THE DISTRIBUTION THEORY OF RUNS
By A. M. Moop

1. Introduction. In studying a particular sample, the order in which the
elements of the sample were drawn is frequently available to the statistician.
This important information is usually entirely neglected by him. Such dis-
regard must be attributed, to a considerable extent, to the unsatisfactory state
of mathematical devices for using the knowledge in question. One reasonable
mathematical method for handling this information, the one to be used in this
paper, is to make use of the distribution of runs. A run is defined as a succession
of similar events preceeded and succeeded by different events; the number of
elements in a run will be referred to as its length.

The distribution theory of runs has had a stormy career. The theory seems
to have been started toward the end of the nineteenth century rather than in the
days of Laplace when there was so much interest in games of chance. In 1897
Karl Pearson [1], in a discussion of data taken from the roulette tables at Monte
Carlo, wrote *. .. the theory of runs is a very simple one.” In this book he
developed no theory but it is evident from his computations that he regarded the
distribution of runs as a special case of the multinomial distribution. The
multinomial method, besides evading the issue somewhat and raising questions
of random sampling, also gives incorrect results when one is interested in runs
of more than one kind of element. In 1899 Karl Marbe [2] derived an expression
for the mean of the number of iterations of a given length from a binomial
population. This result was incorrect because he neglected dependence between
overlapping iterations. An iteration is defined as a sequence of similar events; a
run of length ¢ is counted as ¢ — s + 1 iterations of length s for s < . Marbe
has assembled a great mass of data with the object of proving the popular
hypothesis that a ‘“head” becomes highly probable after a long succession of
“tails’” has appeared. Ordinary significance tests applied to his data do not
support this contention, but Marbe continues to advocate it [3] and [5]. Of
course, he has been severely criticised by many mathematical statisticians.

In 1904 Griinbaum [6] derived the mean of the number of runs of given length
from a binomial population by the multinomial method. The first correct
formulae were derived in 1906 by Bruns [7] who found the mean and variance of
the number of iterations of given length in samples from a binomial population.

In a book published in 1917 von Bortkiewicz correctly derived for the first time’

the mean and variance of runs from a binomial population using a method similar

to that of Bruns. This book [8] contains a great many formulae for means and

variances of runs and iterations under various special circumstances; a large

portion of it is devoted to an exhaustive criticism of Marbe’s work. In 1921 von
367

[

s
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to é,%a%
The Annals of Mathematical Statistics. IIKOIRS ®

)

WWWw.jstor.org



368 A. M. MOOD

Mises [9] showed that the number of long runs of given length was approximately
distributed according to the Poisson law for large samples.

It was not until 1925 (so far as the author has been able to ascertain) that an
actual distribution function appeared when Ising [10] gave the number of ways of
obtaining a given total number of runs (without regard to length) from arrange-
ments of two kinds of elements. Stevens [12] in 1939 published the same dis-
tribution and described a x* criterion for significance. Wald and Wolfowitz [13]
in 1940 published the same distribution and showed that it was asymptotically
normal. These papers are all concerned with random arrangements of a fixed
number of elements of each of two kinds; the last mentioned paper describes a
very interesting application of the distribution to the problem of testing the
hypothesis that two samples have come from the same continuous distribution.
Wishart and Hirshfeld [11] in 1936 derived the distribution of the total number of
runs (again without regard to length) in samples from a binomial population and
showed it was asymptotically normal.

In this paper we shall derive distributions of runs of given length both from
random arrangements of fixed numbers of elements of two or more kinds, and
from binomial and multinomial populations. Also we shall give the limiting
form of these distributions as the sample size increases. These limiting dis-
tributions are all normal. The distribution problem is, of course, a combina-
torial one, and the whole development depends on some identities in combinatory
analysis,—some new and some well known to students of partition theory.

The paper will be divided into two parts. The first will deal with distribu-
tions obtained from random arrangements of a fixed number of each kind of
element. The second will deal with distributions of elements from a binomial
or multinomial population.

Parr 1

2. Distribution of runs of two kinds of elements. Consider random arrange-
ments of 7 elements of two kinds, for example 7, a’s and ny b’s with n, + n, = n.
Let ri; denote the number of runs of a’s of length ¢, and let ry; denote the number
of runs of b’s of length 7. For example the arrangement

abbabaaabbaaa

will be characterized by the numbers ri; = 2, 113 = 2, 19y = 1, 722 = 2, and all
other r;; = 0. Also welet r, = Z riiand rp = E r9; denote the total number of

runs of a’s and b’s respectively. Throughout the paper a binomial coefficient
will be denoted by

@ (%) = sy

and this is defined to be zero when m < k. A multinomial coefficient will often
be denoted by
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m m!
22) [m.] T omlmel - m,!
(2.3) Zm; = m, mi > 0

and when such a coefficient is to be summed over the indices m; the two condi-
tions (2.3) are always understood and will not be repeated; other conditions on
the indices will be placed below the summation sign.
Given a set of numbers 7;; (2 =1,2;5 = 1,2, - .., ;) such that E_jr.-i =n;,
1

there are [TI] and [Tz] different arrangements of the runs of a’s and b’s respec-

T1j Toi
tively. Hence the total number of ways of obtaining the set r;; is

(2.4) N@yp) = [:117] [::’] F(ry, m2)

where F(ry, r3) is the number of ways of arranging r, objects of one kind and s
objects of another so that no two adjacent objects are of the same kind. Thus

F(rl,r2)=0 if lTl—'T2|>1,
(2.5) =1 if |mn—mn|=1,

=2if ™ =T

Since there are (:) possible arrangements of the a’s and b’s, we have at once the
1

2.6) P(rs) = [:‘l'] [::’] o,
(w)

Certain marginal distributions will also be of interest. To obtain, for example,

distribution of the 7y;

the distribution of the ry;, it is first necessary to sum [:2

23

ny. This is easily accomplished by finding the coefficient of ™ in

] over all partitions of

z"

