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Introduction. Let E;,...,E,, denote n arbitrary events. Let
Do viviqr-vj, Where 0 < ¢ < j < mand (», ---, »;) is a combination of the
integers (1, - - - , n), denote the probability of the non-occurrence of E,, , -- - , E,,
and the occurrence of £,,,, ---, E,;. Let py,...,; denote the probability of
the occurrence of E,, , - .., E,, and no others among the n events. Let S; =
Zp,,...,; where the summation extends to all combinations of j of the n integers
1,.--.,n). Let pm(v1, -+, m), £ m S k S n), denote the probability of
the occurrence of at least m events among the k events E,, , --- , E,, .

By theset (1, .-+, 26, -+, %) — (1, - -+, ) (Where b < a) we mean the
set (Xp41, -+, Zs). And by a (:)-ck)mbination out of (z1, .., 2;) we mean
a combination of b integers out of the a integers (z;, -« , Z4).

We often use summation signs with their meaning understood, thus for a fixed
k, 1 £ k £ n, the summations in Zp,,...,, or Zpa(vn, ---, ), extend to all

the (Z)-combinations out of (1, ..., n).

The following conventions concerning the binomial coefficients are made:

(g)=1, (g)=o if  a<b orif b<O.

It is a fundamental theorem in the theory of probability that, if E,, --., B,
are incompatible (or “mutually exclusive’’), then ’

pl, e, ) =p14+ o0 4+ po.
When the events are arbitrary, we have Boole’s inequality

pl(ly"')n) §p1+ e +Pn.

Gumbel' has generalized this inequality to the following:

pi(l, e m) < 200, o)
’ , < o ’
k—1
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PROBABILITY OF ARBITRARY EVENTS 329

for k = 1,..., n. The case k¥ = 1 gives Boole’s inequality. Fréchet’ has
announced that Gumbel’s result can be sharpened to the following
(1) Ay = 2000 e ) B, i)
n—1 n—1
k E—1
fork =1,...,n — 1. Thus, 4: is non-increasing for & increasing. On the

other hand, Poincaré has obtained the following formula which expresses
m(l, ---, n) in terms of the S;s,

pl(ly e ,n) = an - anvz + Zpu'sh e

(2) u
+ (—1)"1)1...,. = 21 (-l)j—le.

J o)
In the present paper we shall study the more general function pm(v1, -- -, »)

as defined above. First we generalize Poincaré’s formula and Fréchet’s inequali-
ties. In Theorem 1 we establish (for1 = m =< »)

DLy <ee s 1) = T Pryesrm — (T) 2 Do v
@ T () D S S Ve (i oo
=B o (" s

=0

Although this result is well known, we prove it in prepara.tlon for Theorem 2.
Theorem 3 establishes

(4) Ar(;ﬁ - Epm(l'x, Vk-u) < Epm(l'l, . l’k) = A(m)
n—m n—m
o) - G
fork=1...,n—1land1 = m = .k
Next, we extend the inequalities (4), and in Theorem 4 we show that

(5) A < A 4 A

which states that the differences Ay — Az (k =1, ..., n — 1) are non-decreas-
ing for increasing k. From this and a simple result we can deduce (4). Also
Theorem 2 establishes that

© T (" T s sty 2 S (M T s,

=0 im0

* Loc. cit., Vol. 208(1939), p. 1703.
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for2l + 1 = n — m and 2l < n — m respectively. These inequalities throw
light on formula (3) and are sharper than the following analogue of Boole’s
inequality for pa(1, -.., n), which is a special case of (4):

7 Da(l, o+, 0) £ ZDyyecny -

The last statement will be evident in the proof.
In Theorem 5 we give an “inversion’” of the formula (3), i.e. we express Pi...n
in terms of the pm(v, -- -, w)’s, as follows:

n—1
( )pl"'n = Epm("l, v ,Vm) - me(l'ly ey, ”m+l) + ..

m—1
(8) + (—1)”.mpm(1’ ce yn)

= (<D Z o, - -

This of course implies the following more general formula for pq,...q, ,
r—1 & i
m—1 Pay--rap = Z (_1) me("lr ccty VM-H')
t=0
where (a1, - -+, o) is a combination of the integers (1, --., n) and where the
second summation extends to all the (m :_ i -combinations of (a1, :--, o).

Since it is known®’ that we can express other functions such as S,, py,....,1 in
terms of the p,,....,’s, we can also express them in terms of the pm(v1, - .-, w)’s,
provided r = m.

Finally, for the case m = 1, we give in Theorem 6 an explicit formula for
Pu...n1 in terms of the py(v1, - -+, w)’s, as shown in (9),

Pa.. = —P1(7'+1, ""n)+2pl("1)r+l’ v :n)
v

(9) _Zpl(”1772,7'+1,---,n)+...

