THE LIMITS OF A DISTRIBUTION FUNCTION IF TWO
EXPECTED VALUES ARE GIVEN

By R. v. MisEs

In a very interesting paper' A. Wald dealt with the following generalization
of a problem started by Markoff and Tchebycheff: Denote by X a random
variable, by P(t) the probability of | X | < ¢ and by M, the absolute moment
of order r or the expected value of | X |"; what is the sharp lower limit (limes
inferior) of P(¢) for any point ¢, if M4, Mg, M., -.. are given? Wald outlines
an ingenious method for the general case of n given moments and adds the
complete solution for the case n = 2. I wish to show in the following lines
that the results for n = 2 can be deduced both in a more general and less com-
plicated manner. Instead of two different powers of | X |, I shall admit largely
arbitrary functions of X and I shall get the solution by a more intuitive way.
Moreover the upper limit of P(f) will be found too. It seems to me that my
method will be applicable also to certain cases with n > 2.

1. The Problem. Without loss of generality we can restrict ourselves to a
non-negative random variable X. Let 2(X) and y(X) be two increasing func-
tions of X with 2(0) = y(0) = 0. We suppose that the curve defined in a
Cartesian co-ordinate system by

1) z=1z0l), y=y@

is one which is convex downwards, i.e. the slope of its chords is increasing if the
co-ordinates of one or both extreme points of the chord increase (see Fig. 1).
This condition is fulfilled, for instance, if z = ¢, y = " and s > r > 0 where the
indexes r, s are not necessarily integers. Another exampleisz = ¢,y = £*/1 + ¢;
here, however, the ratio y/z is restricted to values between 0 and 1. In a third
class of examples as z = t/1 + ¢,y = £/(1 + ¢)* the curve corresponding to (1)
ends at a finite point.

The probability of the inequality X < ¢ will be designated by P(t), the proba-
bility of X > ¢ by P(f). The sum of P(f) and P(¢) is equal to 1 excepting the
points ¢ associated with a finite probability. But in any case the upper limit
of P(t) and the lower limit of P(t) give the sum 1.

The expected values of z(X) and y(X) can be defined by means of P(t) or P(¢)

a=[ " 20 dPG) = — [ "2 dP®);
@ . .
b= [ v0aP® = - [ 4 aPG).
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We suppose that the values of ¢ and b are given in a suitable manner and we
ask for the lower limit of P(¢) and P(f) at any point ¢. In other words, we try
to find two functions I(f) and I(¢) so that for all distributions associated with the
given values of @ and b we have

(3) P@) z U, P@) =@,

but that these inequalities are not valid, if I(t) and I(f) are replaced by higher
values. In Fig. 1 K is the curve defined by (1) and C the point with co-ordi-
nates a, b.

We can give a more intuitive interpretation to our problem by imagining a
mass distribution instead of a probability or frequency distribution. In fact,
if the mass of magnitude 1 is spread along the curve K in such a way that P(¢)
designates the sum (or integral) of masses lying to the left of the point z(¢), y(t),
then the point C will be the centre of gravity (centre of mass) of the whole mass
system. By the way, it follows that C must be situated on the inner side of the
convex curve K. Our question can now be stated as follows:

A mass of size 1 is distributed along a given convex curve and has its centre
of gravity in a given point C. What is the least possible value of mass lying
to the left or to the right of any point z(¢), y(¢) of the curve?

2. Restriction of Distributions to be Considered. The essential difficulty
of our problem lies in the fact that in order to find the limits I(f) and 1(¢) all
conceivable forms of distribution functions P(¢) and P(f) must be taken into
account. Let us now see how the field of distributions can be restricted in a
decisive manner.

Two mass systems with the same total mass and the same centre of gravity
will be called “equivalent systems”. Then the following corollary can be
stated:

If a mass system with the distribution functions P, P and a point M with co-
ordinates z(t), y(t) are given, we can always find an equivalent system consisting
of three particles or masspoints: a mass m; at M, to the left of M, a mass m at M
itself and a mass m, at M, to the right of M, so that

4 m < P(t), m2 < P().

This proposition enables us, in asking for the lower limit values I(¢), I(t) at M
to confine ourselves to the consideration of a special class of three-point systems
and to disregard all other kinds of distributions.

In order to prove the corollary we make use of the well known laws of ele-
mentary statics. According to these laws all masses lying to the left of M (in the
given system) can be replaced by a single mass of same size fixed in their centre
of gravity C, (Fig. 1). This centre is situated in the domain between the
curve K and the chord OM. The straight line MC, has one and only one second
point of intersection M; with K. Any mass at C; can be decomposed into two
masses, one of them of magnitude m,; lying at M, , the other of size m’ at M.
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In an analogous manner starting with the masses lying to the right of M in the
given system, my, m’’ and M, can be found. It is evident that m; can not
exceed the sum of masses which were attached to points to left of M in the
original mass system. It is the same with m; and the masses to the right of M.
If in the original system a finite mass mg had been attached to the point M, the
value of m in the new mass system will be defined as m = m’ + m" + m, .