++224 . ) =a"QF+z+22+...)2 = T

- x,,i(’rz— 1 +t)xt.

t=0 rp—1

The term corresponding to { = ng — r, gives the desired result:

@ N I B Gy}
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We have then

(2.8) Plry, ) = [:!1:] (7:: _ 11) F(ri,m)

()

and summing this over r;, a slight simplification gives

2.9) P(ry;) = I::;_]("'ii) .
(w)

The distribution (2.6) summed over 71; and 7;; gives by means of (2.7)

(2.10) Plre, 1) = (7: i ) (:: _ 11> F(ry, )

n
n,

which is essentially the distribution derived by Wald and Wolfowitz [13], and
summing this over r, we get the distribution discussed by Stevens [12]

- oo - B2

()

Another marginal distribution which will be useful is obtained by summing
(2.9) over ry; for 7 > k. If we let

sy =ry, J<k,
k-1

n1
3u=;7‘1i, A=;JTH,
we must then sum the multinomial coefficient
Slk!
Tig! o oo Tiny!

over all partitions of n; — A such that every part is greater than £ — 1. This
is given by the coefficient of ™™ in

@ + 2 .. ) = g i (Slk -1+ t) ot
t=0 s — 1
thus we have

1
(2.12) Sy — % =

le! oo Tiny

(m —A— (k- Dsy — 1)

Sm—l
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where Z(k) denotes summation over all positive integers ru, r1i+1y =+ 5 Tiny
nl

such that ; Jjri; = ni — A. This identity with (2.9) gives

[Sl] (’nz + 1) (m — A - (k ol 1)S1k bl 1)
(2.13) P(g) = =8\ & fu — 1 i=1,2...,F

)

Another useful distribution analogous to (2.13) is derived by considering runs
of both kinds of elements. If we define s;; (j = 1,2, ---, h) and B in terms of
Ta; just as s;; and A were defined above, it follows at once from (2.6) and (2.12)
that

(2.14) P(su, sz) =

allsel/fmi—A—C&—1Dsy,—1\ [ne— B — (h— sy, — 1
[Sﬁ][szi]( 1 S — 1 ¥ )’( s — 1 g )F(s1, -S‘z)

(-) |

i=1,2---,kj=12 . ,h

These last two distributions should be the most useful for applications. The
long runs have been added together to form the new variables si and s thus
decreasing materially the number of variables as compared with (2.6) and (2.9)
while at the same time little information is lost. One is free to choose k and h
so that the number of variables is appropriate for the data at hand. Moreover,
it is shown in Section 5 that these variables are asymptotically normally distrib-
uted so that one may apply a simple x* test of significance for “randomness of
elements with respect to order” when dealing with large samples. We shall
then be able to test whether a sample has been “randomly” drawn in a certain
sense.

3. Moments for runs of two kinds of elements. Instead of dealing with the
ordinary moments we shall obtain formulae for the factorial moments because
the expressions are much more compact. As is customary, a factorial will be
denoted by

(3.1) 2@ =g@—-1E—2 .- @—atl),

and z¥ is defined to be 1. Of course the ordinary moments are determined by
the factorial moments by means of relations of the type

a
2 = Z iz,
=0

A recent discussion of the coefficients C} has been given by Joseph [14]. The
mathematical expectation of a function f(r) will be denoted by
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3.2) E(f() = ;f(r)P(r)-

Of course E is a linear operator. We shall require the following identity

S 3 ROy

where Z(;) denotes summation over all positive integers i, mz, +++ , 71n, Such
that 2 1ri; = ny . (3.3) may be verified by differentiating
1

ot) = (he + t2? + ... )

a; times with respect to ¢; (¢ = 1, 2, ..., m), then finding the coefficient of
z™ after putting {; = 1. The identity (3.3) enables us to find the factorial
moments of the variables in the distribution (2.9) for we have

sqra) - 210 1)) /()
e (RO
(3.4) =3 m+ 1)@«»( ?:i__ll) ( ;_Eg: 1>/<:1> |

e (B /()
(e + 1) <nl_2w‘_ /n

The sum on r; involved in the last step is given by the identity

(3.5) 7;, (ci z) <Ij) = (g I g) '

which is readily obtained by equating coefficients of 2 in

B A+B
a +x)"‘<1 +};) -4+ a7

xB
We shall give here the means, variances and covariances obtained from (3.4)
(3.6) E(rw) = (ns + )P n{/m,

(@) @, (i+5) 2 (i), ()
3.7 oo = M0 + Pl ni(ng + 1)’ni”ni’
' i nG++2) NG+ n(]+l) ’

,’7/2(2)(”’2 + 1)(2) niﬁ) + (n2 + 1)(2) n§i) (1 _ (,'?,2 + 1)(2)n§5))

3.8) g = e G+ G
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These will be needed in the section dealing with asymptotic distributions. The
moments for the distribution (2.6) follow at once from (3.3) as
E (] rir?) = 20 r{Z0r{®n
i

1.7

3.9) n— D ta; — 1\ [ny — X jbj — 1 n
. F (’I‘ 1, 1‘2) .

