CONFIDENCE LIMITS FOR CONTINUOUS DISTRIBUTION FUNCTIONS!
By A. WaALD® aND J. WoLFOWITZ

1. Introduction. The theory of confidence limits for unknown parameters
of distribution functions has been considerably developed in recent years. This
theory assumes that there is given a family F of systems of n stochastic variables
X1(01, ---,0k), -+, Xn(61, -, 0;) depending upon k parameters 6, --- , 6
and such that the distribution function of every element of F is known.

For the case k = 1, for example, this theory proceeds as follows:

Denote by E an n-tuple z,, ..., 2z, of observed values of the stochastic
variables X1(6), - - - , X4(6) of which we know only that they constitute a system
which is an element of F. E can be represented as the point z;, - -- , 7, in an
n-dimensional Euclidean space. Let there be given a positive number a, 0 <
a < 1. Then to each pair E, a there is constructed a g-interval, [0(E, ), 8(E, )]
with the following property: If we were to draw a sample from the system
X,1(0), - -+, Xa(6), the probability is exactly « that we shall get a system of
observations £ = =z, ..., 2, such that the interval corresponding to E, «
will include 8 (i.e., that 8(E, «) < 6 < 0(E, «)).

In this paper we do not limit ourselves to a family of systems of n stochastic
variables depending upon a finite number of parameters, but consider the family
@ of all systems of n stochastic variables X;, - - -, X, subject only to the condi-
tion that X, , ..., X, are independently distributed with the same continuous
distribution function.

Let E be the point in an n-dimensional Euclidean space which corresponds to
the observed values z;, --- , z, of the n stochastic variables X;, ..., X, of
which we know only that they constitute an element of the family G, i.e., that
they are independently distributed with the same continuous distribution func-
tion. Let us denote their distribution function by f(x); the probability that
X;<zisf(z),2=1,-..,n Let a beanumbersuchthat0 < « < 1. To
each pair E, o we shall construct two functions, lz,.(z) and lg .(z), with the
following property: The probability is « that, if we were to draw a sample
from the system X;, ..., X., we would get a system of observations E =
Zi, -+, T such that f(z) lies entirely between lg .(z) and lg,.(z) (i.e., that
Is.«(x) < f(z) < lg.a(z) for all ). We shall call lg,.(z) and lg,.(x) the upper
and lower confidence limits, respectively, corresponding to the confidence
coefficient a.

1 Presented to the American Mathematical Society at New York, February 25, 1939.
2 Research under a grant-in-aid from the Carnegie Corporation of New York.
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All the stochastic variables considered hereafter in this paper are to have
continuous distribution functions.

2. A theorem on continuous distribution functions. Let f(z) be the con-
tinuous distribution function of a stochastic variable X whose range is from
— o to +o. Let §(z) and 8:(z) be two functions defined for 0 < z < 1
and satisfying the following requirements:

(a) 8:1(x) and 8,(x) are non-negative and continuous for 0 < =z < 1.

(b) lLi(x) and l(x) are monotonically non-decreasing for all z, where

h(z) = f(z) + a(f(2))
L(z) = f(z) — 8(f(z)).

(¢) There exists a number A, such that f(h) < 1 and (k) = 1.
(d) There exists a number k', such that f(k") > 0 and (k") = 0.
(e) h(z) < 1lforallz

lo(z) > 0 for all =

) 6i(z) + 8:(z) > 111. for all z, where 7 is the number of random, independent

observations of the stochastic variable X.
Let ¢(x) be the distribution function of such a system of observations, i.e.,
the ratio, to n, of the number of observations <z is ¢(z). ¢(z) is, of course,

a multiple of %for all z.

We shall consider the following problem:
What is the probability P that

¢)) L(r) < o(x) < U(x)

for all z?

The reasons for restrictions (b), (¢), (d), (e), and (f) on &;(x) and &:(x) are
now apparent. If there exist two numbers ¢; < ¢z, such that, forqs < z < ¢,
L(z) > UL(ge) and UL(q1) = UL(qs), then, if we change l;(x) so that Li(z) = lLi(q)
for < z < @2, P will remain unchanged. An analogous process leads to a
similar conclusion for l,(z). Hence li(x) and ly(x) are to be monotonically
non-decreasing. If there did not exist a number k or i/, P would be 0. Hence
requirements (c) and (d). Since 0 < ¢(z) < 1, there is no point to considering
functions which do not satisfy (e). ¢(x) is a step-function whose saltuses are

>1 1 for all z.
n

h(o) + Bla) < )

then P = 0 If there is an interval [8, 4] within which &,(x) + 6(z) < %,

then all samples in which one of the observed values lies in this interval are
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such that (1) does not hold for all z. For the sake of simplicity and because
the situation described in (f) is the one of importance, we make the latter
requirement.

