ON A CLASS OF DISTRIBUTIONS THAT APPROACH THE NORMAL
DISTRIBUTION FUNCTION'

By GrorgE B. DanTzIG

1. Formulation of the Problem. An important property of a sequence of
binomial coefficients is that, when suitably normalized and transformed, it con-
verges to the normal distribution.> The object of this paper is to exhibit a
large class of other sequences which also possess this property.

The Pascal recurrence formula may be taken as the defining property of the
binomial coefficients. Let the combination of n things taken z at a time be

denoted by (Z) If we set fa(z) = (%)"(:) for 0 < r < nand fu(x) = 0 for
z < 0 or z > n, then f,(z) is defined for all integers z. With this notation
Pascal’s recurrence formula, (Z) = (n - 1) + (n - 1>, may be written

z z —1
(1) fn(x) =3 [fn—l(x) + faalz — 1)]’

where this new form is valid for all integers = extending from — o to -+ .
In order to generalize, we may consider a sequence of distributions fi(z),

fe(z), - -+, fa(x), - - - each defined in terms of the preceding one by means of the
recurrence formula

1

(2) fn(x) = a,+1

[fu—l(x - 0) +fu—1(x - 1) +fn—1(x - 2) +-... +f»—1(x - an)]y

where the z are integers, and a, is a positive integer which may change in value
from one distribution to the next. The problem is to find conditions under
which fa(z), in normalized form, approaches the normal distribution. The
normalization of f,(z) is effected by the affine transformation

) w=2"2 ) = 1),

n

1 Presented November 21, 1938 before a joint meeting of the Columbia Mathematics
Club and the Statistical Seminar of the Graduate School of the Department of Agriculture;
also December 10, 1938 before a meeting of the American Mathematical Association at the
University of Maryland.

2 Due to DeMoivre, 1731. By a variable distribution approaching the normal dis-
tribution, we mean that the integral under the variable distribution between any two
limits approaches the corresponding integral under the normal curve.

247

14 ()

; Ja%

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to éﬁ%
The Annals of Mathematical Statistics. MINGIS ®

www.jstor.org



248 GEORGE B. DANTZIG

where #, and ¢, are the mean and standard deviation of the distribution f.(z).
The normal (cumulative) distribution function is taken in the standard form

-——1-_- u
V2 e

The theorem whose proof forms the theme of this paper may be stated as
follows:

THEOREM: A necessary and sufficient condition that oa.(u) — ¢(u) as n —
18 that T = 0, where

n n 2
(5) I' = Lim va/(Zm) i 4y = d} + 2.

n-—o0 i=2 =2

—kr2
e dx .

4 o(u) =

2. Liapounoff Condition; the general case. The recurrence formula (2) is a
special case of the most general linear recurrence formula

+o0
(6) fa@) = 20 ga(fansla — 1),
where g.(¢) are a given set of weight functions generating the sequence f1(z),
fa(z), - - ,fa(x), --- . We may form the recurrence formula (2) by setting
1 . .

w(l) = —— < )
o gn(@) a1 if 0<:<a

ga(?) = 0 if t1<0ori> a,.

Let Fi(t) = 2 fu(x) express’ the probability that a variable z; < ¢, where the
z<t

distribution function of z; is defined as fi(x); and in a similar manner let the
probability that a variable s, < ¢ be given by Gi(t) = > gx(x). By summing
z<t

fa(z) for all z less than ¢, we obtain

®) Falt) = :2: Faslt = 000 = [ Faralt = 9 46209,

where we have replaced the summation by a Stieltjes Integral. In the latter
form the integral gives, in general, the probability that the sum of two inde-
pendent variables z,_; and s is less than £. From the above equation we see
that the probability that z,_1 + s.» < ¢ is the same as that of z, < ¢, so that
we may set Z, = Tn_1 + S.. By iteration one obtains

) Tn=81+ 8+ - + s

for all n. Thus we have established that #f a distribution function of a variable
s 18 defined as gi(x), then the distribution function of the sum sy + 82 + - -+ + 8» =
Ty 18 fn().

3 The summation extends over all values z less than ¢.
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The limit of the distribution function of the sum of n independent variables
as n — o has been considered by Laplace, Liapounoff, Lindeberg, and others.
We shall make use of a sufficient condition given by Liapounoff that the nor-
malized distribution function of z, approaches ¢(u).