Tl—za.-—l Tz—Zb,'—l ny,
The summation on 7, is accomplished by putting 7, = 1, — 1, 1, and n, + 1,
but after that has been done it is necessary to expand the product of the two
factorial factors in factorial powers of the lower index of one of the binomial
coefficients. This is easily done for the first few moments, but there appears
to be no simple expression for the general case. The means, variances and

covariances of ry; are given by (3.6), (3.7) and (3.8) and those of ry; are obtained
from these equations by interchanging 7, and na. The other covariances are

_ n§a+2) n;:+2) 44 n§t+l) né:+l)
Oriini = T G nGHD
(3.10)
9, () 2 2,5, )
4gmiin _ ut Dm + D@
nl+) NG+ GH) °

A slight variation of the method above will give the moments of the s in
the distribution (2.13). An accent on a summation sign will indicate that the
term corresponding to ¢ = k is to be omitted. Differentiating

o(t) = [ + 2 + -+ + 5™ + (=" + 2+ )

a; times with respect to ¢; and finding the coefficient of 2™ after putting ¢; = 1,

we obtain
L. — A= (- -1
H si‘.) [:1] (1)4 A & — sy )

Sriggima 1 1 sy — 1

(3-11) Za0 n — E'I:ag + ap — 1>
=58 " .
' 8 — Z'a.- -1

This with (2.13) gives by the same steps as used in obtaining (3.4)

3 (@) ) _ (Zag) n - Z":ai - Zla.' n)
(3.12) E’(Hs )- (s + 1) < I, >/<n .

The first two moments are

(k)
(3.13) Elsw) = (12-_%1)1’&

2 i+k) 2, (8, (k
_ ma(na + Dnf™* ma(ne + 1)"ni” nf?
- G+ nGH p® 4

(3.14) Tk
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(3. 15) Okk

_ (DO + D (1 _ (a4 l)nf"))
(k) °

n@ n®

The others are, of course, given by (3.6), (3.7) and (3.8).
The joint moments of the variables in (2.14) as obtained from (3.11) are

m— D e+ a— 1
E (ag) (b7)) _ (Zag) ((Zb))
(];I 815 Sy ) Z 81 S2

81,82 81 — Z, a; — 1

m— D jbi+ by — 1 n
< o= Vb — 1 )F(sl, Sz)/<nl>-

In addition to the covariances (3.10) we shall need

(k+2)  (5+1) (k+1)  (5+1) (k+1) (5) &),
n ny’ + 2n, ny’ ni ny” + ng nzl)

(3.16)

Torksaj = nEHD 2 N+
3.17)
2, 2. k. j
_ i+ 1)@ + )PP
n®) pG+) ’
(41 (h+1) (CINO) ®),
3.18) _mTm o n”  (u + 1) + DnPnf?
: Toawenh = —Gm nE+—D n® :

The moments of r in the distribution (2.11) may be derived easily by means
of (3.5) as

(3.19) E@®) = (n + 1) (:;_Z) / (:})

From which
(3.20) E(r) = (—"“’—:—l)ﬁ

2 _ (ny + 1)(2)n§2)
(3.21) Ory = T

4. Distribution and moments of runs of k kinds of elements. This section
is a generalization of the preceeding two sections to several kinds of elements.
The case k = 2 was treated separately because the special character of the
function F(ry, ) in this instance made the distribution comparatively simple.
Now we shall be interested in k kinds of elements denoted by a,, - - - , a; and
we shall suppose there are n; elements of the ¢th kind. We let r;; denote the
number of runs of elements of the ¢th kind of length j, and put

k ns
n=zl:n.-, T"=ZT.','.
i=1

The same argument as was used in deriving (2.6) gives
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@.1) Plr) = Ijl [:] F(ry,7a, ooey )
]

where the function F(ry, ry, - - -, %), which will be referred to hereafter simply
as F(r;), represents the number of different arrangements of r, objects of one
kind, r, objects of a second kind, and so forth, such that no two adjacent objects
are of the same kind. We shall be able to give the explicit expression for F(r;)
after examining the marginal distribution P(r;). This is obtained by summing
(4.1) over r; with r;; fixed by means of the identity (2.7) giving

IkI (n‘ B 1) F(r)

7"'—'1

4.2) P@r) = =2
B

Despite our present meager knowledge of F(r;) it is possible to find the
moments of the r; as distributed by (4.2). Since Y P(r;) = 1, we have the

identity

4.3) )> H(’:f 21 ) Fer) = [:.-]'

From this the moments are easily derived. If we put
(44) Ui =Mm; — 15

we have

S (32 1) oo = I =0 IL(% 2 ) P

1

= Z I - II (” oy 1) F(r)
- H (ns — 1) ; H (’n‘r—"z‘ 1— 1) F(r)

k

= I o — ) [”n" _Zm“‘].

je=]
The summation involved in the last step is given by (4.3). On dividing the

last equation by [::] we get the factorial moments of the u;

4.5) E (Ii[ ugaa) = I:I (n; — 1)@ [nn—_za:l.‘] / [:"]

From these equations the moments of the r; may be found; the means, variances
and covariances are
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E(T.‘) = nt(n - N + 1)

4.6) mtl),
2, (@
ng Ny
(4.7) gy = m——,
(2 (2)
_ni"(n—mn; 4+ 1)
(4-8) Oii = m®

It is clear that
k
¢(t;) = Coefficient of H 27 in
1
4.9
n;

k
($1+...+xk)k111(x1+oo~+xi-—l+tixi+x‘+l+"'+xk ”‘_l/[n]

is a generating function for the moments of the variables u;. This generating
function will enable us to find the exact expression for F(r;) for we have

k
P(u; = ny) = Coefficient of [] 7% in o(t)
1

- = a1/

¢ nij=nj—aj

Also

P =T1(%21)re /[ 1]

and equating the expressions on the right of the last two equations we have

k 17

(4.10) Fer) = ° z l; ‘f ] I_Ii [ln : 1-
1(70)

@.11) -z, [5] Ii [rn—’ 1]

ingj=rj—aj
in which the prime on the n;; indicates that the indices corresponding to j = %
are to be omitted; hence ¢ takes all the values 1, 2, - .. , k and j takes all values
1, 2, ..., k except ¢ because the index n;; has been cancelled with n; — r; in
the binomial coefficient in the denominator of (4.10). It is clear from (4.11)
that F(r;) may be expressed as follows

