ON THE SAMPLING THEORY OF ROOTS OF DETERMINANTAL
EQUATIONS

By M. A. GirsHick'

In a recent paper’ Hotelling has considered two functions of the covariances
of two sets of variates (having a multivariate normal distribution with s variates
in the first set, ¢ variates in the second, s < f) which he designates by Q and Z
and which he defines as follows:

_(=1'C D

2 3 -
(1.1) Q =45 and Z—AB

where A is the determinant of the covariances among the variates of the first
set, B the determinant of the covariances among the variates of the second set,
D the determinant of covariances of the two sets taken together, and C a deter-
minant obtained from D by replacing the covariances among the variates of the
first set by zeros. Both @ and Z are shown to be invariant under internal
linear transformations of either set of variates.

In solving the problem of determining linear functions of the two sets of
variates for which the multiple correlation is a maximum, Hotelling arrives at a
set of parameters p1, p2, --- , p, which he names “‘canonical correlations” and
which are the positive or zero roots of the determinantal polynomial

—Aon - -+ — Ao, Oletl  *°*  Olet
_)\0':1 e _xo'n Og,8+1 L Og,0+t
(1.2) D(\) = N N )
Ogt1,1 *** Ogil,e T AOgtl,841 **° T ACetl,84t
Osit,l *°° Ogit,e —)\0':+m+1 e —)\0’.+¢.-+¢

The p’s are equal in number to the variates of the first set and bear the fol-
lowing relations to Q and Z:

(1.3) Q" = pip2 -+ p;
14 Z'=(1-p)1 =g (1= ).
The corresponding functions for the sample covariances Hotelling designates

by ¢ and z, and the sample canonical correlations by r,, s , +++,7s. Under
the assumption of complete independence between the two sets of variates and

1 Most of this Research was accomplished at Columbia University under a Grant-in-Aid
from the Carnegie Corporation of New York.

? Harold Hotelling, ‘“Relations Between Two Sets of Variates,” Biometrika, Vol.
XXVIII, Dec. 1936.

3 The function Z was first considered by S. S. Wilks in Biometrika, Vol. XXIV, Nov. 1932.
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204 M. A. GIRSHICK

in the case s = 2 and ¢t = 2, he shows that the joint distribution of ¢ and z is
of the form
(1.5) n — 2)(n — 3)2" P dgde
¢ and z satisfying the inequalities
0<z<1 0<¢<1l, z<(1-yg’
and the joint distribution of the canonical correlations r; and r; is of the form
(1.6) . (n—2)(n — 3)(r7 — (A — DIV — 1) dry dry
where n is one less than the number in the sample for each variate.

I

In Part I of this paper we shall, assuming independence between the two
sets, find the joint moments of ¢ and z for a general value of s and ¢ and extend
the joint distribution of ¢ and 2z and hence of the canonical correlations to the
case where there are two variates in the first set and any number of variates in
the second, i.e. s = 2and t > 2.*

1. Joint Moments of ¢ and 2. Since we are assuming complete independence
between the two sets of variates we may without any loss of generality represent
the sample values of the second set as points on the first ¢ axes of unit distance
from the origin in a space of n dimensions. The matrix of observations in the
case of s variates in the first set and ¢ variates in the second set will take the form

iy T2 T3 ccc Titccc Tia
To1 Xgz Xgg - Toe v c - Toa
sl Ts2 Tp3 ¢ c Tgp + -

1.7)

xsn
i1 0 0.--0..-0
o 1 0...0..-0
i . . .
"0 0 0..-1...0

The polynomial D(A) of (1.2) in terms of sample variances and covariances
calculated from (1.7) then becomes

’ —Nay --- =M@, T o Zu

l —Aaal e ’_xau Lsy + - Tst

(18) D(A) - ‘ Tu - Za A 0
Tie - Tst 0 ... =X

n
where a,; = Z Ti%; .
1

4 This extension is a generalization of Hotelling's method loc. cit.
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We multiply the first s rows of (1.8) by A and factor out A from the last ¢
columns. This yields

2 2
—Nay -+ —Nay, 2 - Tu

— i —)\2acl e _xzau Zel +++ st
(1.9) DOy = N7t T T B
D |

As a further simplification, we multiply the (s + 7)** column by z;; for all 5
from 1 to ¢ and add the result to the :** column. When this is done for every
value of 7 from 1 to s and the resulting determinant expanded by means of the
last ¢ columns, the determinantal polynomial (1.9) becomes

by — )\2011 by — )\2012 voo by — )\2111.
D(\) = \*"* . . Ceee .
ba — )\2“.1 bee — )\20'02 R Azau
or symbolically
(110) D()\) = X‘_' | b.’,’ - )\20.','1

]
where b;; = Z Tir;.
1

Hence the s roots of D(A\) which do not necessarily vanish may be obtained
from the polynomial

(1.11) Q()\) = |b.'j - )\’a.~,~ l

The coefficient of the highest power of A in Q(A) is given by | a;; |, the deter-
minant of the elements a;;. Taking this in conjunction with (1.3) and (1.4)
we see that

7= 9O _ lbu]
(1.12) laii|  |asl
= Q) _ les]

lai|  |agl

where ¢;; = Z TiTj.
t+1
From the equations (1.12) we obtain
(1.13) E{| ai; [“***®¢°F} = E{|bs; " cii I’}

where E stands for the mathematical expectation of the expressions in the { }.

