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Contributions to the Theory of the Representative Method of Sampling.
WirLiam G. Mapow, Washington, D. C.

The theory of representative sampling may be regarded as a dual sampling process; the
first of which consists in the sampling of different random variables and the second of which
consists in repeating several times the experiments associated with each of the different
random variables. It follows that while the theory of sampling from finite populations
without replacement may be required for the first process, the second leads directly into
the theory of sampling from infinite populations. There is, however, one difference.
Although the usual theory is concerned with the evaluation of fiducial or confidence limits
for parameters the theory of sampling is concerned with the evaluation of fiducial or confi-
dence limits for, say, the mean of a sample of N, when n, (N > n), of the values are known.

It is thus possible to use the usual theories of estimation in obtaining estimates of the
parameters and to allow the effects of subsampling process to show themselves in the
different values of the fiducial limits. It is shown that the limits obtained are almost
identical with those obtained by the theory of sampling from a finite population. Distri-
butions of the statistics used in these limits are derived.

Besides these results, the theory is extended to the theory of sampling vectors, and condi-
tions are stated under which the ‘‘best’’ allocation of the number in a sample among several
strata is proportional to the kth roots of the generalized variance of a random vector

having ¥ components.

A Generalization of the Law of Large Numbers. Hirpa GEIRINGER, Bryn
Mawr.

Let Vi(z), Va(z), -+, Va(z) be n probability distributions which are not supposed to
be independent and let F(z1, z2, -+ , Za) be a “‘statistical function’’ of n observations
in the sense of v. Mises,—V:(z) ( = 1, 2, --- n) indicating as usual the probability of
getting a result < z at the ith observation—. Then it can be proved that under fairly
general conditions F(z., 3, -+, a) converges stochastically toward its ‘‘theoretical
value’’; or in other words, that under these general conditions a great class of statistics
F(z:, 22, -+, xn) 18 ‘“consistent’’ in the sense of R. A. Fisher,

Well known particular cases of this theorem result if (a) we take for F(z1, z2, -++ , Tn)
the average (1 + 22 + -+ + za)/n of the n observations, (b) we assume that the V;(x)
are independent distributions.

On the Problem of Two Samples from Normal Populations with Unequal Vari-
ances. S. S. WiLks, Princeton University.

Suppose On, and 0., are samples of n, and n; elements from normal populations =, and
w4 respectively. Let ai, o and a:, o} ‘be the means and variances of =, and =; and let
0., and On, have means %, and %, and variances s? and s? (unbiased estimates of ¢}, o3)
respectively. It is shown that there exists no function (Borel measurable) of Z,, Z,,
s}, 8}, a1 — a. independent of o, and o, having its probability law independent of the
four population parameters. It is therefore impossible to obtain exact confidence limits
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for @, — a2 corresponding to a given confidence coefficient. Functions of the four parame-
ters and four statistics are devised from which one can set up confidence limits for a; — a3
with associated confidence coefficient inequalities.

Experimental Determination of the Maximum of an Empirical Function.
Harorp HorerLiNG, Columbia University.

In physical and economic experimentation to determine the maximum of an unknown
function, for example of a monopolist’s profit as a function of price, or of the magnetic
permeability of an alloy as a function of its composition, the characteristic procedure is to
perform experiments with chosen values of the argument z, each of which then yields an
observation, subject to error, on the corresponding functional value y = f(x). The values
of z need, however, to be chosen on the basis of earlier experiments in order to make the
determination efficient. The experimentation properly proceeds, therefore, in successive
stages, with the values used at each stage determined with the help of the earlier work.
The question what distribution of z as a function of previous results should be used is
discussed in this paper on the basis of various hypotheses regarding the function, and
further criteria. In particular, a conflict is shown to exist under some conditions between
the criterion of minimum sampling variance and that calling for absence of bias.

Asymptotically Shortest Confidence Intervals. ABramamM WaLp, Columbia
University.

Let f(x, 6) be the probability density function of a variate z involving an unknown
parameter 6. Denote by z,, -+, z, n independent observations on z and let C,(6) be a

\%ﬁ 535 > log f(za , 6) ’ < Ca(8)

is equal to a constant 8 under the assumption that 6 is the true value of the parameter.

positive function of 6 such that the probability that

1 9
Denote by 6'(z1, -, z») the root in @ of the equation W % E log f(za, 8) = Cn(6)

1 93
and by "' (x,, --+, z,) the root of 77.' Y ; log f(za, 8) = —Ca(8). Under some weak

assumptions on f(z, 6) the interval s.(z1, -+, Zn) = [0'(z1, --+, Z4), 6" (1, *++ , Tn)]
is in the limit with n — « a shortest unbiased confidence interval® of 6 corresponding to
the confidence coefficient 8. This confidence interval is identical with that given by 8. S.
Wilks in his paper ‘‘Shortest average confidence intervals from large samples,”’” The Annals
of Mathematical Statistics, Sept. 1938. Wilks has shown that 8.(z1, - -, z.) is asymptot-
ically shortest in the average compared with all confidence intervals computed on the
basis of statistics belonging to a certain class C. In the present paper it has been proved
that the confidence interval in question is asymptotically shortest compared with any
arbitrary unbiased confidence interval, without any restriction to a certain class of
functions.

