ON SAMPLES FROM A NORMAL BIVARIATE POPULATION
By C. T. Hsvu

1. Introduction. In a number of papers written during the last ten years,
J. Neyman and E. S. Pearson' have discussed certain general principles under-
lying the choice of tests of statistical -hypotheses. They have suggested that
any formal treatment of the subject requires in the first place the specification
of (7) the hypothesis to be tested, say Hy, () the admissible alternative hy-
potheses. An appropriate test will then consist of a rule to be applied to ob-
servational data, for rejecting H, in such a way that (44¢) the risk of rejecting
H, when it is true is fixed at some desired value (e.g., 0.05 or 0.01), (zv) the risk
of failing to reject Ho, when some one of the admissible alternatives is true is
kept as small as possible. With these general principles in mind, they have
investigated how best the condition (iv) may be satisfied in different classes of
problems. In many cases, though not in all, it has been found that the condi-
tions are satisfied by the test obtained from the use of what has been termed
the likelihood ratio, [9], [10], [14]. Once the problem has been specified, the
test criterion is usually very easily found, although its sampling distribution,
if Hy is true, often presents great difficulties. In the present paper, I propose
to use this method to obtain appropriate tests for a number of hypotheses con-
cerning two normally correlated variables. The investigation was suggested
by a recent application of the method by W. A. Morgan [6] to a problem origin-
ally discussed by D. J. Finney [3].

2. The hypotheses and the appropriate criteria. A sample of two variables
7, and z; is supposed to have been drawn at random from a normal bivariate
population, with the distribution

_ —_]:_-” _ 1 r — 51)2
p (1, z2) 2rororv/1 — ol eXp{ 2(1 — p32) [( a1
_ o —h\fr— & xz_&z]}
o (2 8) (228) 1 (2.28)

where &, &, 01, 02, and py2 are the population parameters.
Morgan tested the hypothesis that the variances of the two variables are

equal, i.e.,

@

H12 g1 = 0O3.

1 See bibliography at the end of the paper.
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Other hypotheses that will be considered in the present paper are as follows:

H, : Assuming o1 = o2 ; to test p12 = po .

H; : Assuming o1 = o2 ; to test & = & .

H, : To test simultaneously o1 = a2, p12 = po .

Hj; : To test simultaneously o1 = a2, & = & .

Hg : Assuming o1 = o2 and & = & ; to test prz = po .
H; : Assuming oy = o2, and p12 = po ; to test & = & .

Derivation of the criteria. Let 1, T2 be the measurements of the two char-
acters on the 7th individual of the sample, then the joint elementary probability
law of the two sets of n observations E = (zu, %12, -+, Z1in ; Ta1, Loz, -~ - ,
Zon) IS

1 n
p(E | &, &, 01, 02, p12) DY, wa

— (B (28) + (25) ]

It will be convenient to denote by 4, B, C, D, the following conditions of the
population from which the sample is supposed to be drawn.

(A) that stated in equation (1).
(B) that stated in the equation for H, , namely

01 = o2 = o(o being unspecified).
© £ = & = (& being unspecified).
(D) P12 = Po .

Neyman and Pearson’s method affords a simple rule for obtaining appropriate
test criteria once two sets of conditions have been defined. These are

(a) the conditions which can be assumed to be satisfied in any case, and

(b) the conditions which are satisfied if the hypothesis to be tested is true.

The conditions (a) define a class @ of admissible populations, and the condi-
tions (b) define a sub-class w of @ to which the population must belong if the
hypothesis tested be true.

The maximum value of p(E| {1, £, 01, 02, p12) when the parameters vary in
such a way that the population sampled always belongs to £, is called p(2 max.).
The maximum value when the population is restricted to w is called p(w max.).
The likelihood ratio for testing the hypothesis specifying the subset w has been
defined to be

_ P (wmax.)
®) A= p (2 max.)’
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It will be seen that 1 < A < 0. By referring A; or a monotonic function of A,
to its sampling distribution when the hypothesis tested is true, we obtain a
scale on which to assess our judgment of the truth of the hypothesis tested.