It is obvious from the definition of b;; and c;; that the two determinants | b;; |
and | ¢;; | are independently distributed. Moreover, the joint distribution of ¢
and z does not depend on the determinant | a;; |. The truth of the latter state-
ment can be seen from the following geometrical considerations. If we con-
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sider the sample values of each variate as a point in an n-dimensional space,
then the two sets of variates determine two flat spaces, one of s dimensions and
one of ¢ dimensions in that space. A sample canonical correlation can then be
considered as the cosine of a certain minimum or stationary angle between two
lines, one line lying in the flat s space and the other in the flat { space. Since ¢
and z are functions of the canonical correlations, they therefore depend only on
lines and angles between two planes. The quantities a;; on the other hand,
depend on lines and angles lying entirely within one of these planes.

From the above considerations we see that equation (1.13) can be written as

E{| a;; "} E(q°) = E(| bi; *)E(| csi °)
or

.|} .
(1.14) () = E(gazlgﬁg;,)l’)

The m** moment of a determinant | d;; | of sums of sample cross products of p
variates is given by the formula®

I‘(n+2m +1 -—i)
21”” y 4 ——2—_—
Dop L P<n+1—i> ,

(1.15) E(|di;|™ =
2

where D;; denotes the cofactor corresponding to ¢;; divided by the determinant
| o057 |. Substituting (1.15) in (1.14) and simplifying, we get for the joint

moments of ¢ and 2
P(t+a+1—i>l.,(n—t+2/3+l —i)r(n+l—'i)

(1.16) E(¢*F) =1=11 P(t+1_2i)P(n_t+l—i)2r<n+a+2ﬂ+?—") '

2 2 2

2. Joint Distribution of ¢ and z for s = 2, ¢t > 2. In order to determine
the joint distribution of ¢ and 2 for s = 2 and ¢ > 2, we shall first prove the
following lemma.

LeMMA: Let q and z be defined as in (1.1) for two sets of variates having s variates
in either set and let ¢’ and 2’ be similarly defined with s < t where s is the number
of variates in the first set and t the number of variates in the second set, then for
n =t + s, the joint distribution of ¢* and z is identical with that of z’ and ¢".

Proor. If the number of variates in either set are the same and n = ¢ + s,
then by (1.12)

8 Cf. S. S. Wilks, “Certain Generalizations in the Analysis of Variance,”” Biometrika,
Vol. XX1V, Nov. 1932.
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where
t t+s t+s
(1.17) by = 2o mm, oy = D mm, G = D L%y
1 s+1 1
and s = ¢.

However, for s < ¢, and n = ¢t 4 s, we take for the second set of ¢ variates
points on the ¢ axes at unit distance from the origin in the (¢ + s)-dimensional
space perpendicular to the first s axes. The matrix of observations in this case
takes the form

Ty T12 c - T1s Tie41 0 T1,e4¢
To1 Toa - T2s T2,e41 cc 0 T2,84t
(118) Lsl Xs2 *+° Tas Taa4l *° * Tsatt
0O 0...0 1 ... 0
0O 0-...0 0 ... 1

Employing the same arguments as in equations (1.8) (1.9) and (1.10) we find
that

cii | ;b

(1.19) QW) = s —Nagl, ¢ =] 2= el

where
t+s t+s

t
bij = Z TiZ;, Cij = Z T:Zj, ai; = Z TiT;.
1 8+1 1
Comparing these equations with (1.17) we see that

(1.20) z = q" ¢ =7z.

This proves the lemma.
Now let s = 2. Setting » = t + 2 in equation (1.5) and using the trans-
formation (1.20) we get for the joint distribution of ¢’ and 2’

(1.21) it — g% dg d2'.

Let r be the correlation between the two variates of the first set. The distri-
bution of r in samples for which n = ¢ 4+ 2 when the population correlation is
zero is known to be

P(t+2

2 ) (1 — A¥D gy

t+1
Il —5— VT

The distribution of r is independent of ¢ and z. Hence, the joint distribution
of ¢/, 2/, and r is given by the product of (1.21) and (1.22). Dropping the

(1.22)
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primes from ¢’ and 2’ in (1.21), we get for the joint distribution of the three
quantities in the case n = ¢ + 2,

(t + 2)
T 2
NS s ¢ - MDYV dgdzdr.
r (———) Vr
2
We shall now derive the joint distribution of ¢ and z for a general value of n
fors = 2,¢t > 2. Weset z; = z, 13 = y and take the ¢ sample variates of the

second set to be points on the first ¢ axes at unit distance from the origin in a
space of n dimensions. As in (1.12) calculate ¢ and z.

(1.23) %t(t ~-1)

¢

¢ ¢ 2 n n n 2
20 23y - (3 w) IED IR 3B
. q2 = 1 1 1 2 = t+1 t+1 t+1 .
1 -1 ’ 1 -1

We transform the points (z1, ---,2,) and (51, - -+, ya) to hyperspherical
coordinates, the transformation to be represented parametrically by the
equations

z; = sin 6; sin 6 - - - sin 8, sin 6;
23 = €08 60; sin 6, - - - 8in 6;_; sin 6,
T3 = cos 0y - - - sin @, sin 6,
(1.25) =z = cos 6 sin 6,
Tep = cos 0 cos 0441
Tere = €08 0; sin 0,41 COS 0442
Tay = €08 0 8in O¢yq 8in Ogyg - -+ COS Oy
Ty = €08 0, sin O¢yq SIn Oy -+ - 8in 6,
with the same representation for the y’s in terms of parameters ¢, , ¢s, - - - ¢n_y.