]
F(r) =CT IJ @A e +3) @t 2+ oee + )Y

4.12)
@At e F2) s Bt e + )™

in which “CT” is an abbreviation for ‘“constant termt of.”
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We are now in a position to obtain moments of the variables r;; in the distribu-
tion (4.1) by means of identities similiar to (4.3). As an illustration we compute

n—a—1 k n—1 m—a—1 k n; —1
g(h—a—l)g(ﬂ' )F(T‘)=;(ﬁ—a—1>lzl(r-‘—1)
cr ] -'-H<x1+---+uxi+.--+xk)'*"]

tiem0

=CT H (371 + .0+ xk)"_°(x2 + .. 4 xk)a

_ (n —ny) @
T L n®
or

m—a—1 - n—a)!n—n)®
(4.13) (r —a—l)H<r _I)F(r.) = v .
H n.-!
1
The moments of 7;; may be computed from identities of this type together with
(3.3). The first two moments are
4.14)  E(y) = (n —ni+ 1)Pnf? /a0
4.15)  EGD =00 —n)®m —n; + 1)P/n®?
(4.16) E(T.]T“) = n.1+t)(n .)(2)(,"' —n + 1)(2)/n(f+¢+2) j #

. n' f 7—1) n! (-1 @ @
E(rire) = mi—j—1)(n, —t —1) TG {i—7+1)" (. —t+1)

+ 20 —ni—n)mi —j+ D, —t+ Dn, — t + n; — j)
+m—n—n)?ln,—t+1D® +2m —j+ 1), —t+ 1)
+ =7+ DI +20 —n —n)®P0 —j 4+ n —t+2)

(G—-1 , (t—1)

+—m—-n)® 42— -1 <,+7+‘1) {(ni —j+1)

=t +1D® + 0 —n —n)2m —j+ D, —t + 1)
+ 0 —t+ DY+ 0 —n—n)®20, —t+ 1) + (0 —j + 1)]

(G=0 (1)

+—m—n)® 20, —t— D (=t +1)

nG+t+)

(4.17)

=i+ )P + (= —n)20 —j+ D, — t 4+ 1)
+ =5+ DPN+ (0 = —n) P20 =+ 1) + (= t + 1)]

(:—l) (l—l)

+(n_nt_nl)(s)}+4 {(ni—]+1)(nl—t+1)

n(]+‘)

+n—ni—n)i—j+n—t+2)+ n—n—n)®}.
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Such a lengthy expression as this last one can hardly be useful to the statistician,
and for this reason we shall not define variables s;; analogous to the s;; and sq;
of Section 2 and take the time and space to find their moments.

b. Asymptotic distributions. We shall show that some of the distributions
obtained previously are asymptotically normal when the n; become large in
such a way that the ratios n;/n remain fixed. The description ‘“asymptotically
normal’”’ means that the distribution approaches the normal distribution uni-
formly over any finite region as n; — «. The ratios n;/n will be denoted by
e, hence T e; = 1. The symbol O(1/n") will represent any function such that

LxmnO( >=L<oo.

We shall not, of course, be able to get any limit theorems for distributions
like (2.6) or (2.9) because the number of independent variables increases with
n. We shall consider first the distribution (2.13) whose asymptotic character
is given in the following theorem.

TaeoREM 1. The variables

0]
81t — neiez

Ty = —— 1<k
Vn
5.1) )
T = Six — Me1e2
Y

are asymptotically normally distributed with zero means and variances and co-
variances

GG + DG + Ve — e — 26, 6,5 < k, i # j

O =
(5 2) O = %1_1 3[(’& + 1) €169 — ’Lez 261] + 6162 ) 1 <k
T oa = @G + Dkeses — thes — e, i < b

Ok = 2k~l€2[k (er — Des — el] + éhes .

The limiting means, variances and covariances are obtained from the relations

(3.6), (3.7), (3.8), (3.13), (3.14) and (3.15).
To demonstrate this theorem we make the substitutions

ng = ne; 1=12
s = neies + v/nx; i=12 ..., k—1
s = néie: + /nay

' k
81 = nee; + ‘\/’l—?, ; Z;

k—1
A =nle — & — kefer) + v/ ; 1T;

(53)

in (2.13), and estimate the factorials by means of Stirling’s formula
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(5.4) = V2™ (1 +0 (%))

The result is an unwieldy expression which we shall not present at the moment.
First we note that the exponential factors cancel out because the sum of the
lower indices of a binomial or multinomial coefficient is equal to the upper index.
Also we simplify the expression by considering in detail only terms which involve
the z; ; the normalizing constant can be determined from the final limit function.
Any function of the parameters will be represented by the letter K. Thus in
(5.4) we need consider only the factor m™". All factorials will be of the form

(5.5) m = na + /nLx) + b

where L(z) is a linear function of the z;, and a and b are independent of n and
z;. Now

= (na 4+ v/nL(z) + b)retvrE@+HH

= nat+ya L)+ L(z) >”"+\/5L(z)+b+}
= () <1 T avn a \/n +

na+y/nL(z)+b+4
= K(ng)V™® (1 + LS)_ n )

and log m™* = K 4+ v/nL(z) logna + (na + v/nL(x) + b + 1)

-log (1 + L\(f)_ + )

= K + V/nL(z) log na + (na + +/nL(z) + b + })
L) , b L'z 1
.(a\/ﬁ + an  ain + O(W))

= K + v/nL(z)(1 + log na) + -2%142(93) + 0(&%):

(5.6)

so terms arising from b (and b + % in the exponent) will be neglected as they
give rise only to terms independent of the z; or of order 1/n. Of course log
1+ 0(1/m)) = O(1/m). Thus, keeping significant terms only, the result of the
substitutions (5.3) and (5.4) in (2.13) after taking logarithms and using (5.6) is

—1

—log P(r) = K+ v/n Z z; (log neie; + 1) -{-

2
Ti
2
T 26

—/n (}"_, x.) (log nez + 1) + (ZT‘ 35")2



380 A. M. MOOD
] k—1 1 k 2
67 +vn (; ir; + (b — 1):::,,) (log net + 1) — o (; i + (b — l)xk)
1
2 k
+ 2 4/nz; (log néke; + 1) + ;f—’;z - /n (ZIZ ix.-) (log nef™ + 1)
1
1 (. V ( 1 )
+2e—,{;1(‘12m) +0 7))
The coefficients of z;(s < k) and z; are
A/n(log nele; + 1 — log net — 1 + i log neé¥ + i — i log né¥™ — 4) = 0,

V/n( — lognet — 1 + klog net + k + 2log nefes + 2 — klog nék™ — k) = 0.