For each of the hypotheses H; to Hs, A of (3) can be found. However, we
shall use a more convenient criterion.

4) L ="

which is a monotonic function of A.
Thus the respective test criteria are found to be:

For H, :
4sis3(1 — r12)
5 L=
® T+ - RY
where R, = 2: 12918, , is the estimate of p1z when ¢; and o2 are assumed to be equal.
81 82
For H,:
_ (1 -1 —R)
® L= G ml =R,
For Hj:
)?
) =1 / {1 + =
Si + 82 - 27‘128182
For H,:
4(1 — po)sisa(l — 1)
(8 L= =L XL
‘e (81 + 82)2(1 - P0R1)2 *
For H5 .
4s7s5(1 — rla)
9) Ly = L = L; X L,.
T ta+i@m-@ya-R)
For Hs:
_ (1 —p)1 —RY)
10 L= —sry
- = \2
where R, = 2resis — 3(T — 7n) is the estimate of piz when both the ¢’s and

st + sz + 3@ — 2)°
the &'s are assumed to be equal.
For H7:

1+ po)(& — &) \°
(11) In=1 / {1 + ( .
2(st — 2por12818: + $3)
The different hypotheses are also given in Table V, at the end of this paper,
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together with the conditions defining sets of € and w, and the appropriate likeli-
hood criteria.

To complete the solution we must find the distributions of L or some mono-
tonic function of L in each case when the hypothesis tested is true, in order to
assess the significance of an observed value of L.

3. The distributions of the criteria. In order to simplify the problem of
finding the distributions of the criteria, consider the following transformation:

zy = (X; — Y.)/‘\/§
z% = (Xs + Y)/V/2.

It is clear that in view of (1) X and Y will be two normally correlated variables.
We shall denote this property by 4’ corresponding to A. The conditions B,
C’, D' corresponding to B, C, D respectively are as follows:

(12)

B’ pxy = 0,

C': é&x =0,

D' oy = Yo% (when pxy = 0)
where
() =2,

Thus we have the equivalent hypotheses Hj, Hj - -- Hy corresponding to
Hy, H;, --- H;. The likelihood ratios Ly, L - -- L; may be determined in
the same way as before, and, in view of the transformation (12), it will be
seen that they are equal to Ly, L - - - L respectively.

The tests of the hypotheses H;, Hs, Hj are now seen to be well known.

The test of H L: pxy = Ois the test for significance of a correlation coefficient,
and the criterion L, becomes

(14) Ly =P =1 —r1%y.

This test has been dealt with by Morgan [6] and Pitman [15], and has been
referred to above.

The test of Hs : oy/cx = vo when pxy = 0 can be treated as an extension
of Fisher’s z-test [5], since v, is specified. If we write

8y _14Ri_si4 s+ 2runs

15 =5r o =
(15) "8y 1—Ri [sl+ s — 2rusis

the test criterion Lg of (6) may be written

.
vo(1 + u/v0)?

It is well known that if Hs is true, then

(16) L,
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- et (s ()

and the test appropriate to H; and therefore of H, is the associated z-test (z =
L log u/vo) with degrees of freedom fi = fo = n — 1. It may be easily shown
that the two values of u cutting off equal tail areas from the distribution p(u)
will correspond to a single value of L, .

The test of Hj: £x = 0 when pxy = 0 is in the form of “Student’s” ¢ test.
If we write

2 o2 _ _\2
X (&1 — %2)
- - 2 2
n—1 Sx s1+ sz — 2rizsis:

(18)

it follows that the test criterion L; of (12) may be written

19) L3=1/(1+nfl).

But it is well known that if £x = 0, then

) ® 1 (+:59)"

20 ) = ——— 14+ = .