It is to be observed that in (1.24) and (1.25) 2z* = 1, Zy* = 1. This we may
assume since ¢ and z are invariant under such transformations.

In this new coordinate system, our samples (1, ---,2,) and (%1, -+, ¥a)
are taken as random points on a unit hypersphere about the origin in n dimen-
sions. There is no loss of generality in this since 2 and y are assumed to be
uncorrelated in the population and hence possess spherical symmetry of the
density distribution in a space of n dimensions.

The element of probability for the z points on this hypersphere is proportional
to the (n — 1)-dimensional area on this sphere. Now the n — 1 dimensional
area is given by

\/gdoidos ... dbny
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where g is a determinant of order n — 1 in which the element in the 7" row
and j* column is

N 02,024
a=1 30.'30,' )

When ¢ # j, all these quantities vanish as can be seen by inspection from
(1.25). When 7 = j, we have

n 2
Z %’) = sin® 6, sin’ 6; - . . sin? 6,
06,

.....................................

cos’ 9,

HM: n-lM:
N N
8
+ |8
N—"
~N
I

2
ox 2 .2
2 ) = cos® 6, sin® 6,4,

......................................

Z ox 2 2 2 2
> 2 ) = cos* 6;sin” B;4; --- sin® O,_s .
1

Therefore
g = sin’ 6y sin* 65 - - - sin®*™ 6, cos™™ "V @, . . - sin® B,
and hence the element of generalized area is given by

sin 6, sin® 6; - - - sin*™" 6, cos™ " 6,
(1.26) s meis .
sin 0¢+1 .. SIN 0,._2 dﬂl d02 L d0,._1 .
Similarly we can show that the element of generalized area for the y point is
n—t—1

sin ¢ sin® ¢3 - - - sin" ¢, cos o
(1.27) . mets .
sin Ser1 -+ SN ¢pg dpy dpg - - - depny .
The joint distribution of 6, 6;, ---, 6.1 and ¢é1, ¢z, - - - , do_1 (since the

¢’s are independent of the ¢’s) is proportional to the product of (1.26) and (1.27).
We now introduce four new sets of variables, u, », w/, ¢/, defined by the
following equations

(1.28) Z; = u; sin 6., Yi = v; sin ¢, (@ = L2 ..., t)
(129) X; 1); COS¢¢ (.7 =1 + 1’ s :n)'

The u; and v; can be regarded as two points on a sphere in a space of ¢ dimen-
. ’ ’ . . . .
sions and u; and v; as two points on a sphere in a space of n — ¢ dimensions.

I

’
u; cos 6, Y
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Let A be the angle between the two points » and v and p the angle between
the two points w’ and »’. Then
13 n
cos)\=2u.v;; CcosS u = Z u;v;
=1 j=t+1
The probability element for A is proportional to sin‘ A d\, and that for  is
proportional to sin®“* 4 dp.

From the definition of u; and »; , we see that they depend only on 61, 6, - - -,
8e; é1, G2, ,be Tespectively, and u; and »; depend only on 8.,
Oura, -+ Ony; Dey1, detz, -+ - , dnoa respectively. It follows that the quanti-
ties A, u, 0, , and ¢, are independently distributed.

The joint distribution of the 6’s and ¢’s we integrate between constant limits
with respect to all the variates except 6, and ¢.. This gives for the joint
distribution of 6, and ¢

.t . =1 it i
A, sint™ 6, sin™ ¢, cos™ " 6, cos™ " ¢, db: dop.

where 4, is a constant depending only on n.
Multiplying this by the distributions of A and x and dropping the subscript ¢
from 6 and ¢ we get for the joint distribution of A g, 6, and ¢

(1.30) ko sin“ 6 Sih‘_l ¢ cos" 10 cos” T sin® P cos™ " udO dp d\ du
where k, is a constant depending on n. The limits of integration for 6 and ¢
are 0 and 7/2; for A and u they are 0 and .

Expressing ¢ and z in terms of the new quantities as defined in'(1.25), (1.28)
and (1.29) we get

i t t 2
2 2
2 _ (Zl:x)(f;y> - <Zl: :cy) _ sin® 6 sin® ¢ sin® A

(181 q s =7
n n n 2
2 2\ _
(1.32) z = <‘+Zl g ><§ v ) (?—F‘i xy) — cos’ 6 cos’ ¢ sinzlu,
’ 1—1r2 1—12
where
(1.33) r = Zzy = sin 0 sin ¢ cos X -+ cos 6 cos ¢ cos p

is the sample correlation between z and y.

