - _ 1
(25) V(—G‘> =0 [FT(P) P ¥ 1];

the square root of which yields the standard error of ﬁ’l

Just as the coefficient of variation is an efficient statistic only for distributions
well graduated by the normal, or Pearson Type VII curve, so also the two maxi-
mum likelihood estimates of relative dispersion herein developed are efficient
only when applied to their appropriate distributions. One may expect to
obtain an optimum degree of efficiency only when the arithmetic-geometric
ratio is used for series well specified by the Type III function, and the geometric-
harmonic ratio is used for series well specified by the Type V function.

It may be recalled that Karl Pearson proposed the use of the coefficient of
variation late in the nineteenth century.” Since that time there appears to
have been some tendency to rely on it as a measure of relative variation, regard-

&6 ““Regression, Heredity, and Panmixia,”” Philosophical Transactions of the Royal Society
of London, Series A, Vol. 187, 1896, p. 277. For materials pertaining to the Pearson-Thorn-
dike controversy resulting from the latter’s suggestion that the ratio of the standard
deviation to the square root of the arithmetic mean is often a more suitable device than is
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less of whether or not it extracts from the sample a relatively large amount of
the pertinent information concerning the parent population.” There are several
cases in which the coefficient of variation is not an optimum estimate of relative
dispersion. For example, in a comparison of the true or parametric variation
of the weights of humans of given age levels, the arithmetic-geometric ratio is
often the appropriate statistic to use, since weights tend to be distributed
according to the Pearson Type III law. Frequently the distribution of weights
is very well graduated by the Type V function, if the origin is fixed at 0 in
advance. - Although this procedure yields a special two-parameter Type V
function, the principle of using the geometric-harmonic ratio as an optimum
estimate of relative dispersion is still valid. Again, in a comparison of the
relative variation of the personal distribution of wealth and income in certain
modern countries, the arithmetic-geometric ratio will be found to have a smaller
sampling variance than that of the coefficient of variation, since the personal
distribution of wealth and income in these countries tends to be in accordance
with the Type III law, rather than the normal law. Similarly, the distribution
of the number of trials required to obtain 7 successes of an event having a given
probability usually follows the Type III function, and requires the use of the
arithmetic-geometric ratio, if the maximum amount of the relevant information
is to be extracted from the sample.

It seems clear that in practice the usefulness of the arithmetic-geometric
ratio and the geometric-harmonic ratio will depend on the type of the distribu-
tion with which one is dealing, and on the extent to which added efficiency is
desired. In certain cases there is doubtless room for some difference of opinion
as to whether or not the degree of added efficiency achieved by the use of these
maximum likelihood estimates of relative dispersion will merit departing from
the use of such a time-honored statistic as the coefficient of variation. If one is
interested in avoiding the assumption of normality implicit in methods cus-
tomarily used in the more general problem of analysis of variance, an alternative
is the use of ranks.®> Although the efficiency of these rank-correlation methods
is not always 10097, their economy of effort is sometimes a great advantage.

HuNTER COLLEGE OF THE CIiTY OF NEW YORK.

the coefficient of variation see Edward L. Thorndike, ‘“‘Empirical Studies in the Theory of
Measurement,”’ Archives of Psychology (The Science Press, New York, 1907), Vol. I, No. 3,
April, 1907, pp. 9-13; and An Introduction to the Theory of Mental and Social Measurements
(Teachers College, Columbia University, New York, 1913), 2d. ed. pp. 133 f., or 1st. ed.,
1904, pp. 102 f. Sece also Helen M. Walker, Studies in the History of Statistical Method
(The Williams and Wilkins Company, Baltimore, 1929), p. 178.

7 Cf. Walter A. Hendricks and Kate W. Robey, “The Sampling Distribution of the
Coeflicient of Variation,”’. Annals of Mathematical Statistics, Vol. VII, No. 4, December,
1936, pp. 129-132.

8 Harold Hotelling and Margaret Richards Pabst, ‘‘Rank Correlation and Tests of
Significance Involving No Assumption of Normality,”’ Annals of Mathematical Statistics,
Vol. VII, No. 1, March, 1936, pp. 29-43. See also Milton Friedman, ‘“The Use of Ranks to
Avoid the Assumption of Normality Implicit in the Analysis of Variance,”” Journal of the
American Statistical Association, Vol. 32, No. 200, December, 1937, pp. 675-701.