Hence only the quadratic terms remain and we have

. 1
5.8 —logP = K Y xix; 0(—“)
(5.8) og +‘}’Zﬂ:¢r zx; + v
where
i 1 11 .. . .
¢i=—§+% 1,7 <k, 157,
€2 (41
s 1 1 e .
T ettt Pk
(5.9 o
cck=l’+i+1(kﬂ— Des i <k
€2 €1
w1 2 B (k—-1)7
o= 4 + - =
e & & e

It is merely a matter of straightforward multiplication of the two matrices to
verify that || ¢*’ || is the inverse of || os; ||, hence is a positive definite matrix.
The details of the verification will be omitted. We have then

A Zetizs 1
5.10 P = K¢ i=tisie (1 0 <—=>)
(5.10) + v
1 k
In this equation K must necessarily contain the factor ( \/-—1-) because there

are k + 5 factorials in the denominator and 5 in the numerator of (2.13).
Since Ar; = 1, this factor, in view of (5.1), may be replaced by IIAz; , so

(5.11) P = Ke 1V =wiqiag, (1 + 0(—1—.».
Vn

If we restrict the z; to any finite region R in the z-space, the function 0(1/n)
approaches zero uniformly as n — . Thus, if A; < B; are any positive
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numbers such that the corresponding values of z;, say a: and b;, obtained by
substituting 4; and B; for r; in (5.1), determine a rectangular region R’(a; < z; <
bs), which lies in B we have

ey = B Ke—-”*"m:'mx.-(l +0(\—j—_»

rimAg Zi=ag n

R Ke etz dr;
R’

by the definition of a definite integral and Riemann’s fundamental theorem.

We have given some details of this proof in order that it may serve as a model
for other theorems of a similiar nature which will appear later, and for which
a complete proof will not be given. Two immediate consequences of Theorem 1
will now be stated as corollaries.

CorOLLARY 1. The variable

- r — neé
V/'neie;

where r 18 the total number of runs of one kind of element, is asymptotically normally
distributed with zero mean and unit variance. The limiting mean and variance
were computed from (3.20) and (3.21).

COROLLARY 2. The variable Q = Zo“rix; 18 asympiotically distributed accord-
ing to the x’-law with k degrees of freedom.

In exactly the same manner in which Theorem 1 was deduced from (2.13),
we may prove the following theorem corresponding to the distribution (2.14).

THEOREM 2. The variables

z

i 2
S1; — nele;

T = —— 1 < k,
Vn
k
S1x — Neyér
(5.13) Ty = —————
vn '
2 4
yi = 824 nei e i< h,

Vn

are asymptotically mormally distributed with] zero means and variances and
covariances

Oziz; = et + 1)(G + 1ewes — dje; — 2ei] 5,5 <k
Oogzg = €1 €3l (1 + 1)’e1e; — i'er — 2e1] + eies 1 <k,
Orgzy = et G + 1)kerer — they — e 1 <k,

2k—1 2 2 k
Onz = €1 e[— k'ez — e1] + efen,
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(6.14) oy, = es el + 1)(J + Dees — tjer — 26 5, <h
Ovwe = €360 + 1’eres — o1 — 2e0] + ezel i <h,

Oziy; = e (@ 4+ 1)(J + Dewes — 2ie — 2je; + 4erer + 2]
1 <k, j<h,

oy = e’f“eg[k(j + 1)6162 — Q(k — ]_)92 — (] —_ 1)61 -+ 26162] ] < h.

These limiting variances were computed from the variances and covariances
given in Section 3. We have chosen the variable sg, of (2.14) as the dependent
variable. The proof of this theorem is omitted. From it the following corol-
laries are deduced immediately.

CoROLLARY 3. If u; = z; and wrs = yi of (5.13) and || 0¥ || G, j = 1, 2,
-«+, k + h — 1) denotes the inverse of (5.14), then the variable Q = Ec‘jumj 18
asymptotically distributed according to the Ylawwithk+ b — 1 degrees of freedom.

CoOROLLARY 4. If s; = s1: + So: denotes the total number of runs of both kinds of
elements of length i, and s the total number of runs of length greater than k — 1,
then the variables

s — nleies + esel)
Vn

_ s — nleies + eher)
X = =
N

are asymptotically normally distributed with zero means and wvariances and
covariances

(5.16) Oij = Oziz; + Oziy; + Ozjy; + Oysyj +

We have put o = k in Theorem 2 to obtain this result. The terms on the right
of (5.16) are defined by (5.14); terms which do not appear there may be found
by interchanging e, and e; in one of the relations. For example a,,,, is given by
interchanging e; and e, in the fourth equation of the set (5.14).

COROLLARY 5. The variable Q = Zo“zix; where the z; are defined by (5.15)
and || ¢ || s the inverse of (5.16), is asymptotically distributed according to the
x-law with k degrees of freedom.

CoROLLARY 6. If s denotes the total number of runs of both kinds of elements,
then the variable

i<k

Ty =

(5.15)

_ 8 —2neie
2v/nes e

1s asymptotically normally distributed with zero mean and unit variance. This is
the result derived by Wald and Wolfowitz [13].