We now consider a transformation of the variables 6, ¢, and x in (1.30) to
the new variables ¢, z, and r. Without troubling to compute the Jacobian J
of the transformation, we know that it is independent of n since the relations
(1.31), (1.32) and (1.33) do not involve n. Substituting from (1.31) and (1.32)
into (1.30) we get for the joint distribution of g, 2, r, and A

Eapg 201 — Y dg dz dr dh
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where ¢ is independent of n. Integrating with respect to A between limits which
are independent of n, we get for the joint distribution of ¢, z, and r

(1.34) kg 20 (1 — )N dg dz dr.
But, for n = ¢ 4 2, this joint distribution reduces to (1.23). Therefore
()
2 -

1
kepo¥ = 28t — 1) —— =~ —
2 1
PG%¥>V?
so that (1.34) can be written as
kng™ R0 (10 — N dg dz dr.

However, since the distribution of r is known to be
n
r (3)
n—1
P( 3 )v?
we finally get for the joint distribution of ¢ and 2
hnqt-—2z§(n—t—3) dq dz

1 — A gy

where h, depends on n. The integral over the entire region defined by the
inequalities

0<¢<1 0<z<1, z2<Q-g¢)f

must equal unity; the constant h, is therefore readily found to be
(n —2)!
20 - 2)!'(n —t — 2)!°

Thus the joint distribution in the final form is

(n — 2)!

(1.35) 206 — 2! (n — t — 2)!

qt—zz}(n-t—ii) dq dz.
Now by (1.3) and (1.4), ¢ = rir2,2 = (1 — r3)(1 — r3), and hence the Jacobian

3(g,2) _ o2 2
(1.36) ) 2(ry — r3).

Making the transformation in (1.35) we get the joint distribution of the
canonical correlations r; and r, (for the case s = 2 and a general value of £) in
the form

(n — 2)!
G—2)(n—t—2)!

(1.37) O} — ) () P [A = DA — )Y drydry
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II. JOINT LIMITING DISTRIBUTIONS OF CANONICAL
CORRELATIONS AND LATENT ROOTS

In formula (1.37) we set
IC1 = nr'f y ’Cz = ’ﬂT:
and get for the joint distribution of k, and k,

(n —2)!

4= (n—t—-2)!'nt (ks — ko) (er ko)™

= $(n—t—-3)
[(1 - ’E)<1 - ’2)] diey dks.
n n

h th tt ( )' l 1 d 1 o
When — ®© YV —_—
en n s € quanftity t( i 2)' approaches an

Hence the limiting distribution of the two canonical correla-

2.1)

approaches e,

tions is given by
1 }e=3) ,—hCky+ka)

(2-2) 4(t———§)_! (kl - kz) (klkz) € Y dky dkes .
We shall call (2.2) the “generalized chi-square” distribution and show that the
roots of the characteristic polynomial

an — k Q12
(2.3) o(k) =

| a1 ax — k
are distributed in precisely this form. Here a;; = Zzx; where z, and z, are
normally and independently® distributed with unit variance in the population
and zero mean in the sample.

Let k; and %, be the roots of (2.3). That is, k; and k. are the two roots of
the quadratic equation

(2.4) E—pk+p=0
where

(2.5) PL= ki + ks = au + a2
(2.6) p2 = kiky = anan — ai; .

In the absence of correlation in the popﬁlat-ion, the joint distribution of ay ,
ax and ajs is known to be

i 4 (n—3)
| an G2

| Q21 Q22 |

2.7 hn e 1t go dag days

where k. is a constant depending only on n.

¢ The part of the assumption relating to independence may be removed without loss of
generality. See last paragraph below.
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We consider a transformation to the variables p;, p. and a;z. From (2.5)
and (2.6) we calculate the Jacobian J of the transformation,

@2.8) J=_1
an — Qg2
and since
(2.9) 20i = p1 = (p} — 4p — 4ah)!
: 1
(2.10) J =

(1 — 4p2 — 4al)t’
Substituting from (2.5) and (2.6) into (2.7) and multiplying by J, we get for
the joint distribution of k;, ks and as
n— dp1dpadase

(2.11) haps™® ¥t .

P (pi — 4p: — 4ad)}
We make the transformation « = a3; and get for the joint distribution of %,
ks and u

hn 49 —4p, dprdpadu
2.12 — t o
(2.12) 2 L ¢ (bu — 4)}

where b = pi — 4p..
Since both a1, and az are real, equation (2.9) shows that b — 4u > 0. Hence

the limits of integration for u are 0 and g . Integrating out « in (2.12) between

the above limits we obtain the joint distribution of p;, and p, .
Now the integral

Mo du 1. (- 8u+b\]"
(2.13) , Gu_dwy =~ " adn <——_b )]o =

where c is some constant. Hence the joint distribution of p; and p; is given by

(2.14) Hopi®™® ¢im dp: dp: .

2
By integrating (2.14) over the region 0 < p, < (%) and 0 < p, £ = we get

H, = (n — 2)L
We next transform p, and p, in terms of k; and k; from (2.5) and get for the
joint distribution of k; and k,

1
4(n — 2)!

This distribution is identical with that of (2.2) with n = ¢.
The above is an example of a more general

(2.15) (ky — Ko) (or ko) Y™ g ¥ 152 gpe ke,
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THEOREM: Let 11, 13, --- , 7, be a set of simple finite canonical roots of the
two independent sets of variates xy, --- ,%s, and Tepr, -+, Topy. Let k; =
mi (@ =1,2 ---,s). Then the joint limating distribution of the k’s approaches
the exact joint sampling distribution of the latent roots of a matriz of sample product
sums with ¢ degrees of freedom of s normally distributed variates having unit variance
in the population.