( PO = T s - I\ a1

The 5%, or 1%, points of significance of ¢ may be obtained from Fisher’s ¢-table
[5] with degrees of freedom f = n — 1.

The tests of Hs and Hs. We infer from (14), (16) and (19) that L, is a func-
tion of rxy , Ls a function of Sy and Sy, and L; a function of X and Sx. Itis
clear that if rxy is distributed independently of Sx and Sy, then L, and L, are
independent, i.e.,

(21) p(L1, L) = p(L1)p(Ls)

and that if rxy is distributed independently of X and Sx, then L, and L; are
independent, i.e.,

(22) p(Ly, Ls) = p(L1)p(Ls).

It is known that X, Y are independent of Sx, Sy, rxv ; and in addition that
rxy is distributed independently of Sx, Sy if pxy = 0. Therefore, if Hi is
true, then the relations (21) and (22) hold. Hence, knowing p(L,) and p(Le),
a very simple transformation and integration gives p(Ls). Similarly, the dis-
tribution of Ls may be readily derived from those of L; and L;.

But from the distribution of rxy when pxy = 0, by transformation (14), the
distribution of L; assuming Hj true is found to be

__
Bl3(n — 2), 3]

If H, is true, from (17), by transformation (16) we have

(23) p(L) = Li"1 - L)™
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- 1 YDy _ 7\
@29 P = g L0 - L)
Again, if Hj is true, from (20), by transformation (19), we have
- 1 Y9y _ 7\

which is the same as the distribution of L. Therefore by comparing (21) and
(22) we see that the distribution of L when Hj is true will be exactly the same
as that of L, when Hj is true. We shall therefore confine ourselves to the
problem of obtaining the distribution of L4 from those of L, and L..

Now

_ 1 T N e e T )
(26) p(Ll’L2)_B[%(n—2),—§']5[%(n—1),%]L1 1-Ly~L; (1 —Ly~.

Applying the transformation

L= I, L,
(27) Z = L2
and integrating with respect to Z from 0 to 1, we obtain
(28) p(Ls) = 3(n — 2)L{"°, 0<L <1

Thus we can construct the values of Ls at the 59, and 19, levels for different
values of n as given in Table I.

TABLE 1
5% and 1%, values of Ly (or Ls)

n 5% 19,
5 .1357 .0464
6 .2509 .1000
7 .3017 .1585
8 .3684 .2154
9 .4249 .2683
10 .4729 .3162
12 .5493 .3981
15 .6307 .4924
20 L7169 .5995
24 .7616 .6579
30 .8074 L7197
40 .8541 .7848
60 .9019 .8532
120 .9505 .9249
o 1.0000 1.0000
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The test of Hs. In the case of testing He(cy = vo0%), assuming pxy and
px each to be zero, the likelihood estimate of ¢% becomes ZX*/n or 83 + X
The distribution of this quantity is the same as that of Sk but with degrees of
freedom 7 instead of n — 1. Therefore, by analogy with the previous result
(17) used in testing H, , if we write

X2 83 4+X 1-R

then the likelihood criterion of Hg becomes

(29)

(30) Le = __ﬁf__v__z
Yo (1 + —)
Yo,
and
ﬁ _ ) _ 1 (v)}(n—-') v )—(n—i)
GD » (” 2 =) = LBm =D, 5l \ve (l +)

Hence the test appropriate to Hg is the associated z-test z = § log {g / z ; l}
0

with fi = n — 1, fo = n. We can use the z-table as before.
The test of H;. Here we test whether §x = 0. It may be seen that Ly is
a function of X*/(8} + v8%). Further, if we assume that pxy = 0 and also

that oy = 'yon , then it wi]l follow that (X — X)? and E(Y Y)? are each

distributed independently as x ox with n — 1 degrees of freedom; and hence
their sum is distributed as x’ox with 2n — 2 degrees of freedom. Alsoif £x = 0
(and Hj is true) X will be distributed normally about zero with standard error
ox//n - Hence we may write