It would appear that P depends upon f(z), 8:1(x), 52(x), and n.

TuEOREM: P s independent of f(x) and depends only upon 8:(x), é:(x), and n.

Proor: Let ¥ = f(X). Then Y is a stochastic variable distributed in the
range 0 to 1 with a distribution function =z. By this transformation ()
and ly(z) become respectively

L(z) = z + &u(2)
L(z) = z — 8(x)

Then P is the probability that the distribution function ¢(z) of a random
sample of 7 of the stochastic variable Y shall be such that l;(z) < o(z) < li(z)
and is therefore independent of f(zx).

2 }ogng

3. Computation of P. From the previous section it follows that, in com-
puting P, we may confine ourselves to a stochastic variable X whose range is
from 0 to 1 and whose distribution function =z. Let l;(z) and lx(x) be the
upper and lower limits, respectively, which are set for ¢(z). UL(z) and l(z)
are defined in (2), if the accents are omitted.

Consider the equations:

3) u@=% (G=1,2-,70<z<1).

If, for a certain 7, the corresponding equation possesses one or more solutions
in z, let a; be the minimum of these solutions. If the first » of these equations
(3) have no solutions, let

a;=20 G=1...,7.

If the ¢tk say, of the equations

@ Ww =1 G=1,,m0<a<D)

possesses one or more solutions in z, let b; be the maximum of these. If the
last n — s of the equations (4) have no solutions, let

b; =1 G=s4+1..-,n).
Obviously
a; < aiy1, b < biyn, @i < b
From restrictions, (e) and (f) on li(x) and Ily(z), it follows that a; = 0,

b, = 1.
Suppose the sample E = z;, ..., z, has been obtained. Arrange the z’s
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in ascending order, thus: z,, , 2,,, -+ ,%,, Where z,, < z,, < ... < 2,,.
Then necessary and sufficient conditions that (1) hold are:

(5) a; < zp, < b =1 ...,n).

Let Pi(t, At), (k = 0,1, .- ,(n — 1); Grya < t < bryy) be the probability
that a sample E = 2,, - .. , z, shall fulfill the following conditions:
@znLzl- - <,

(b) 1, ..., xs satisfy the first k inequalities (5),
@t<zmau<t+ AL
Let
Pi)) = lim T 40
at—0 At

Since f(z) = z, we get easily
(6) Pyt) = 1.
We shall now develop a recursion formula for Pi.(f). For this purpose let

us consider the following composite event: The observations z,, - - - , z, satisfy
the conditions (a), (b), and

' <z <t 4 A
and
t <z <t+ AL
If apy < t' < brya, the probability of this event is Pi(t/, At')At. Now
. Py, At)At
dm, LULIZSY X0

Pi(t’") is obviously the probability density of the bivariate distribution of
t’ and . In order to obtain Pi.4(f) we have to integrate Pi(t') dt’ over the
region defined by the two inequalities

<t
Gy SV < baya.

Hence, omitting the now unnecessary accent, if

(7 t < bp

then

® Paa®) = [ POdt k=01, (n—2),
and if

(9) t> bap
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then

dr+1
) Pl = [ Pidt (6=0,1,2, - (n—2).
ak+1
Now, to obtain P, we cannot confine ourselves only to cases where z; <
23 < ... £ z., but have to consider all the n! permutations of the n z’s. Hence

(11) Peal [ Pus)d.

The fact that there are two forms of the recursion formula corresponding to
the two possible cases (7) and (9) makes actual calculation very cumbersome
for n of any considerable size. We shall therefore give an approximation
formula which is considerably easier to apply to practical calculations.

4. Computation of P and P. Let P be the probability that, for a sample of n,
l(z) 2 ¢(z) for all z. Let P be the probability that, for a sample of n, o(z) >
la(x) for all z.