Proor: The proof follows from equation (1.11). For let us multiply and
divide a;; in (1.11) by n and set nA\> = k. The determinantal polynomial
becomes

(2.16) o(k) = | bij — ksi; |.

Without any loss of generality, we so transform the first set of variates that
they become of zero correlation and unit variance in the population. Then it
follows that

E(sy) = E (Z %’) = 0y

where §;; equals zero for ¢ # j and 1 for ¢ = j.

Now let P(x > a) stand for the probability that the variate x be greater
than or equal to some constant a. Then, by the Strong Law of Large Numbers
we can state that, given an ¢ > 0 and a & > 0 there exists a positive integer n,
such that for n > ng

P{ls.',‘— 5;," > 5} <e

¢
If then we let n increase indefinitely, the quantity b;; = 2 zz; remains fixed
1

while s;; approaches, in the probability sense, §;;. Since the roots of a poly-
nomial are continuous functions of the coefficients, we can, by an extension of
the Law of Large Numbers, show that in the limit the roots of (2.16) will be
distributed like the roots of the polynomial

o(k) = | bij — kdij|.
This proves the theorem.

COROLLARY 1. The limiting distribution of ¢* in case of complete independence
between the two sets of variates approaches the exact distribution of a generalized
sample variance (i.e. a determinant of sample variances and covariances) with t
degrees of freedom. The proof follows from the fact that ¢* is a product of the
roots of (1.11) and therefore by the above theorem, is distributed in the limst like | bs; |.

CoroLLARY 2. The distribution of the sum of the squares of the camonical
correlations approach in the limit a x* distribution with st degrees of freedom.
This is obvious since in the limit the sum of the squares of the roots, by the above
theorem, has the distribution of by + be + - .- + by and each b;; is distributed
like x* with t degrees of freedom.

While the canonical roots of (1.2) are invariant under any non-singular linear
transformations, the latent roots of a determinant of sample covariances are
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invariant only under an orthogonal transformation. But there exists an or-
thogonal transformation which reduces a set of variates having a multivariate
normal distribution to a set which are normally and independently distributed
with variances equal to the latent roots of the population generalized variances
of the original variates. Hence, in dealing with the distribution of latent roots,
we may assume independence in the population without any loss of generality
but the assumption of equal variance leads only to a special case. Moreover,
the above consideration also explains the form of the asymptotic error of the
sample latent root given in Part III of this paper.

III. ASYMPTOTIC STANDARD ERRORS OF LATENT ROOTS AND
COEFFICIENTS OF PRINCIPAL COMPONENTS

1. Many statisticians have had occasion to use in their statistical analyses
characteristic roots (or as they are sometimes called “latent”” roots) of deter-
minants of correlations or covariances. Especially has this become true since
the publication of Hotelling’s paper on principal components.” It is therefore of
great importance to find, if not their sampling distributions, at least their
limiting distributions and their asymptotic standard errors. This we shall do in
this paper for the case of non-vanishing simple roots and by the same method®
get the asymptotic variances and covariances of the coefficients of principal
components. We have already derived in Part II the sampling distribution of
the two latent roots of a determinant of covariances obtained from two nor-
mally distributed variates having equal variance in the population. This
distribution is of no great importance in itself except that it gives us some idea
as to the form of the distribution in the general case.

In what follows, we shall use the convention that a repeated subscript in the
same term stands for summation. If repeated subscripts appearing in a term
are not to be summed, we shall place them in brackets following the expression
in which they appear. Thus in the equation (3.1) below, we sum with respect
to 7 but not with respect to ¢ even though on the right hand side g appears twice.

Let z,, x2, .-+, z, be a set of variates which have a multi-variate normal
distribution. We assume that these variates have been resolved into com-
ponents by Hotelling’s method.’ Let 71, ¥z, - - - , v, be the principal compo-
nents. Then z; = ai7v;. The a;;’s satisfy the following equations:

3.1) @jg0ii = NBiq, [g]
,(3.2) QipQiq = kqtqu

7 “Analysis of a Complex of Statistical Variables into Principal Components,” The
Journal of Educational Psychology, Sept. and Oct. 1933. See also M. A. Girshick, ‘‘Prin-
cipal Components,’”’ Journal of the American Statistical Association, Vol. 31, Sept. 1936.

8 The method here employed is parallel to the one used by Hotelling in his paper of 1936
in deriving asymptotic standard errors for canonical correlations.

? Loc. cit.
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where the symbol §,, has the value zero for p > ¢ and 1 for p = ¢, A\, isaroot
of the characteristic equation

(33) |0’.‘j - )\8.-,-| = 0

and o;; is the population covariance of z; and z; .
If we multiply (3.1) by a., , sum with respect to < and use (3.2), we get

(3.4) Qip@ig0é; = NpBpq -

When a root of (3.3) is simple and not equal to zero, the corresponding a;;’s
and the root itself are definite analytic functions of the ¢;;’s over a region without
singularities. A set of sampling errors do;; in the covariances will then deter-
mine a corresponding set of sampling errors in the a;;’s and in the root.