_ &\’
where

2 _ X -X2+2(Y -D'/y
®3) ! X/ /‘/ n(2n — 2) '

and is distributed in accordance with ‘“Student’s’” distribution with 2n — 2
degrees of freedom,

(34) pt) =

( t2 —4(2n—1)
14 ) .
Van — 23[2, 3@2n — 2)] 2n — 2

In terms of original variables

ts — v X? — (1 + po) (#1 — %)*
2n — 2  4SY 4+ S 2(st — 2p0mz 88 + 87)

(35)
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4. Comparison of the R;-test and R,-test with the r;-test in cases where H,
and H; are true respectively. It will be noted that in the preceding discussion
we have been concerned with three different tests of the hypothesis that piz
has some specified value py. When there is no information available regarding
the means and standard deviations of z; and z; , the test is based on the sampling
distribution of the ordinary product-moment coefficient r;;. If it may be as-
sumed that ¢; = 02, then we have the estimate

— 27‘12 8182

st + 7
If besides o1 = o2, it may also be assumed that & = £, then we have the
estimate

R,

— 2rus 8 — (& — &)’
821’ + s§ + %(531 - :1'22)2

From the point of view of testing hypotheses, all these criteria r;, Ry, Ra
follow from the application of the likelihood ratio method. It will be noted
that if 1 = o2, either the ry2 or the R, test may be used. But, insofar as the
likelihood principle is accepted, the latter should be regarded as the “better”
test. Again, if o1 = o2 and & = &, all three tests may be used, but that based
on R, will be the “best”’. A question of interest is to investigate just what is
meant by the “better” or the “best” test. We may ask how far the improve-
ments are sufficient to justify the use of the R, and R tests in place of the more
generally used 712 test. One method of comparison is to examine what Neyman
and Pearson [12] have termed the ‘“power function’’ of the tests.

For example, when testing the hypothesis that a parameter 6 has the value
6, in the population sampled, the power of the test criterion 7' with regard to
the alternative hypothesis that § = 6, > 6, is given by the expression §(6;) =
P{T > T.|0 = 6,} where T( is the value of T at the level of significance a.
This quantity 8(6) measures the chance that the test as specified will detect
the fact that § = 6, , i.e., the chance of rejecting the hypothesis when it is not
true. A test whose power function is never less than that of any other test is
termed the uniformly most powerful test.

If the permissible alternative hypotheses to 8 = 6, are both 6 < 6, and 6 > 6,
then the power of the test 7 is given by the expression

R,

B(6:) =1 — p{Te < T < Thl|bi}

where T, and T are the values of T at both ends of the distribution at the
level of the significance @. When the test is such that the power function has
a minimum value « at § = 6, it is said to be unbiased.

A test is termed biased if, for certain alternative hypotheses 8 # 6, , the chance
of rejecting the hypothesis 8 = 6, is less than the chance of rejecting this hy-
pothesis when it is true.
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In what follows it is proposed to compare the power functions of the tests
based on ri2, Ri, and R, in order to obtain more complete evidence of the
extent to which one is “better’” than the other.

The distribution of R, We have obtained the distribution of 7 when H; and
therefore H, is true. We are now able to find the distribution of R; by apply-
ing the transformation of (15). Thus the distribution of R; in terms of py is

(1 — p1) (1 — B
36, R = .
6) Pl = 535 — 1), n = DI (1= wEO
The significance of R; may be assessed by the z-test, where we take
Lo o Ligg LER L 14
@) Z = 210g., 7 2log =%, 2log =
=z’ — ¢, say

with degrees of freedom f; = fo = n — 1. R. A. Fisher’s z-table may be used

in this connection.
When py; = 0, the distribution simplifies to

1 o
p(R1|pe = 0) = SBEm = D 3 =] (1 — R

_ 1
- BR(m —1), ¥

since 2'"7 B[i(n — 1), (n — 1)] is equal to B[}(n — 1), 3] by duplication for-
mula [16, p. 240].