LApPLACE-L1aAPOUNOFF THEOREM:' A sufficient condition for the normalized
distribution function of the sum of n independent variables sy, sz, ---, 8a t0
approach the normal distribution function with increasing n s I'' = 0, where

: o M(1) + Mi(2) + - + My(n)
10 I'=L )
(10 M BL() + 36 F - + Ma(F
and where Mo(k) and M (k) are defined as the second and fourth moments of s
whose distribution is gi(x).
Thus we have shown that if a sequence of distributions f.(z) is defined by the
general linear recurrence formula (6),

+o

Fa@) = 20 ga6) fara(m — 9),

{——c0

then a sufficient condition that ¢.(u) — ¢(u) as n — « is given by IV = 0,
where ¢,(u) is the normalized form of f,(u).

3. Sufficiency of the Condition ' = 0. We may simplify the condition
I’ = 0 for the more restricted case of a sequence of distributions defined by the
recurrence formula (2). In general, the second and fourth moments of g.(x)
are given by

+o
Mak) = 2 gel@) (@ — &)°,

Z==—00

(11) 4o
Mk) = ,gm g:(@) (z — 5)*,

where 5 is the mean value of the distribution. Equations (7) give the special
values of fi(z); substituting these values in (11), and remembering the Bernoulli
summation by which 1 + 2° 4+ 3” 4+ ... + n” may be expressed as a poly-
nomial in n of degree p + 1, we obtain

R Y| 1y 1 ai+2ak:| 1
Mz(k)—zglim(x—éak) _g[ 4 —g'yk’
ak 4

a,,+1
=1[@i+%]”-}_ 2&2@]4 : 1
5 4 15 4 TEYET g5 e

4 J. V. Uspensky, Introduction to Mathematical Probability (McGraw-Hill, 1937), pages
284-292; the theorem is proved there by the method of characteristic functions.
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whence by substitution in (10), I becomes

n

1 1 &
i~ ggﬁ—ﬁgw+mm
13 IV = Lim == =

" [1 2 v+ Mz(l):l2

3 i=

n

Since a; > 1, v; > 3/4, and thus ) v; — « as n — o, we may reduce I' in
=2

the limit to

(14) = gLim ) 72/[;2 7.]2.

n-—+00 (w2

Since I'' = I, the Liapounoff condition I = 0 for normality becomes
by (5), T = 0.

4. Necessity of the Condition I' = 0. A necessary condition for normality
can be found by noting that if ¢.(u) approaches ¢(u), then the moments of
¢n(u) must approach the corresponding moments of ¢(u).” Letting ui(n) be
the 4th moment of ¢,(u) and us the corresponding moment of the normal curve,
a necessary condition is that us(n) — us as n — o, and us = 3. The 4th
moment of ¢,(u) may be expressed simply in terms of the moment of f,(x).
If the symbol E stands for expected value, the second and fourth moments of
fa(x) are E(z, — %)’ and E(v. — %.) respectively, and the relationship is then

[E(z, — &) {E[z": o — gn)]z}z.

i=1

(15) us(n) =

Expanding the sums by the multinomial theorem and taking the expected value
of each term we obtain

i<j=

(16)  Blen— &) = 2 E(si—5)'+2 2, Elsi— $)E(s; — 5) = 2 Ma(a),
i=1 1 =1
where M,(7) is the second moment of g;(x), In a similar manner we have

Bl — 2)' = 20 +6 3 MMy

1<j=1

(17) . ” ) )
= ‘; Mi(2) + 3 [; Mz(i)] -3 2 M3(0);

=1

® Uspensky, loc. cit., pages 383-388.
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whence
2 MiG) — 3 3 M3G)
(18) paln) =3+ =L =L
[ 0]

=1

Since a necessary condition for normality is that Lim u(n) — uy = 3, the
fraction in the above equation must in the limit approach zero. Substituting
M(i) = %vi and My(5) = 3vi — 57+, we find that this ratio reduces imme-
diately in the limit to the condition T' = 0.

5. Application to the Distribution of Inversions. A frequency table may be
set up for the number of permutations of n objects that give rise to a fixed
number of inversions. Three objects marked 1, 2, 3 may be permuted in
6 ways:

(123), (132), (213), (231), (312), (321).

If (123) is taken as standard position, the number of inversions associated
with the above set to bring each one into standard position are respectively
0,1,1,2 2, 3. Thus we pass from (321) to (123) by the following three inver-
sions or adjacent interchanges: (312), (132), (123). Among the six permuta-
tions there is one giving rise to 0 inversions, two having 1 inversion, two having
2 inversions, and one having 3 inversions.

The distribution of inversions finds its application in a test of significance.
The standard position is taken as a hypothesis of rank order, and the difference
between an observed set of ranks and the hypothetical one is measured by the
number of inversions. The distribution may then be used for finding the
probability of obtaining by chance the number of inversions found, or less.
For a moderate number of ranks (six or more), the distribution of inversions may
be approximated by a normal curve. We shall show that as the number of
ranks is increased, the normalized distribution of inversions approaches the
normal distribution. The distribution of inversions of 1, 2, 3, 4, objects will
be found in the table below.