We assume then, that the roots A1, Az, ---, A of (3.3) we are considering are
simple and non-vanishing. In terms of the derivatives of the analytic functions
we define

(3.5) dan = gz" dope,  d\ =

pg 00pg

where dopq = Spq — 0pq , Spq being the corresponding sample covariance.
Differentiating equation (3.1) and employing the above formulae we get

3.6) oiidajs + ajdoi; = Ndaig + aidhe.  [g]

We now multiply this equation by a;, , sum with respect to ¢, and use equations
(3.1) and (3.2). This yields:

3.7 Ap@ipdaiq + Gipaidoi; = NQipdaiq + NdpgdA,. [p, gl
When p = ¢, the term A,a;,da;, cancels out and equation (3.7) reduces to
3.8) ‘)\pdkp = @ipQpdoi;. [p]

We change the subscripts p, ¢, j, to ¢, k, m, in (3.8) and multiply together the
two equations thus obtained. This gives:

(3.9) AA@N AN = Qip0ipQkg@mdoiidTkm . [p, 4l
Hence
(3.10) AAE (N dN,) = at'paipakqdmcE (doiidorm) [p, dl

where the symbol E denotes the mathematical expectation or mean value of the
expression following.

Now it can be easily shown by means of the characteristic function of a
multivariate normal distribution that

(3.11) E(dd.','ddk,,.) = %(aa‘am + Uimd,'k)
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where 7 is one less than the number in the sample. Substituting this expression
in equation (3.10) and using (3.4) we get the following rather simple result

25 800
(3.12) Mo E(dN,dN,) = “n (p, 4]
Setting p = ¢ in this formula we get

2
(3.13) B@) = 22,
But when P #q
3.14) E[d\,dN;] = 0.
Let L, L, ---,1,, be the corresponding latent roots of a determinant of

sample covariances. The sample latent root I, may be expanded about A, in a
Taylor series of the form

_ o\, 1 8\,
(3.15) lp =X+ 'a—o_:l don + 5 3771_3_;;, dondoy, + --
or, by (3.5)
(3.16) L —Np=dr\pg+ -0

Squaring both sides of (3.16), taking the expected value, and using (3.13) we

find that the sample variance of a latent root 1, , apart from terms of higher order in
2

n™', is given by 2%’

If in (3.11) we set ¢ = j = k = m, we get the variance of a sample variance,
and it is interesting to note that its form is identical with the first term of the
asymptotic expansion of the variance of a sample latent root.

The sample covariance of any two distinct roots is by (3.14) zero for the first
term of the asymptotic expansion. That is, the covariance is at least of order
n~%.  All the above results also follow from the fact, shown by the author in a
previous paper,'® that the coefficients of the principal components and hence the
latent roots are maximum likelihood statistics. This property of the latent
roots permits us also to state the following

THEOREM: Let A, Nz, -+, A, be any set of simple non-vanishing roots of (3.3).
For sufficiently large samples these will be approximated by certain of the latent roots
L,la, -l of thesamples. If1; — ;s divided by the standard error

g, = N 2

n

the resulting variates have a distribution which, as n increases, approaches the
normal distribution of t independent variates of zero mean and unit standard
deviation.

10 Loc. cit.
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CoroLLARY: Let A be a maximum simple, non-vanishing root of (3.3) and let
L be the corresponding maximum sample root. Then, l; — A; divided by its
standard error has a distribution approaching normality in the limit.

2. The Variance of Log I. The formula for the standard error of the latent
root given above contains a population parameter X the numerical value of
which we usually do not know. It is therefore important to find atransforma-
tion of the latent root to a new variate which will have or its leading term of the
asymptotic standard error a quantity independent of the population parameter.

Let k = f(I) be such a transformation. Then K = f(A) is the corresponding
transformation for the population root.

We now expand k in a Taylor series about I = A,

3.17) dk = f'(Ndl + 3"\ (@)’ + - -
and get an approximation
(3.18) dk = f'(\)dl.

Squaring both sides and taking the expectation, we get

2
3

(3.19) E@dk)* = [f/ WP EI@D] = [F'OV)]

Now set E(dk)’ = 2/n. Then, from (3.19)

S =1/x
or
(3.20) FA) = log A
Hence, if we set k = log [, then
(3.21) or = 2/n

is an approximation to the variance of k and is independent of any population
parameter.

3. The Asymptotic Variances and Covariances of Roots of Determinants of
Correlations. While the formulas for the asymptotic standard errors of the
latent roots of a determinant of covariances are rather simple, this is not the
case with the roots of a determinant of correlations. In deriving the asymptotic
standard errors of simple non-vanishing roots of a determinant of correlations,
we again assume that the variates z;, x;, - - - , , , which in this case are of unit
variance in the population, have been resolved into principal components. The
equations of the previous section, up to and including (3.10), remain the same
except that we substitute p;; for every o;;, where p;; is the population correlation
of z; with ;. Thus equation (3.10) becomes