6. Asymptotic distributions for & kinds of elements. We now investigate the
asymptotic character of the distribution (4.2)
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(v ))re

T;—l

(6.1) P(r) = =
A

where 7; is the total number of runs of the 7th kind of element.
TueoreM 1. If k > 2, the variables

_ri—ne(l — &)

(6.2) Ty = _——_;/7—;——

are asymptotically normally distributed with zero means and variances and
covariances

(6.3) gi; = efe? , Oy = 63(1 - 65)2.

The restriction £ > 2 is made because in the case k£ = 2 the correlation between
the two variables approaches one, and the numbers o;; are all equal. The result
may be called a degenerate normal distribution and might be included in the
theorem in this sense; we have chosen to omit it because this case is better taken
care of by Corollary 1 of the previous section.

The proof of this theorem will be simplified if in the moments (4.5) we replace
the numbers n; — 1 by n;. This substitution will not, of course, affect the
limiting moments. Hence we consider the variables »; with moments given by

E IkI nga;) [n - Ea.]
(6.4) E(H vgao) _ i Lni—a ]
1

-]

2
Vs — ne;

(6.5) ¥i = a

are asymptotically normally distributed with zero means and variances and co-
variance (6.3). It is possible to prove this statement by showing that the
characteristic function (Fourier transform) obtained by substituting 70; for ¢;
in the moment generating function

and shall show that

®
en(t) = Coef. of [] 22 in
1

6.6) )
@+ +ra+ bz + 2+ o0 + xk)"‘/[:‘]

1

approaches
e(8) = ¢ zesifity
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as n — . This method is not appropriate for proving a similiar theorem
which appears in Part II, and we prefer to give here a demonstration that will
suffice for both theorems.

In order to prove our theorem we consider the general term in the coefficient
of IIz7* in (6.6)

6.7) Cm) =11 [Zi,-] Me-/ [::.-]
in which
(6.8) Zk: Mij = My

fo=1
must be required as well as the usual restriction on indices of a multinomial
k

coefficient, 2 mi; = n;. Therefore only (k — 1) of the indices are independent.
=1

Clearly m;; = v;. Now without concerning ourselves about the statistical

significance of the variables m;;, let us consider their distribution

(6.9) Dmy) = ﬁ [:».]/ [:.-]

in which the variables corresponding to the values 7,5 = 1,2, ...,k — 1 will
be chosen as the independent ones. We shall now prove a theorem from
which Theorem 1 follows immediately.

THEOREM 2. The variables

(6.10) xy = T T 6j=1,2 ., k—1
Vn

are asymptotically normally distributed with zero means and variances and co-
variances given by

Oijpg = €i€i€ylyq
(6.11) gijip = — el — eese,,

Gij,if = e.-e,~(1 - e;)(l - e,-).
First it is to be noted that the moments of the m;; are easily obtained from the
identity

(6.12) o 1 [:»,] = [:]

as follows

i L A 5 My — Gy

— H ngz;a“) "= ; W
s i —'Z @ij
12
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and on dividing this last relation by [ ] we obtain

(6.13) E(H mg?ii)) = H nﬁz" a;j) H ngz.‘aii)/n(Z;fa.'f)
(%) i 7

from which the moments (6.11) and the means in (6.10) were computed.
The proof of the theorem is similar to that of Theorem 1 in Section 5. We
make the substitutions

n
ne

1

k=1
n; = neé;, My = n; — 2 mij,
g1

k-1 k=1
ma = mg— omy,  ma=2m o+ 3 mg—n,
1= LY A

mi; = neie; + \/ni;,

in (6.9) and employ Stirling’s formula exactly as before. The details are too
similiar to warrant repetition. The final result is

(6.1 4) D(mij) — Ke—iz,s‘i,pmizya I dx.y (1 +0 ( _1__)) .
Vn

Where || ¢*7** || is the inverse of (6.11) and is defined by
i _ 1 o_ij,ij=1+1+l+1

- - -

27 2
[ €k €; €k €; € €;6;

sidp _ 1 1 iipi _ 1 1
ot = — 1 5, o = — 4 5
e16x [ €16k €k

o

Theorem 1 is a corollary of Theorem 2. Also we may state these additional

results:
CoroLLARY 1. If k (> 3) kinds of elements are arranged at random end r

denotes the total number of runs of all kinds of elements, then the variable
_r- n(l — Zed)
Vn
s asymplotically normally distributed with zero mean and variance
ot = Zet — 23} + (27e‘f)2

where e; is the proportion of elements of the i-th kind.

COROLLARY 2. The variable Q = Zo‘’r.x; where the x; are defined by (6.2)
and || "7 || is the inverse of (6.3), is asymptotically distributed according to the
x-law with k degrees of freedom.

As was mentioned in Section 4, we could define variables s;; ( = 1,2, .- , k
andj=1,2, .., ki, the k; being a set of k arbitrary integers) with a distribu-
tion similiar to (2.14). If one worked through the details he would find, no
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doubt, that these variables are asymptotically normal. The matrix of vari-
ances and covariances is so complicated, however, that such a theorem would
hardly be useful to the statistician, and the author does not feel that it would
be worthwhile to go through the long and tedious details merely for the sake of
completeness.

Parr 11

Instead of having the number of elements of each kind fixed, we now suppose
that they are randomly drawn from a binomial of multinomial population. The
numbers n; thus become random variables subject only to the restriction that
2Zn; = n, the sample number. The development will be entirely analogous to
that of Part I, and the same notation will be used. The probability associated
with the 7th kind of element will be denoted by p; .

7. Distributions and moments. The major part of the derivation of the
various distribution functions has already been done in Sections 2 and 3. With
the distributions of these sections we need only employ the fundamental
relation

(7.1) P(X,Y) = P\(X | Y)Py(Y)

in order to obtain the distributions required here. X will represent the set of
variables 7;; or r;, and Y the variables n;. For the binomial population
Py(Y) will be

(7.2) P(ny, np) = (Zl) pripst.