Consider the inequalities

(12) T = @ .
(13) x.,Slk (1'_1}2) .'.)n)
Let
Pk(t) At)) (k=0, 17"" n_l);tZaH—l)

be the probability that a sample E = z,, .- -, z, of the stochastic variable X
should fulfill the following conditions:

@zn<Lz-- <z

(b) z1, .-, i satisfy the first k¥ inequalities (12)

@tz <t AL

Let
. B, Ab)

Pt) = ‘PtI—Iolo Al

Then, by an argument like that employed in the preceding section, we obtain
(14) Byt) =1,
and the recursion formula

(15) Poud = [ Pa

ak+1

Let P,(t) be defined formally by (15). Then, in the same way in which we
obtained (11), we get

(16) P = n! P, (1).

In the same manner we shall obtain an expression for P.
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Let Pi(t, At), (k = 0,1, ... (n — 1); ¢ < bax) be the probability that a
sample E = z;, - - - , x, of the stochastic variable X should fulfill the following
conditions:

(a) ZTot < Tnkil <... =< Zn,

() Tnt1, -+, Zn satisfy the last k inequalities (13),

() t L zny <t 4 AL

Let
— 1 B k(t) At)
Pu®) = lim ===
Then
a7 Po(t) =1

and by an argument very similar to that employed above,
bn—k
(18) Poa) = [ PO

Let P.(¢) be defined formally by (18). Then
(19) P = n! P,(0).

The P,(t) and P;(t) are polynomials in t. Denote by c; the constant term of
P,(t) and by d; the constant term of (—1)’P;({). Obviously

(21) do =1
and
Co i [ §—
(22) P) =5t + gyt + o et ta
(i di o, ) )
@ = (0 (B b e +deat + ).
Since

Pia) =0, Pibaiz) =0

we obtain
a‘ a:_l .
(24) Gz '+C1( 1)!+"'+C€-—lat'+0i=0 (z=1,2,...,n)
and
do b" $—1 _
(25) -t Ty 1)| bosipt+ -0+ diabain +di =0

¢G=12—---,n)
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The determinant of (20) and the first § equations (24) (j = 1, -+« , 1) eon-
sidered as equations in ¢, ¢1, --- ,c; equals 1, since all the elements of the
principal diagonal are 1 and all the elements above the principal diagonal are 0.
Then

1 0
a 1 0 el 00
2
= | ®
G = 31 az 1 0 0
% i—1 —2
a; a; a; .
(26) T G- G- a 0
a 1 0 0
2
Q2
=(_1)‘ -2—1 asz 1 0
PR
i1 G=D! G=2I @

From (16) and (22) for ¢z = n, we get
P=cqg+na+nn—Dat- - +nn—1) - --0@)2)cas+nleca

Wooml o aloal o
n! (n—-1) (n-2) 11 0!
a 1 0 e« 0O
27) o
=| ag
31 a2 1 cee 00
9—: ar” an”? a 1
n! (n—1) (n—2)! "

In the same way, we obtain

| 1 0 0
ba 1 0 0
g=| b b 1 0 0
21 "
bacinn  biin TR bes 0
(28) i G=11 @-2)! i
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ba 1 0 .0
ba1
= (-1 2! LS 1 0
noint badip baip bos
i GE=D! @-2) et

and from (19) and (23) for 7 = n,
(29) P =(-1)"nld,..

Perhaps if the determinants in (27) and (28) were to be simplified it might
be easier to calculate P and P that way than by the recursion formulas.

5. The approximation of P. Let J be the probability that, for a sample of =,
there exists at least one pair of numbers w; , ws, such that

0<w; <1 G=12)

e(wr) > hLwy)
o(ws) < L(ws).

Recalling the definitions of P, P, and P, it is obvious that
(30) 1-P=1-P)+(1-P)—J.
Now if
(31) J<(1-PQ1-Pp)

and (1 — P) is small, the right member of (30) with J omitted furnishes an
excellent approximation to (1 — P). Suppose, for example, that it were
desired to give upper and lower limits l:(z) and %x(x) such that P = .95. Choose
Li(z) and L(z) so that, for example, P = P = .975. Then P cannot differ
from .95 by more than .000625. Even if

(32) J<K(1-PQ-P

where K is a small factor, say 10, the approximation would still be excellent. It
seems very plausible that even (31) holds. However, we have not yet suc-
ceeded in obtaining a rigorous proof.

6. The construction of confidence limits. We now proceed to the construction
of lg.«(z) and lg,.(x) which were defined in Section I of this paper.