(3.22) AAE(dNdNg) = ipipre@moE (dpijdpim), [p, 4]
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where dp;; = ri; =pij, 7i; being the sample correlation between z; and z; .
The expected value of dp;;dpin is not, as in the case of the ¢’s given in the simple
form of (3.11) but rather it is given asymptotically, the leading term in n™
being the following lengthy expression:

nE(dpiidprm) = pirPmi + PriPmi — PiiPkiPmi — PiiPkiPmi
(3.23) — PrmPripki + 3piiPkmPii + 3piiPkmpR;
2 2 ..
— PkmPmiPm;j + %piipkmpmi + %Piipkmpmi . [7" 7 k’ m]

Substituting this in (3.22) and simplifying by means of equations (3.1) and
(3.4) we finally get

nANE (AN dN) = 2()‘::611« + xpxqa?pa?qui)
- 2()\1»)‘:‘1311“?« + )‘:’)\ca?'pa?q)~ [p, gl
When p = ¢, (3.24) becomes

(3.24)

(3.25) E[(@d\)?] = 7-22 [xi + alpaly 0t — 2N, ; aép]. (p]
When p # g,

2
(3.26)  E(d\dN,) = > [ahaiwii — O\ + Nabaid. [P, d]

Hence (3.25) is the leading term of the asymptotic expansion of the variance
of A\,, and (3.26) is the leading term of the asymptotic expansion of the co-
variance of A, and A, where A\, and A, are simple, non-vanishing roots of a
determinant of correlations.

4. Asymptotic Variances and Covariances of Coefficients of Principal Com-
ponents Derived from a Determinant of Covariances. Let z; = a;;v; be the
equation of transformation of the variates z;, z., - - -, «, into principal com-
ponents. In what follows we assume that the latent roots of the determinantal
equation (3.3) are simple and none equal to zero. The last restriction makes the
determinant of covariances non-vanishing. The determinant of the a.;'s will
therefore be also different from zero. With these assumptions in mind, we now
proceed to derive the asymptotic variances and covariances of the a;,’s.

We set p = ¢ in (3.2) and differentiate the result. This yields:

(3.27) dkp = 2alpdalpy [p]

where the summation index 7 was replaced by I. Substituting for d\, from (3.8)
we get:

(3.28) a;pajpdo'ij = 2)\palpdalp . [p]
Now, when p = ¢, equation (3.7) reduces to
M@ipdae + @it doi; = ANaidaig, [p, 4]
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or

(3.29) Ginligdoi; = (g — A)aday . [p, d]
We combine equations (3.28) and (3.29) into one equation

(3.30) aip0jdoi; = (Ng + €pghp)arday, , (p, q]

where e,, has the value 1 when p = ¢ and —1 when p # ¢. The reciprocal of
A¢ + €¢Mp, (Which is different from zero), we denote by b,, . Then equation
(3.30) can be written as

(3.31) Qisbgpifdoi; = apda,.  [p, q]

Since the determinant | a;; | of the a;;’s is different from zero, we can solve this
set of homogeneous linear equations for da;’s, { = 1, 2, ... ,s). To do this
we multiply equation (3.31) by A", where A? is the element of the ¢*" row and
p* column of the inverse of the determinant | a;; | , and sum with respect to p.
Since 4%a;, = 8, we get,

(332) A"’a;,,b.,,,aj,,dai,« = 3gzdazp = daw . [q]

We now change the subseripts 7, 7, ¢, p, ¢, in (3.32) to k, m, r, u, v, respectively,
multiply the two equations thus obtained, and take the expected value:

(3.33)  E(daida,,) = A”A ™ aip0kubgpbyulig@muE (Ao idoim). lg, 4]

Substituting for Eds;dokm its values from (3.11) and simplifying by means of
(3.4) we get:
Nabev $~ gt gru -
L 2 A™A™brubu Ny

u=1

Mg
(3~34) E(da.qda,,,) = -.;t—quArqbvqbqv +

where we sum only with respect to v. We may simplify this formula to some
extent by employing the relation: A“ = a,/A,. (This relation is obtained
from (3.2) by multiplying each side of that equation by A" and summing with
respect to p). When this is done and the values for the b’s are substituted, the
final result becomes:

AoAg iy Org
n(Ag + €M) Ay + € g)

2 3
ot Ay Qry

N u=f O\q + €qu >\u) (>\v + e xu) )

From this we derive the following specific formulas:

E(daiday,) =

(3.35)
4+

E(daiday;) = 242

(3.36) ,
Ag|  Quln 4 Gl Otslrs .
3 gt o T + ety
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2 2 2
337  El(day)’] = ““’ + 2 [—“‘—- o Mg 4 —‘3—]

g — M)? 4)\3 A — N)?
— _ )\q)\,,a,,,a,q_
(3.38) E(da: da,,) = 2l — N (g #=v)

Formulas (3.36), (3.37) and (3.38) give us the leading terms of the asymptotic
expansions of the variances and covariances for the principal components. It
should be remarked that the coefficients of “mutual regression’’ equations can
be eas1ly shown to be proportional to those of the principal components Hence
their asymptotic standard errors and covariances may be derived in a similar
manner and will be of the same form.

5. Variances and Covariances of Latent Roots when the Population Roots are
Equal. Let k,, ks, ---, k, be the latent roots of a generalized sample variance
of p normally distributed variates.