Therefore we may write down at once the distributions

@ Pl nd =[] 7 ]Pe mpar

@9 Pl =[] Yarar,

T

(7.5) P(r1, n:) ("‘ )("2 + 1) 1'ps?
1=
81 ""A—k_l)slk""l ’n‘z+1 ny, ny
51 [ty G o
s1 — A - (= Dsu—1
P(Sn, 825, M s) [sl;l [82,]< s — 1 )

7.7 - -
&0 Y (R LW

7:= 1’...,k,j=1,--~’h,

(7.6) P(s1j, n) =
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corresponding to the distributions (2.6), (2.9), (2.11), (2.13) and (2.14) respec-
tively. Of course there is some dependence among the arguments. In (7.4),
for example, n, is determined by Zir;; = n1, and ne by n — n; = n2. In the
last three distributions one of the #; is independent and one may sum these
with respect to n; from zero to » and obtain the distributions of the 7’s alone.
The results of such summations are quite cumbersome and in some cases can
only be indicated, so we shall retain the n; as relevant variables. This remark
applies ale~ to the multinomial distribution.

We shall obtain expressions for the joint moments of the variables in these
distributions. It is clear that the moments in Section 3 will be of considerable
aid; for, using the notation of (7.1), we have

(7.8) E(f(X)g(Y)) = xEJ(X).(;(Y)P(X, Y) = ; sNP()[Z FOPX/ V)]

and the sum in the bracket on the right has been computed in Section 3. It re-
mains only for us to multiply the previous moments by g(Y)Py(Y) and sum on
Y. Corresponding to (3.4), (3.12), (3.9) and (3.19) we have

a; - ag > a; ag — 2da; — Za; ny, n
(7.9) E(n{ ) IlIri.-‘)> = Eoni d(ng + 1) (n e a‘)pl‘pz ;

ny= n — Zia;

k n . ’
. - . e (1 — 21t — Z'a5\ ny w
(7.10) E(ni’IIIsi.--’) =2 nPm+1)C "(" v "“)pl'pf,

n1=0 n — E'iai
(7.11) E@®r®) = 3 nf@m + 1) (n ~ b)p{"pé",
n1=0 n — b
E(nga) IkI ReR) IhI sély)) = T @ T (38 (nl — Zia; + ax — 1)
1 ¢ 1 ! n1,81,82 S — Z’a.- b 1
.12) Zjb; + b 1
Ng — 2J0; R — ny, n
( o — - 1 ) Flow, s)pt'pl,

for moments from (7.4), (7.6), (7.5) and (7.7) respectively. In order to perform
the summations indicated in these last relations it is necessary to expand the
factors multiplying the binomial coefficient in factorial powers of its lower
index. That is, we must write

a+b

(713) nia)(n2 + 1)(b) = Z C:(n) a, b) (nl - b)(i)-
1=0

Again it is not possible to give a simple expression for the coefficients C;(n, «, b)
in general, but for the first few moments they present no difficulty. For example
from (7.9)
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E(mre) = Z mn —n + 1)( n 1:_: 1) p1ips?

n1=0

=Y lkn—i+1)+ @ —2)0m—15)+ m—)%

n—12—=1\ n ny
.< nl—i )pl P

=Z[z(n—z+l)( >+("—2’)("—’—1)

ny
n—1—2 @ 1 —3 ny_ ng
'(nl -1 — 1) w—i-1 <n1 -t — 2)] pipe

=lin—i+1)+ @ —2)(n—i—Dp—(n—i—1)"pilpips.

We give below some means, variances and covariances which will be required

later.

(7.15)

E(ri) = P:Pz[('n — 1= Dp: + 2],
E(su) = m[(n — k)p: + 1],
Oriery = DD (0 — i — )PP} + (0 — § — DM + 5pr) + 6p}
—[n—¢—1p+ 2l[(n — j — Dp2 + 2]},
Grins = D3l (n — 20)®p} + (n — 20)p(1 + 5p1) + 6p
— [0 — i = Dpr + 2} + piplln — i — s + 2]
Oryersy = PIPE{ (0 — i — j — 2)Ppipl + 4(n — i — j — Dpips + 2
— [ —¢—Dpe+2l[(n —j — D; + 2],
e = P palln — i — k + D® — 20 — i — B)py
+ @ —i—k—1%i—[(n—13— s+ 2l(n — K)p: + 11},
e = Pi{(n — 2k + 1)® — 2(n — 2)Ppy + (n — 2k)“pi
— l(n — k)p2 + 11} + Pil(n — K)ps + 1],
Gony; = PiPi(n — k — j — 2)Ppipe + 2(n — k — j — pu(1 + po)
+ 2(1 + p) — ;l(n — B)pe + 1][(n — j — L)ps + 2]}.

In order to obtain the distribution of runs in samples from a multinomial
population, we multiply the distributions of Section 4 by

(7.16)

P(ny) = [:‘] I,:I pit.

Corresponding to (4.1) and (4.2) then, we have

(7.17)

(7.18)

=]

P(ri, ng) = I’:I <7:" )F(r.) IT o7

P, = T1[ |rea Lo
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In (7.17) r;; is the number of runs of length j of elements with probability p; .
In (7.18) r; is the total number of runs of elements with probability p;. As
before, we shall investigate in detail only the distribution (7.18). The moments
of n; and r; follow at once from (7.8) and (4.5)

k k
(719) E (H ({9 u®? ) Z H (08 (m; — 1)%¥) [7; E:’] II »¢
s — U4 1
where u; = n; — r;. The means, variances and covariances of the r; are
E(r) = npi(1 — ps) + pi,
(7.20)  ore; = —nppi(1 — 2p: — 2p; + 3pp;) — PPi(2p: + 2p; — 5pw),
orrs = npi(1 — 4p; + 6pi — 3p}) + pi(3 — 8p: + 5pi).
8. Asymptotic distributions from binomial population. We turn our atten-

tion first to the distribution (7.7) and state a theorem analogous to Theorem 2 of