A confidence coefficient (0 < a < 1) is selected to which it is desired that
the confidence limits correspond. Functions 8;(xz) and 8:(x) are chosen to be
as defined in Section 2 and also to be such as to make P = a. This can be
done by application of the formulas for the evaluation of P.

The functions lg,.(z) and lg,.(z) are to be known when E and « are known.
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Since a is given, lr.o(z) and ls,(z) depend upon the outcome of the experiment
which yields observed values of the stochastic variable X. Let E =

Ty, -+, T, be this system of values and let ¢(z) be its distribution function.
Consider the equations

(33) di(e(z) + Mi@)) = Au(@)

(34) di(p(z) — Ax(z)) = As2).

For a fixed but arbitrary z, —o© < £ < 4+ », ¢(z) is known and (33) and
(34) are equations in Ay(z) and Ae(z). If, for a certain z, (33) has one or more
solutions, let &(z) be the maximum of the set of solutions (for this z, of course).
Similarly, if for a certain z, (34) has one or more solutions, let e2(z) be the maxi-
mum of the set of solutions.

We can now give lg,(z) and lg,.() as follows:

For an z such that (33) has at least one solution,

(35) ls,o(z) = ¢(2) + a(2).
For an z such that (33) has no solutions,

(36) ls.o(2) = 1.
For an z such that (34) has at least one solution,

(37 bs,o(2) = o(2) — ().
For an z such that (34) has no solution,

(38) Iz.a(z) = 0.

We recapitulate briefly the meaning of lz,.(z) and lx,.(z) which were defined
in Section 1. These are two functions defined for —© < z < -+« which
may be constructed as above after a confidence coefficient a has been assigned
and after the outcome of the physical experiment which determines the sto-
chastic point E is known. These functions have the following property: No
matter what the distribution function f(z) of each of n stochastic independent
variables X, - -- , X, may be, provided only that f(z) is continuous and the
same for each X, --., X, the probability is exactly « that, if we were to
perform the physical experiment which gives a set of values E of the stochastic
system X; , - -- , X, and were then to construct lz,«(z) and ls,«(2), the inequality

(39) ln.a(z) < f(2) < la.o(z)

would hold for all z.

A less precise but more intuitive statement of the above result is as follows:
If, in many experiments we were to proceed as above to construct ls,«(z) and
ls.«(z) and then, in each instance, we were to predict that the unknown f(z)
(which need not be the same in all experiments) satisfies (39), the relative
frequency of correct predictions would be a.
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The formal proof of this result is exceedingly simple. For any continuous
f(z), the probability is « that

(40) L(z) < o(x) < h(z)

will hold for all z. This is so because of the way in which &,(x) and 8:(x) were
chosen. To prove the required result it would therefore be sufficient to show
that, if (39) holds for all z, (40) holds for all z and conversely.

Let x be fixed but arbitrary. We shall show that

(41) J(@) < lg,a(®)
implies
(42) L(z) < o(2)

and conversely.

If (33) has no solution, ¢(z) > l(1) > L(x), lg,o(x) = 1, and (41) and (42)
are trivial. Assume therefore that (33) has at least one solution. For this
situation, then, we have to show that

(43) J(@) < o(2) + al2)
implies
(44) L(z) < o(z)

and conversely.
With z and hence ¢(x) and ¢ (z) fixed, consider the equation in z’:

(45) L(z') = o(2).

Since ¢(z) < l(1), (45) has at least one solution. Let z,, be the maximum of
these solutions for a fixed z. Then from the definition of & (z) it follows that

(46) f@n) — @) = al@),
or, on account of the definition of z,, ,
(47) J@n) = ¢(2) + ).

Now, if (43) holds, z < z,, because of (47). Then, from the definition of z,,
and the fact that l(z’) is monotonically non-decreasing (44) follows.

If (44) holds, then z < z,, (by the definition of z,, and the monotonic char-
acter of I(z')). Hence, because of (47), (43) is true. This shows the equiva-
lence of (43) and (44).

In a similar manner, it may be shown that

(48) lg,o(2) < f(z)
implies
(49) p(z) < U(z)

and conversely. This completes the proof.
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7. Miscellaneous remarks. An expedient way of choosing 8,(z) and 5x(z) is
such that, with ¢ a constant,

S = mi 1
(50) z + &(r) = min [z + ¢, 1] 0<s<1
z — &(z) = max [z — ¢, 0].

Tables of double entry could be constructed giving the ¢ corresponding to speci-
fied « and n. With such tables available the construction of confidence limits
would be quick and simple in practice. In this case, &(z) = e(z) = c.