Ordinarily the subseripts of the roots designate their ranks, so that k; > k. >

- 2 k,. We may, however, assign to a root a subscript from 1 to p without
any regard to its size."" If this is done randomly for every sample of 7 observa-
tions the mathematical expectation of kjkjki --- will be the same for every
permutation of the subseripts ¢, 4, k, --- . This fact permits us to calculate the
variances and covariances of the above roots.

We may assume, without any loss of generality, that the p variates are
independently distributed,'? and furthermore we assume the population roots to
be all equal to unity. Then equation (3.11) becomes

(3.39) E(si380m) = 8i18em + %(a,-kaj,. + Simbin).

Where s,, is the sample variance of z, and z, and §,, is the Kronecker delta.
Now it can be easily shown that

»
(3.40) f:s.,-):k Z(s,,s,,-—s,,)—;kk,, Zs,,+2;s., ;1&.
1<7 1<7

Hence E(k) = 1, and

E(Z kz) = E(Z Sii + 2 Z su)

i<i
or
(3.41) pEK’ = pEsi; + p(p —1)Esi;. (@ #7)
Substituting from (3.39) in (3.41) we get

BG) =142 1

1t This approach was suggested to the author by Professor Hotelling.
12 See Part II, last Paragraph.
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The variance of k is therefore given exactly by
(3.42) o =BG —1=2T1,

In a similar manner we find the covariances of k; and %; to be

1

(3.43) ==

IV. DISTRIBUTION AND MOMENTS OF QUANTITIES RELATED TO
¢ AND 2

From the known distribution of ¢ and z and their expressions in terms of the
ratio of determinants given by (1.1) and (1.12), we can derive moments and
distributions of several related functions of sample variances and correlations
of two independent sets of variates.

(4.1) Let p = q; =

Since the two determinants in (4.1) are independently distributed, the sampling

distribution of p, given in the above form, can be obtained for a general value of

sand ¢ from Wilks'"® distribution of the ratio of independent generalized variances.
Thus, for s = 2 and ¢ > 2, the distribution of p is given by

I'(n — 2) o dp
“.2) 2t — D)I'(n — ¢t — 1) P )(1 + VP

When the number of variates in each set is the same, the numerator of ¢* in
(1.1) becomes the square of the determinant of covariances between the two sets of
variates. Thus

(4.3) ¢

= | Gia |
| aii | | @as|
where ¢, j, take on values from 1 to s, a, 8 take on values from s + 1 to 2s, and
n
Quo = D Tuly.
1

If the two sets are independent, the quantities ¢*, | ai; |, | aas |, are inde-
pendently distributed. Hence

(4.4) E(| aia |") = Bq™(| a5; ['™) B(| aus ['").
Setting 8 = 0in (1.16) and employing formula (1.15) we get for the moment of

|aia|
s+m—i+1 n+m-—1i+1
. | O ()
48 Bl = rrpragm (=) (=
= )t )

13 Loc. cit., pp. 478-479.
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where A4 4, denotes the cofactor corresponding to o, divided by the determinant
| ¢uv | , ou» being the population covariance of z, and z, .

We may replace the product sums in (4.3) by sample correlations and, with the
assumptlon that all the variates come from independent populations, obtain the
m™ moment of the determinant of correlations between the two sets as

2fn n+m—i+1) (s+m—z’+1)
(3) ﬁ‘( 2 ' 2
112,n+m,~...1 I‘n—-i+lrs—i+1 :
2 2 2
This follows from the expression for the m*™ moment of ¢ and the formula
ofn n+2k—-341
PG) ‘F< 2 )

e n + 2k .I;‘E I,n—z’+1
2 2
derived by Wilks."

If we set s = ¢ = 2, the numerator of ¢’ in (4.3) becomes the square of a
determinant of sample covariances (or correlations) known to psychologists as
the tetrad. We shall here derive its distribution under the assumptions that the
four variates are independently distributed.

(4.6) E(|ra|") =

(4-7) E(I Tuv |k) =

We write
T
4.8) g= P
where
(4.9) T = Tigloq — Tles, U = (1 - 1’?2)’, U = (l - 7‘,34).g

and ¢ is taken as positive.
Now the distribution of ¢ for s = ¢ = 2is given by

(4.10) (n —2)(1 — ¢)*dg

and the distribution of u is known to be

(4.11) \/:F(<ng>_ 1

Hence the distribution of u,u, and ¢ is given by

-2 T (g>
(4.12) = (n = 1) (1 = )" (mu)"((1 — ud (1 — u))]™ durduady.
P2

5

) w1 — W) du.

u Loc cit., p. 492.
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Performing the transformation (4.8) and integrating out u; and us we get for
the distribution of the tetrad

dul, dus.

‘,,rz_(n_;_—”l)_ T —ud)(l — )

All the moments of T can of course be obtained by setting s = 2in (4.6)."

(4.13) i (’5‘) f / \/(ulu, — s

U. S. DEPARTMENT OF AGRICULTURE,
WasHINGTON, D. C.

18 The limiting distribution of the tetrad was given by J. L. Doob in an article entitled
“The Limiting Distributions of Certain Statistics,”” Annals of Mathematical Statistics,
Vol. 6, (1935). For a more general distribution of the tetrad and other statistics considered
in this paper see W. G. Madow, ‘“‘Contributions to the Theory of Multivariate Statistical
Analysis,”’ Transactions of the American Mathematical Society, Nov. 1938.