+(—1)FIZP1(1,‘“ ,T,T-l'-l,o--,n),
= E('—l)‘_l Z pl(”h cee, v, r+ 1, “‘yn);

fel (¢ JTXREN 73

where (1, ..., »;) runs through all the (:)—combinations from (1, ..., 7).

This of course implies the following more general formula:

r .
Play-ca,] = El ("1)'—1 Z )Pl(l'u oo Vi, Qrply t 0, an)y
o - (1

(€2 TR 2

3.4 Fréchet, “Condition d’existence de systemes d’événements associés 4 certaines
probabilités,’”’” Jour. de Math., (1940), p. 51-62.
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where (a1, -+ ,ar, -+ a,) is a permutation of (1,-..,n) and where
(1, ---,v;) runs through all the (:)-combinations out of (a1, -++, ). From

Theorem 6 and two lemmas we deduce a condition of existence of systems of
events associated with the probabilities pi(v1, - -+ , ¥m). The author has not
been able to obtain similar elegant results for the general m. Probably they
do not exist.

2. Generalization of Poincaré’s formula; Generalization and sharpening of

Boole’s inequality.
THEOREM 1:

Pm(l, -+-,m) = Z Doyooovm — (T) E Dri-vmis

3)
1 n—m -1
+(m;— )Zp,l...,m_ cee (1) (::_m>p1...,..

Proor: We have

(10) ) Pm(l: ] n) = Z Z Plsy - pm+bl
b=l
where the second summation extends, for a fixed b, to all the (m 3_ b)-combina.-
tions of (1, ---,n). Further we have
(11) p"l"”‘m+= = dzo: Z p('l"'”n+c""’m+c+d:

where the second summation extends, for a fixed d, to all the (n - :in - c)_

combinations of (1, --- ,n) — (1, -+, ¥mse). The formulas (10) and (11) are
evident by observing that the probabilities in the summations are all additive.
Now we count the number of times a fixed Py, ...un+,1 appears in (3). -By (11)
this is equal to the sum

m+b\ _ (m (m+b i m 4+ 1\(m + b\ _
\ m 1/\m+1 2 m+ 2 o
mfn— 1\ m+ b\ _
+ (=1) (n - m)(m + b) =1
since this number is the coefficient of (—1)™z™ in the expansion of

1 — z)™* (1 - %)ﬁn =(=1)™"z"(1 — z)".

Thus by (10) we have (3).
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THEOREM 2: For 2l £ n — mand 2l < n — m respectively, we have
2141

©® % 0 (") smes o m s B0 (T )

Proor: By the reasoning in the previous proof, it is sufficient (in fact also
necessary) to show that

2im—1+i\(m+b Wi —143\/m+0b
SRS GO TGS SRR

Since
(m—1+i>(m+b>_ (m + b)! (b) 1
i m+i) (m—DIDI\s/m+1

is an integer, it is sufficient to show that

(12) ):( 1)() ——>0, 2%(—1)'()m+zg

=0

I~
~

. . b—z¢ -1
Suppose b > 0is even. Fori < b/2 — 1, Wehavei+ i > 1 so that 1 =

z+2 m+ 1 141
. Also e +1§ T3

( ) _b—i m+s (b) 1
m+1+1 z+1m+1,'+1 1) m+1
>i+2i+1<b) 1 _(b) 1
Si+r1i+2\i/m+: \&/m+7

. b—1 b—1 m+7
=
F‘or1,_b/2weha,vez._*_1 <180thati+1m+11+1

( b ) 1 __<(b) 1
t+1/m+:i+1 i/m+1

Thus the absolute values of the terms of the alternating series

i b!
Z( 1)<)m+z (m + b)!(m — 1)!

. . b b
are monotone increasing as long as ¢ = 3~ 1, reaching maximum at ¢ = 5 and

form = 1. Hence

-,

< 1 and

then become monotone decreasing.
Therefore (12) evidently holds for 20 < b/2 and 2 + 1 = b/2 respectively.

Fortg9+1wewrite
) bl S i 1
5 1)<>m+z CER P 00w

b' b-t—l 1
T m F0)I(m — :go (= 1y()fn-l-b
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b! 1
<
From the above and the fact that mFOIm =D~ m¥b

righthand side is an alternating series whose terms are non-decreasing in absolute
values. Hence (12) is true.
If b is odd, the case is similar.

we see that the

3. Generalization of Fréchet’s inequalities and related inequalities. Before
proving our remaining theorems, we shall give a more detailed account of
the general method which will be used. In the foregoing work we have al-
ready given two different expressions for the function pu(1, -- -, n), namely,
formulas (3) and (10), but they are not convenient for our later purposes.
Formula (3) is inconvenient because it is not additive and because the p,,...;’s
are related in magnitudes; while formula (10) has gone so far in the separation
of the additive constituents that its application raises algebraical difficulties.
Let us therefore take an intermediate course.