Another expedient and plausible way of choosing &(x) and 8y(xr) might be
to choose them so that

6i(z) = mi , 1
51 z + &i(z) = min [pz + ¢, 1] 0<z<1
z — 8(z) = max [p'z + ¢, 0]

where p, p’, ¢, and ¢’ are constants. The actual construction of confidence
limits could then be handled with dispatch if similar tables were constructed.

le.a(z) and lgo(z)
are, like ¢(z), step-functions. The situation may occur where, for z = e,

lim lgo(z) < lim lgl(2).

(z<e),z—e (z>e),z2-%e

This would give a prediction, corresponding to the confidence coefficient
that f(z) is not continuous. If f(z) is continuous the probability of such a
situation is 0.

8. Further problems. Even with « fixed, the functions 8;(z) and 6x(z) may
be chosen in many ways. Each different choice gives, in general, different
confidence limits. Which is to be preferred? This very problem also arose in
the theory of parameter estimation and the testing of hypotheses and gave
rise to the Neyman-Pearson theory. It would be desirable to develop such a
theory for the confidence limits discussed in this paper.

We have treated here only the case where f(z) is continuous. A similar
theory is needed for the case where f(x) is not continuous.

It would be of practical value to construct tables such as those described in
Section 7. The construction of tables could be greatly facilitated if the formulas
for P or P and P could be simplified so as to render them more practical for
calculation or else if they were to be replaced by asymptotic expansions.

9. An example. To illustrate the method we shall consider an example for
the case of samples of size 6, i.e. n = 6.
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Let 8,(z) and 8:(x) be given as follows:
(z) =d for 0<z<1—4d,
z)=1—2 for 1—-d<z<1],
) =2 for 0 <z <d,

and
) =d for d<z<1.

Denote by P the probability that
o(z) < f(z) + alf(@),
by P the probability that
o(z) 2 f(z) — &lf(2)]
and by P the probability that
f@) — &[f(2)] < o(z) < f2) + alf(@)].

¢(z) denotes the sample distribution and f(z) denotes the population distri-
bution.
Since 8(z) = 8(1 — z), we obviously have

P=P
Let us calculate P = P in cased = . According to (3) we have
a=a =20 =0, a =3 as = %, as = %

According to (16)

P = 6!P,(1)
where
Po(t) =],
t
P = [ Psya (k=1,-,6).
Applying this recursion formula we get
2 3
PO =t PO=35 PO=F,
¢ 1
PO =5~ 73
£ t 11
PO =150~ g3 ~ 55
X0 t* £ 11¢ 11
() = . — - _

=720 2.3 3.2.5 235
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Hence
P=P=6Pl) =1 — -0 =0.967.
= 2592
Let us now calculate P = Pin cased = 3. We have
G=a=0 a=% a=% a=% and a =4%
Applying the recursion formula we get

Pt)=1 P@®O=t PW= tg: Py(t) = g - —-1—3"
PO 5~ 55

P = oy~ g~ o~ P

Py(t) = 7_26 - 2:,’35 - 2at.235 - 2s.13lst.5 - 2"1;;5

4

Hence

2483
= = ' —1 —_——— e =
P=P=6!P(l) = 1 — o = 0.787.

It is obvious that
1-P=1-P+@1-P) —J,

where J denotes the probability that ¢(z) violates both limits. In cased = }
no ¢(z) exists which violates both limits, and therefore J = 0. If d = 4,
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J is not zero but so small that it can be neglected. Hence
P=0934 if d=1%
and
P=0574 if d=1%
P increases monotonically from 0.574 to 0.934 if d increases from 4 to 4. Denote
by P, the probability correspending to d. According to (33)-(38), the con-
fidence limits corresponding to the probability level P; are given as follows:
lep(7) = o(z) + dif o(z) +d < 1,
lep,(z) = 1if o(z) +d > 1,
Inp(z) = p(x) — dif p(z) —d >0
and
lg,pd(z) =0if :p(x) —-—d<0.
Substituting for d the numbers } and 3, we get the confidence limits correspond-
ing to the probability levels 0.934 and 0.574 respectively. The upper and lower
confidence limits for the population distribution corresponding to the probability
level 0.574 are represented geometrically in Figure 1 by the upper and lower

dotted broken lines for a sample of 6 having the values z;, 2, --- 5. The
sample distribution is represented by the solid broken line.
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