The distribution (38) is similar in form to that of p(rz|p1 = 0) with n — 1
degrees of freedom instead of » — 2. The significance levels of R; may then
be obtained directly from the r-table [1] for the case piz = 0, entering with
degrees of freedom n — 1.

The distribution of R:. The distribution of B, may be obtained from that of
v when Hg and therefore Hg is true. It is

_ oy e = e (1 + RO — R
39) p(Ra|pr2 = po) = B[ (n — 1)‘1 pom) A= R .

(38)
(1 _ Rf)i(n—a)

This agrees with the result first obtained by R. A. Fisher [4] by a different
method. The significance of R; may be assessed by the z-test, where we take

(40) z = %log (go/n ; 1)

2 Since finding the distribution of R; (36), (38) and the relation between R; and 2’ (37),
my attention has been drawn to a recent paper by DeLury [2] in which the same results
are obtained. Since my method of derivation is different from his, I have thought it

worthwhile to retain it here.
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with degrees of freedom f; = n — 1, fo = n. The tables for use with the z-test
may be used in this connection.
When p;; = 0, the distribution is simplified to

1 Yn—8) in—)
= 1 -
P -1 g TR0 R
which is simply a Pearson Type I curve.
Power functions of R, and R, . In order to find the power functions of R; and
R, with respect to alternative hypotheses H; to H,, specifying piz = p: < po,
it will be convenient to consider the incomplete beta function distributions

(41)  p(Rs|p = 0)

1 n—3, n
“ S TRV sy R
— 1 1(n—3, . n—2)
(43) (@) = B = 1.7 2091 — gy
v

and z, =

U
— _— the I
where z; = oL + w/70) oL+ o/70) From the Tables of the In-

complete Beta Function [13] we can find the values of z, and =, at the significance
level o, i.e.

(44) Li[3(n — 1), 3(n — 1)] = o,
(45) I;[3(n — 1), in] = <.
The values of Ri(a), and of R3(e), may then be calculated from the relations

_u—1_ —14z+ 7y

Ry = -
6) Tutl T Tom ot ovem
_v—=1_ —-14+z+ v
) R2—v+1 1 — 2+ vom
The power functions of R, and R thus found may be given as follows:
(48) B8'(p: | B) = P{Ry < Ri(e) | ps},
(49) B'(pt| R2) = P{R; < Rs(a) | pi}.

In the same way, for any alternative hypothesis H, specifying piz = p: > po,
we can find the values of z, and z;, at the significance level o/, at the other end
of the distribution, i.e.

(50) 1 =Ly [3n — 1), 3(n — 1)] = o,
(51) 1 =L [3(n — 1), §n] = .

Thence the corresponding values of Rj (o) and R; () may be obtained, and their
power functions are

(52) 8"(pe| Ry) = P{Ry > Ri(e) | pi},
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(53) B"(pe| B2) = P{R2 > Ry(a) | pd}.

The power functions of R; and R. with respect to alternative hypotheses speci-
fying p1o = p¢ < po and > pp may now be obtained by adding (48) and (52) or
(49) and (53) or, more simply,

(54) B(p:|Ry) = 1 — P{Ri(e) < Ri < R{(a) | o},
(55) B(p:| R)) = 1 — P{R3(a) < Ry < R3 () | pe}

where R;i(a), R{(a); Rz(a), R: (a) are the values of Ry and R, at the two ends
of the distribution at the significance level @ = o’ + o’.