Let each <Z)-combination (v, +++, vm) out of (1, -- -, n) be written so that

m < w <-.-< v,. Then we arrange them in an ordered sequence in the
following way: the combination (v, ..., »,) is to precede the combination
(w1, -+, um) if, for the first »; # p;, we have »; > u;. After such an arrange-
ment we symbolically denote these combinations by

o [())

Further, all the (:;)-combinations out of (», -- -, v) where the latter is a com-
bination out of (1, --., n) are arranged in the order in which they appear in
the sequence just written. For example, all the (;)-combinations out of
(1, 2, 3, 4) are ordered thus:

(12) (13) (14) (23) (24) (34).

Let U denote a typical combination (u1, ---, um). By Ey we mean the com-

bination of events E,, , ---, Eu, so that py = Pu,....,, . In general, let the

combinations U, , - .., Up, Us be given, then py;...y;_, v, denotes the proba-

bility of the non-occurrence of Uy, --., Uy, and the oceurrence of U, .
Nowlet I, II, ..., [<k> - 1] =Y, [(k)] = Z denote all the (k)-com-

m m . m
binations out of (v, - -, ) in their assigned order. We have
(13) pm("l y Tty Vk) = Pr + pr + prova 4+ o0 + Prowvaz.

This fundamental formula is evident. Of course it is possible to identify the
p’s on the right-hand side with the ordinary p,;...,;’s, but we shall refrain from
so doing and be content with the following example:

pz(l, 2, 3, 4) = P12 + Prers + Provsra + Drres + Drgsie + Pravss .
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THEOREM 3. Fork =1,... ,n— land1 < m = k we have

n-—m n —
(k _m> Epm(l’ly ”';"k+l) s (k + 1 me)zpm("l) "‘9”‘7)'

Proor. Substitute (13) and a similar formula for £ 4+ 1 into the two sides
respectively. After this substitution we observe that the number of terms is
the same on both sides, since

EomGE)CR) =G

Also, the number of terms with a given U = (u;, -+, um) unaccented is the

same, since
n—m n—m _ n—m n—m
Ek—m/\k+1—-—m/) \k+1—m/\k—m/"

Let the sum of all the terms with U unaccented in the two summations be

denoted by or1 = s (M1, +++ , um) and ox = 0% (w1, - - - , um) respectively. It
is sufficient to prove that
(n—m n—m

(14) (k . m) Ok+1 § <k + 1— m) Ok,

for any U. o) contains (Z : :) terms each of the form p,;...}y,...u, Where
0sl= hm — M and where (yl EREEN B TR p,,,,) isa (m“_?_ l)-combination
out of (1, .-, um). For fixed (u1, ---, um) and a fixed I but varying N’s, oy
contains (, "~ *™ ) terms of the form Doi- viny--um » With exactly ! accented

k—m—1
subscripts. Let the sum of all such terms be denoted by of”. Evidently of"

has( " l_ m) terms. As a check we have
N = pm\[bm — M N — pm i — M
GmCa ™)+ G2 ) (T )+
n— tm\fpm —m\ _ (n—m
+(k—#-»><um—m)_(k—m>’

which is the total number of terms in oy .
We decompose these p’s partially, as follows:

wm—m—1
Priceorviprecomm = )Y Pri-covivomre-mmeds
bul  pmeklre s cbmtd
where (1, -+, Vio, M1, **+ , Bmsd) i8S & permutation of (1, --. , um) and where

the second summation extends, for a fixed b, to all the (“ - ;"' - l)—combina—

tions out of (1, <+« , pm) — (1, eccy W, b1, o pim).
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Now consider a given

DoicepinieeAgpy e pim

where 0 < ¢t < pum — m and (pr -« pA1 + -+ Agpts -+ - pim) IS 8 permutation of

(1, -+, um). It appears (; times in of”. Hence it appears

G0 () ()0 -(52)

times in o}, .
Therefore to prove (14) it is sufficient to prove that

n—m N — um+t n—m n— um +1¢
GIRGEIrm)=Giima)Cent)
By an easy reduction we have
nm—pm+t—k+m=n—=k
or