3. The Extreme Distributions. Now, in order to find the limits I(f) and I(t)
for a certain point M, we are concerned exclusively with a two-parameter family
of mass systems, each of them consisting of three masses m,, m, m, at three
points M,, M, M,. We choose as parameters the magnitude m of the mass
attached to the point M and the slope of the chord joining M, and M,. Ifm
remains constant, the chord M, M, (Fig. 2) passes through a fixed point C, on

M,
Fiac. 1 Fia. 2

the prolongation of MC where CC; = MC.m/1 — m. The masses m; and ms
vary with the direction of MM, and are determined by

CoMz cho
e "0

We are only interested in the least possible values of m; and ms. But a
convex curve for which the angle formed by its extreme tangents is not greater
than 90°, has the characteristic property that the ratio of chord segments
M,C, : CuM,, for an inner point Cy, is permanently increasing or decreasing
when the chord turns about Cy ; there is no analytical maximum or minimum.
It follows that the lowest values of m, and m. can only be found in an extreme
position of the chord, i.e. when M, coincides with O, or M, with the other (even-
tually infinite) end @ of K, or finally when one of the points M, , M, coincides
with M. The latter cases must be mentioned since it was one of the conditions
for our three-point systems that M lies between M, and M,. The result we
have obtained until now is, that the lowest values of masses lying on one or the
other side of M are to be sought in a distribution of one of the following classes:
(1) The three-mass systems with one mass at M and one mass at O; (2) The three-

(5) Cm=(1-m
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mass systems with one mass at M and one mass at the end Q of K; (3) The two-
mass system with one mass at M.

Now we must distinguish three sorts of points M or three sections of the
curve K. If we trace the chord (see Fig. 3) beginning at O and passing through
C we obtain the point of intersection O’ and by means of the chord QC we arrive
at the point Q’. The three sections of K we have to deal with are 0Q’, Q'0’
and 0'Q.

If M is a point of OQ’ there exists a chord MM’ passing through C and there-
fore a two-mass system with masses m, m’ at M and M'. In this system the
mass to the left of M is zero, thus we have I(f) = 0 for all these points. If we
consider a three-mass systein with one mass at M, one mass at O and one mass
at any point M, , the value of m, is equal to the ratio CCy/M,C; , where Ci is the
intersection of M.C with OM. The least value of this ratio will be reached
when C, coincides with M. Therefore () is equal to the ratio CM/M'M or
equal to the mass m’ of the two-mass system mentioned before.

Fic. 3

Now let M be a point of the arc @'0’. For such a point a two-mass system
does not exist, since the straight line M C does not meet the curve a second time.
In a three-mass system O M M, the value of m is equal to CC;/M.C; as before,
and the least value of this ratio is attained, if M, coincides with Q. It follows
that I(¢) is equal to the ratio CCq/QCe where Cq denotes the point of inter-
section of QC with OM. In the same way we find I(f) equal to CC,/0Co, the
point of intersection of OC with M@ being designated by Co .

For a point M of the arc O'Q the circumstances are the same as for the points
of 0Q'.

In other words the extreme distributions which furnish immediately the
values of I(f) and I(t) are 1) the two-mass systems MM’ for all points of the
arcs 0Q’ and 0'Q and 2) the three-mass system OMQ for a point of the middle
section Q'0’. The corresponding values of I and 1 are to be found by the ele-
mentary laws of statics in the simplest way.

4. Results. The definite results can now be stated as follows. OQur data
are the funetions z(¢), y(¢) and the expected values a, b.
First we compute the co-ordinates p, ¢ of the endpoint Q, i.e. p = z(),
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g = y(«x). If g or p and q are infinite, we only need the limit value of y/z.
Then the two values ¢ and #* corresponding to the points O’ and @’ have to be
found. They are determined by the equations

6) y(t) _ b, y@&) — b _b—g

z(t) a ) —a a—1p

If ¢ belongs to one of the intervals ¢ < t° or ¢ = #, there exists one and only
one value of ¢’ different from ¢ and satisfying the equation

.

a—z@) _ b—y
™ @) —z()  y@) —y@®°

t° L,
F16. 5

The point M’ with co-ordinates ' = z(¢'), ¥’ = y(t') is the second endpoint
of the chord passing through M and C. Now we have, according to the pre-
ceding considerations:

Fort =¢: I(#) =0, I(t) =

a—
z —
(8) 113 to_s_této.l(t)=(a_p)(b_y)_(a—x)(b_q) l(t)=ay—bx
Py — qx Py — qx
“ oty w=2"2%21=0
T —x
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The formulae are considerably simplified, if p, ¢ are infinite. In the case
of two moments given, z = ', y = ¢',8 > r > 0, we have p = ©, ¢ = o,
lim y/z = «. The second equation (6) gives () = a and (8) becomes:

Fort < ¢ 1) =0, w==2
©) “fstse =220 =0

“ Lzt () = “,:’; ) =0

z

The values of I(f) given here are in full accordance with the results published
by Wald in his paper quoted above.

A great part of the numerical invastigation is independent from the relation
which joins  (or %) to ¢ and is determined only by the values a, b, the curve K,
i.e. the relation between z and y, and its endpoint Q. In the following example
we have assumed y = 2z’ and as endpoint p = ¢ = 1. Fig. 4 shows fora = 0, 6,
b = 0, 4 the three sections of the lines land 1 — ! according to the equations (8),
but with the abscissae z. The graph of any distribution function in the interval
0 < z < 1 with given first moment 0, 6 and third moment 0, 4 keeps within
the space between the lines L and 1 — I. If we now assume, e.g. z = £/1 +
the abscissae z are to be transformed according to this equation and the graphs
of definitive I(t) and 1 — I(f) functions are those given in fig. 5. Any distribution
functions P(f) with the expected values

f %F dP(t) = 0,6 f (l—f_—t,)' dP(t) = 0,4

must keep between the two limits indicated in Fig. 5. If such a function
touches the upper limit in any point, it will also attain the lower limit in another
point and will correspond to a two- or three-mass system.
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