In view of the fact that after transformation the tests based on R, and R,
are equivalent to tests regarding the equality of variances, it follows from Ney-
man and Pearson’s work [11] regarding the uniformly most powerful test of the
hypothesis that o%/c%x = v, with alternatives oy/ocx = v: < %o (or v; > o),
that: (1) if &1 = o2 and alternative to p;2 = g are that p12 = p; < po (or, in a
second case, p; > py) the test based on R; is the uniformly most powerful test,
i.e., it is more powerful than that based on ri2 ; and (2) if 61 = o2 and & = &,
then the test based on R; is the uniformly most powerful test, i.e., it is more
powerful than those based on either 7, or R, .

For illustration, let us take a special case, say

(a) n=10, p =06 o =a" =0.025
From the tables, we obtain the values

198902  x; = .184863
801098  zy = .772916

14
I

It

x;'

and by calculation the values
Ri(a) = —.0034  Ra(a) = —.0487
Ri(a) = 8831 Ri(a) = .8632.

The values of the power functions of R; and R. for specified values of p, have
been calculated and are given in Table II. For p; < py, a comparison of
columns 2 and 4 will show that the test based on R; is uniformly more powerful
than that based on R, (or for p; > py, a comparison of columns 3 and 5).

The unbiased test of Hs and Hs. When however the alternatives are that
piz = pt < po, and p; > po, questions of bias may be introduced.

In the case of H,, i.e. when R, is used, it was established by J. Neyman in
his lecture courses [8], that if we test whether o% /0% = vo , where the alternatives
are v; < vo and v; > 7o, and if the samples of X and Y are of equal size, then
the test based on cutting off equal tail areas of the distribution of z, is unbiased
and of the type B [7]. Therefore the same may be said of the R;-test.

In the case of Hs, the equivalent transformed test is again whether o% /oy =
Yo. But the test now corresponds to that in which an estimate of o% is based
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on fi = n — 1 degrees of freedom and an estimate of o¥ on f; = n degrees of
freedom. The degrees of freedom not being equal, it is known that if equal
tail areas are cut off from the sampling distribution of z;, this test will be
biased. Neyman’s result [8] shows that if the lower and upper significance
levels are taken at z; and 7, then the equation

(56) 2 (1 — a2)* = 2"(1 — &)

should be satisfied if the test is unbiased. Since in the present case, with the
test based on equal tail area critical region, the bias will be very small, the
rejection levels Rs(a) and Ry (a) in the numerical investigation given in Table
IIT have been selected taking equal tail areas for simplicity.

TABLE II1
Values of the power functions of Ry and R, with respect to alternative hypotheses
Pz = p: < poOrpe > po
(n = 10; po = 0.6; 2’ = o' = 0.025)

P B'(pe|R) 8" (oe|R1) B8'(pe|R2) 8" (o|R2)

—-0.8 .9984

—0.6 .9739 .9807

—-0.4 .9867 .9005

-0.2 .7189 .7360
0.0 .4960 .0002 .5093 .0001
0.2 .2744 .0008 .2809 .0006
0.3 .1825 .0018 .1860 .0015
0.4 .1106 .0042 L1111 .0037
0.5 .0576 .0099 .0580 .0093
0.6 .025 .025 .025 .025
0.7 .0081 .0678 .0080 .0720
0.8 .0015 .1995 .0015 .2150
0.9 .0001 .5950 .0001 .6289
0.95 .8979 .9150
0.975 . 9866 .9897

If we now take a special case, similar to (a) above, but taking equal tail areas,
so that
n =10 p = 0.6
a= 05 (@ = d' = }a)
we can obtain the values of 2’s and of R’s as before.
The values of the power functions of E; and R. for specified values of p; are
given in columns 3 and 4 of Table III. These values are equivalent to the

sums of the corresponding values in Table II. The values of the power fune-
tions of R, and R, for the following additional cases are also given in Table ITI:
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() n =10 p = 0.8 = 0.05

(c) n
(d) n =20 p = 0.8 a = 0.05.

20 po = 0.6 a = 0.05

Comparison of the power functions. We may now deal with the question
raised at the beginning of this section, namely, as to what is meant by the
“better’’ or “best” test. We shall proceed to compare for certain special cases
the power functions of the three test, all of which are applicable where it may
be assumed that oy = o2, & = &.