Reduction of Certain Composite Statistical Hypotheses. Grorce W. Brown,
R. H. Macy and Co., New York.
The results obtained make it possible to reduce a large class of composite statistical

hypotheses to equivalent simple hypotheses. The fundamental theorem established states
essentially that if two distributions give rise, in sampling, to the same distribution of the

1 For the definition of a shortest unbiased confidence interval see the paper by J. Ney-
man, ‘“‘Outline of a theory of statistical estimation based on the classical theory of proba-
bility,”’ Phil. Trans. Roy. Soc. (1937).
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set of differences between observations, then one distribution must be a translation of the
other, subject to a condition requiring that the characteristic function of one of the distri-
butions be such that any interior intervals of zeros be not too large. The result is estab-
lished by means of the functional equation ¢(t1)e(ts)e(—t1 — t3) = Y(t1)¥(Ea)y¥(—t1 — ta)
relating the characteristic functions. Similar results are obtained for scale, and com-
bination of location and scale, and the corresponding situations in multivariate distribu-
tions. This type of uniqueness theorem permits one to reduce a composite hypothesis
involving an unknown location parameter (or scale, or both) to an equivalent simple
hypothesis.

Conception of Equivalence in the Limit of Tests and Its Application to Certain
N~ and x2-Tests. J. NEYyMaN, University of California.

Denote by E a system of observable variables and by N the number of independent
observations of those variables to be used for testing a certain statistical hypothesis H
against a set @ of admissible simple hypotheses k. Let further T:(N) and T'3(N) be two
different tests of H using the same number N of observations. Consider the probability
Pn(h) calculated on any admissible simple hypothesis h, of the two tests, contradicting
themselves.

Definition: 1f, whatever be k e , the probability Py (k) tends to zero as N is indefinitely
increased, then the two tests are said to be equivalent in the limit.

Consider a number s of series of independent trials and denote by E:1, Esa, -+, Eim;
all the m; possible and mutually exclusive outcomes of each of the trials forming the ¢th
series. Let pi; be the probability of E;;, n; the total number of trials in the 7th series,
and n;; the number of these which give the outcome E;; .

Suppose that it is desired to test a composite hypothesis H concerning all the proba-
bilities p;; and consisting of the assumption that any one of them is a given linear function
of some ¢ independent parameters 6 , 8o that

1) Pij = Gijo + Aijaby + -+ + @iji0y

where the coefficients ;s are known. The main result of the paper is then that the A-test
of the above hypothesis H, tested against the set Q of alternatives ascribing to the p;;
any non-negative values, is equivalent in the limit to the test consisting of rejecting H
when the minimum of the expression

@ g=3 2 (msg — mipii)?
=t nij

calculated with respect to unrestricted variation of the 0’s, exceeds the tabled value of x:
corresponding to the chosen level of significance e and to the number of degrees of freedom
8

Z m; — 8 — t.
i=1
It will be noticed that the expression (2) differs from the usual x* in the denominator

of each term.

As an example of the application of the test based on (2), consider the case where M
varieties of sugar beet are tested for resistance to a certain disease in an experiment
arranged in N randomized blocks. Denote by n the number of beets selected at random
for inspection from each plot and by n;; the number of those of the ith variety from the
plot in the jth block which are found to be infected. Denote further by p;; the proportion
of infected beets of the ith variety in the plot in the jth block. The hypothesis that the
effects of variety and of block are additive is expressed by pi; = p + V; + Bj with
2Vi = ZB; = 0. To test this hypothesis we may use (2) which in this particular case
reduces itself to
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M N
@r ¥ = 2 wiilgsi—p —Vi— B

i=1 je=1
with wi; = n3/{nij(n — n;)}, ¢sj = nij/n. The minimum x§ of x? is found by solving a
set of equations which are linear in p, V;, B; and the comparison of x2 with the tabled
value corresponding to (M — 1)(N — 1) degrees of freedom will tell us whether we are
likely to be very wrong in assuming additivity or not. In the favorable case we may
next proceed similarly to test another hypothesis that there is no differentiation between
the varieties, so that V, = Vo= ... = Vy = 0.

Empirical Comparison of the “Smooth” Test for Goodness of Fit with the
Pearson’s x2 Test. J. NEYMAN, University of California.

In a previous publication? the author has deduced a test for goodness of fit, described
as the ‘‘smooth test’’ or the y? test, applicable to cases where the hypothesis tested H
is simple. The test is 8o devised as to be particularly sensitive to departures from H
which are ‘‘smooth’’ in the sense explained in detail in the publication quoted. Whether
the test so devised does present any advantage over the usual x* test depends on how
frequently we meet, in practice, cases where the hypotheses alternative to the one tested
are actually smooth.

The present investigation was undertaken with the object of obtaining some information
on this point. For that purpose a number of cases described in the literature where there
was a question of testing that some observable variable z follows some perfectly specified
distribution p(x) were analyzed. Of all such cases, the ones where there were a priori
theoretical reasons to believe that p(z) could not possibly represent the true distribution
of z and, at the most, it could be considered as only an approximation to the true distri-
bution were selected. .

It was assumed that the departures from the hypothetical distributions are typical of
those that may be met in practice when no definite information as to the actual state of
affairs is available. The hypothesis of goodness of fit was tested both by means of the
x? and by the fourth order smooth test. Out of the 130 cases studied the two tests were
in perfect agreement eight times. Out of the remaining 122 cases the smooth test proved
to be more sensitive than the x? in 70 cases and the x? better than the smooth test in 52
cases. We may further compare the tests by counting those cases where one of them
detected the falsehood of the hypothesis tested at a given level of significance while the
other failed to do so. At the level of significance .05 the x? test rejected the hypothesis
tested 13 times, while Py2 was >.05. The reverse was true in 17 cases. At the level of
significance .01 the corresponding figures are 5 and 14, again in favor of the smooth test.

?J. Neyman, ‘‘ ‘Smooth Test’ for Goodness of Fit."”” Skandinavisk Aktuarietidskrift,
1937, pp. 149-199.