Section 5.
TaEOREM 1. The variables

i 2
m:x‘.:{h____m’ t=1 ...,k —1,
n
&
uk=xk=3i"_7’:’_lp2,
8.1) »
S — M, .
u;,ﬁ=y.~=—\/h_pl—p2, 1=1, yh—1,
n —n
Wopr = 2 = 1\/77171,

are asymptotically normally distributed with zero means and variances and covari-

ances
Ozz; = i’:}’: - (27' + l)pf‘p: + 2p2‘+1

az;zi —('L +J + l)pC-H' 4 + 2p€+ri'l 8
osm = —( + k + Dpitps + p’*"*‘pi,
pips — (2k + 1)pi*pi,
ouw; = — @+ 5+ Dpips™ + 2pipit*,
(8.2) ovws = Pips — (2 + Dpip?’ + 2pip2'“,
ozy; = — (@ + 5 + 3)ppi™? + 2pitpi",
oa; = —(k + 7 + 2)p1pi" + pFpi + p),
oss = ipips + pit

(2799

ll

p2(1 — 4pa),
ous = ( + 1)pip: — pi(1 + po),
ouis = ipipz + i (1 — 4py),
Oss = D1P2 .
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We have taken sy, and 7, to be the dependent variables of (7.7). The method of
proof of this theorem is the same as that of Theorem 1 in Section 5, and will be
omitted. As consequences of the theorem we have

CoroLLARY 1. The variable

kb
Q=2 Muy;

1s asymptotically distributed according to the x-law with k + h degrees of freedom.

COROLLARY 2. Any subset ui, , Ui, , - - - , Us, of the variables (8.1) is asymptoti-
cally normally distributed with zero means and variances and covariances || oi;q, ||
and

Q= E ”ii‘kuiiu‘k
7ik=1
is asymptotically distributed according to the x*-law with m degrees of freedom.
| *i* || is the inverse of || a4;4, || -
COROLLARY 3. If s; = 813 + sy represents the total number of runs of length i of
both kinds of elements, and sy, the number of runs of length greater than k — 1, then
the variables

i 2 28
o = s; — n(pipz + pips) 1=1 ..., k-1,

V'n ’

(83) ) .
T = Sk — n(lhpz + Plpz)
Vn ’

are asymptotically normally distributed with zero means and variances and co-
variances

(8.4) Oij = Oziz; + 0z9; + Ozjy; + Oyewy

where the terms on the right of (8.4) are defined by (8.2). We have put A = k
in Theorem 1 to obtain this result.
CoROLLARY 4. The variable

(8.5) Q= i oV iz

where the z; are defined by (8.3) and || ¢ || is the inverse of (8.4), is asymptotically
distributed according to the x*-law with k degrees of freedom.
CoROLLARY 5. If r denotes the total number of runs of both kinds of elements,

then
z = r —2np1Ps
2/ np1 p2(1 — 3p112)

is asymptotically normally distributed with zero mean and unit variance. This is
the result obtained by Wishart and Hirshfeld [11].

(8.6)
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9. Asymptotic distributions from the multinomial population. In this
section we assume k£ > 2 to avoid degenerate distributions. Because of the
function F(r;) in (7.18) we do not investigate this distribution directly, but
derive a more general asymptotic distribution as was done in Section6. We
consider the distribution

©.1) Demy,nd = 11 ([ "] pg«>

i=1 mi;

corresponding to (6.9). This is derived from (7.19) in the same manner as
(6.9) was from (4.5). As before, we have replaced the numbers n; — 1 in (7.19)
by m:, an unessential change as far as the asymptotic theory is concerned.
We recall that

(9'2) ri = Ng — Mys

hence we need only show that the variables on the right are asymptotically
normally distributed in order to have the same result for the ;. Corresponding
to Theorem 2 of Section 6, we state

THEOREM 1. The variables

m'».—-n . . . .
x"i—“_,‘—\/—;p““p’ 7‘)]=1;"‘yk—1;
9.3)
g = BT i=1,...,k—1

V'n
are asymptotically normally distributed with zero means and variances and co-
variances

Oijae = —3DiPiPsPe, Tiiae = —3pPipipe,

Giigt = —3DPIDP:, oiiii = Pipi(1 — 3py),

oiiii = Ppi(1 — 3pps),  oui = Pi(l + 2ps — 3p3),
9.4) Oii,ij = —3P?P? , Gijs = —2piPiPs,

Ciia = —2PiDs, oiii = pipi(l — 2py),

Giiyi = 2?%(1 - pi), gi,j = —DiPj,

g = pi(l — pi).
In these relations the symbols are defined by

Oijst = Oziizyy s Oij,s = Oziiz, 0i,j = Czz;

and different literal subscripts represent different numerical subseripts. These
moments have been computed by means of the identity (6.12). The proof of
the theorem is like that of Theorem 2 of Section 6 and will be omitted. We can
now give the limiting form of the distribution of the r;in (7.18) as
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CoroLLARY 1. The variables

©9.5) o= =) ek

Vn
are.asymptotica(ly normally distributed with zero means and variances and co-
variances
o = p(l — py) — 3pi(1 - )’
oij = —ppi(l — 2pi — 2p; + 3pwp;).

These limiting moments follow at once from equations (7.20).
COROLLARY 2. The variable

(9.6)

k
Q = ; a"x,-xj

where the z; are defined by (9.5) and || o*/ || is the inverse of (9.6), s asymptotically
distributed according to the x’~law with k degrees of freedom.
CoroLLARY 3. Ifr = Zr; denotes the total number of runs, then

o = r—n(l — Zp)
Vn
18 asymptotically normally distributed with zero mean and variance
o = Zpi + 2Zpi — 3(Zpi)”.

The author would like to record here his gratitude to Professor S. S. Wilks
who suggested the problem and under whose direction this paper was written.
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