In the first place it will be noted that the power function of the test based on
equal tail areas of the ry distribution is

(67 Bpe|12) = 1 — plyna(e) < e < y12(e) | pe}

where

i@
Pirp < 712(c) | po} = [1 : p(re| pre = po) driz = 3o
(58) )
Plra > i@ oo} = [ pnlpn = o) dra = 3
T12(e

and

N ¢ e T R T )( d )”" cos™ (—poTr)
(59) p(rz|prz = po) = ﬁ‘%o——l)] (1 — ri'™ ore) VA —pirdh)

The probability that 7y is less than some specified value may be obtained from
Tables of the Correlation Coefficient (F. N. David, [1]), or, where these are not
sufficiently detailed, by using R. A. Fisher’s z’-transformation for ry; [4].

The cases considered are (a), (b), (¢), (d) as defined above. The power
functions of the three different tests (all based upon the equal tail areas of their
distributions) are given in Table III. The figures for ry; in the brackets are
those obtained by the z’-transformation approximation.

An examination of Tables IT and III brings out the following points:

(1) For reasons given above, the R, test based on equal tail area critical
regions is very slightly biased; the amount of this bias for the case n = 10,
po = 0.6, @ = 0.05 is shown in Table IV. This shows that the power of the R
test is less than 0.05 in the fifth or sixth decimal places for 0.59 < p; < 0.60.
As a result this test is very slightly less powerful than the other two tests for
alternatives with p, slightly less than py. The effect is, however, of little im-
portance.

(2) Except in this short range of p,, we find that

5(P¢ ! Rz) > ﬁ(Pt | Rl) > ﬁ(Pt 7‘12)-
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That is to say, the power function of the R, test never lies below those of the
R, and ry, tests, and that of the R, test never lies below that of the ry, test.

(3) The gain in sensitivity as measured by the chance that the test will
detect that p, # po is, however, very small. Further, R, may only be used if
it is known that o1 = o2 and R, if it is known in addition that & = & . It will
only be in rather special problems that the statistician can feel confident that
such assumptions are justified. We will therefore probably prefer the test based
on the ordinary product moment correlation coefficient 7y, since the slight loss
in power will be felt to be outweighed by the gain in simplicity. It is, however,
only after an objective comparison of the consequences of applying the three
tests that a definite opinion on these points can be reached.

TABLE 1V
P g (MIRa)/ 8" (pe|R2) B(pe|R2)

0.5 .0580 .0093 .0673
0.590 .0274235 .0225806 .0500041
0.591 .0271778 .0228190 .0499968
0.592 .0269359 .0230578 .0499937
0.593 .0266934 .0232976 .0499910
0.594 .0264515 .0235337 .0499852
0.595 .0262096 .0237798 .0499894
0.596 .0259677 .0240222 .0499899
0.597 .0257257 .0242651 .0499908
0.598 .0254838 .0245107 .0499945
0.599 .0252419 .0247540 .0499959
0.6 .025 .025 .05

6. Summary. Various hypotheses relating to a population of two normal
correlated variates have been considered and the appropriate test criteria for
each hypothesis have been derived by the likelihood ratio method. The dis-
tributions of the likelihood ratio criteria or of monotonic functions of them have
been obtained with the aid of transformation (14). References have been given
to tables from which significance levels for use in conjunction with the tests
may be obtained; a new table of significance levels for the tests of Hy and Hs
was given.

The power functions of 712, By and R; have been compared; from these power
functions it was concluded that R, and R. are suitable respectively for testing
the hypothesis when ¢; = o, and when, in addition, & = &.

In conclusion, I should like. to express my indebtedness to Professor E. S.
Pearson for continued advice and help in the preparation of this paper, to Dr.
A. Wald and Professor S. S. Wilks for valuable suggestions.
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