Inversions: « 0 1 2 3 4 5 ] 6
1-£(2) 1 ’
1 -2-f2(z) 1 1
1.2.3.f3(x) 1 2 2 1
1.2.3-4.f(z) 1 3 5 6 5 3 1
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By induction one may show that the following relationships hold between
successive distributions:

fo(x) = 3filx — 0) + fiz — 1)),

Ja(x) = lfe(x — 0) + fa(x — 1) + fa(z — 2)],
(19)

12®) = 2lfasle = 0) + fansz — 1)
+ fa2(x = 2) + -+ + fae(z — n + 1)].

Since this satisfies the basic recurrence formula (2), where a, = n — 1, we may

find out whether the normalized distributions of inversions approaches ¢(u).

n n 2

Withy, = n’ — 1 the condition T' = 0 becomes Lim 2, (:* — 1)* [Z @ - 1):| .
=2

n—so0 $=2

The numerator sums to a polynomial of the 5th degree in n, while the brackets
of the denominator sums to a 3d degree polynomial, which after squaring is of
the 6th degree; so that as n — « we have in the limit I' = 0. Thus the nor-
malized distribution function of the inversions of n objects approaches ¢(u)
asn — o,

Equations (12) and (16) permit us to find the mean and standard deviation
of the distribution of the inversions of n objects:

Zp = in(n — 1),

20
(20) ot = 7l2n(n — 1)(2n + 5).

The sequence of binomial coefficients, and the distribution of inversions are
examples of sequences that satisfy recurrence relation (2); it should be noted
that their respective values of va , (y» = 3/4 ory, = n’ — 1), may be considered
as bounded between two polynomials of the same degree in n. Whenever this
is true the condition I' = 0 will hold and ¢,(uw) will approach ¢(u). On the
other hand, if for example, ¥, = r", then T 3 0 and ¢,(u) does not approach ¢(u).

6. Smoothing Formulas. The general recurrence formula (6),
00
fa@) = 20 ga@facalx — 1),

t=—00

may be considered as a linear smoothing formula. For example, we may obtain
the usual three point smoothing formula based on binomial coefficients for
smoothing a distribution fi(z) into f2(x) by setting in the above equation n = 2,

g:(?) = %(7._i ]>f0r —1<¢< +41,and g2(?) = 0fort < —lorz > +1. Thus

(21) @) = A + 1) + 20() + filz — 1))
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From considerations found in Section 2, we see that if a variable z; has for
distribution fi(z) and a variable s; has for distribution g.(z), then their sum
s2 + z1 has for distribution function the smoothed distribution fy(x). From
this point of view, the smoothed distribution fy(z), obtained by applying a
linear smoothing formula, is a “cross’” between the original unsmoothed distri-
bution fi(z) and the artificial weight distribution g.(x).

Often a smoothing formula is used several times; first on the original distri-
bution, then on the smoothed distribution, and then sometimes on the smoothed
smoothed distribution. If a linear smoothing formula is thus iterated 1, 2,
3,.--,n, .. times, the sequence of smoothed distributions obtained upon nor-
malization approaches ¢(u). This may easily be demonstrated by showing that
Liapounoff’s condition for normality, T’ = 0, is satisfied. Since in this case
the weight distribution g.(¢) is the same for all n > 2, the corresponding moments
of these distributions must all be equal; thus we may write My(n) = M4(2)
and My(n) = M,(2) where n > 2. Substituting in (10), we obtain for I

. M(1) + (n — 1)ML(2)
22 I"=1L
@2) e (1) + (n = DMa@)]’
where M,(1) and M4(1) are the 2d and 4th moments of the unsmoothed distri-
bution fi(z). The mean value &, and the standard deviation o, of the distribu-

tion f,(x) formed by iterating a smoothing formula n — 1 times are easily shown
to be

:i,.=i1+(’n—l)§w,
crf.=af+(n—1)¢,2,,,

where Z; and ¢, are the mean and standard deviations of the original unsmoothed
distribution, and where §, and ¢, are the mean and standard deviation of the
weight distribution g.(z).

The linear smoothing formula is used in practical work to smooth data.
Successive application of one or many such linear formulas will usually smooth
any set of values to the normal curve of error. The above section serves as a
warning of what is introduced by the use of such methods.

It is a pleasure to acknowledge the helpful criticisms and advice of Dr. W. E.
Deming in the preparation of the manuscript.
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