—I‘m+t+m§0;

since t = um — m this is obvious.
THEOREM 4: For2 Sk Sn —1landl £ m < k we have

Zpm(v1, ooy m) _ 1 2P, ooy mi1) | 1 Zpm(vr, oo o, i)
(5) = - = .
n-—m 2 n-—m 2 n—m
k—m k—1-—-m k+1—m
Proor: By the reasoning in the previous proof, it is sufficient to show that
9 n—m n—m n— um+1
Ek—1—-m/\k+1-m k—m
<(r- n—-—m n— pm+ ¢
=\kF-m/\k+1—-m/\k—1—-—m
+ n—m n—m N — pm +¢
k—m(k—l—m k+1—m)’

for 0 = ¢t < um — m. By an easy reduction this is equivalent to
2n—k)n —pm+t—k+m+1) S (n—k+ 1)(n — k)
+n—pmt+t—k+m+1)n—pm+t—k+m)

or
n—pm+t—k+m+ 1) um—t —m) £ (n— k)(um — t — m).
Fort = pm — m we have equality, otherwise we have
~pum+t+m+1=0.
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We can deduce Theorem 3 from Theorem 4 and the following result (a case
of generalized Gumbel inequalities):

15) (02 3)palt om0 = B, oo

Proor oF (15): Substitute from (13). Consider the p’s with U unaccented.
The number of such terms is the same on both sides. But on the left-hand side
they are all the same pr 1r...cu—1 v , while those on the right-hand side, being of
the form py;...vjv where 0 £ A £ U — 1 and (Uy, ---, Uh) is a combination
out of (1, ---, U — 1), are greater than or equal to it. Henge the result.

4. The pa,...o,’s in terms of the pn(v1, - - -, »)’s and the p,....,1’s in terms
of the pl(vl, e, vk)’s.
THEOREM 5: For 1 < m = n we have

<:;: })pl“‘" me(”l, Tty Vm) - me(”l, ) Vm+l) + ...

(8) + (_l)n—mpm(l, cee, n)
- Eo (-1 v Zv e Pm(v1, -+ ) ¥mid)-

ProoF: As in the proof of Theorem 3, consider ox(ui, -+, um). Here
m £ k < n. Since a given

(16) Dojee pih-Aepreectim

appears (n 7c f’”m+ t> times in ¢;, it appears

3 1)k n_l-‘m+t =n—m 1y n_llrm""'t)
S ) - g e (s
n—§+t( 1)j<'n_ﬂm+t>_0’ if’n—ﬂm"'tgl;

J 1, fn—pun+£t=0.

times on the right hand side of (8). Hence for fixed (u1, ---, um), the only
p’s of the form (16) which actually appears are those with ¢ = p» — n. But
pm < m,thust = 0, pm = n,and (A, -+ As, 1, -+ - , 4m) is & permutation of
(1, ---, n). The term in question is therefore p;..... Since the number of

i=0

" ).combinations of {1, ..., n) withp, = nis (Z _ i) , we have the theorem.
TuEOREM 6: For 1 < r < n — 1, we have
P =—plr+1,-.,n) + 2 pbr,r+1,---,m)
41

(9) - Z p(l’l,V2,'I‘+1, “‘yn)+ s +(—1)"—IZP1(1, o ,n)

r

Z(_l)i—lvz .pl(lu,"',"i,"'i‘l, °'°,n),

foal SN
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where (v1, -+, vi) runs through all the (;)-comb'inations out of (1, --., 7).
Proor: We rewrite (14) for the special case m = 1,

(17) pl(ﬂ'l; ttty ”’k) = Pu, + pﬂ{#z + e + Pyt - pp—1mi

where u; < ps < --- < . Substitute into the right hand side of (9). After
the substitution let the sum of all those p’s with u unaccented be denoted by
o,. The terms in o, are of the form p,;.,._,, where 1 < s =< u and
(w1, -+, Me—1) is & combination out of (1, --. , u — 1).

First consider a fixed 4 < r. For a fixed p,;....;_,, we count the number of
times it appears in o, , that is, on the right hand side of (9). This is evidently
equal to

L (2 - E e ()-

=g =8 S

0, if r—uzxl,
1, if r—p=0.

Thus the only terms that actually appear are those with 4 = r; and each of such
terms p,{....;_, appears exactly once with the sign (—1)°. Hence their total
contribution is

(18) Dr — Z Dyir + Z Dyivgr — - + (_l)r_lpl"'-(r—l)’r = P1.--r,

V1 y1.v2

by an easy modification of Poincaré’s formula.

Next consider a fixed u = r + 1. Every term with x4 unaccented in ¢, is of
the form (with the usual convention for u = 7 4+ 1) Puj...u; -407---u—1)'u , Where
(ma, -+, u) is a combination out of (1, -.., r); and it appears exactly once
with the sign (—1)". Their total contribution is therefore

— DD’ Z Poir+1) e s (u=Dy'p — Z Doivgtrad) - Gutyru + =+ ¢
141

YLz
r—1
F (=17 Py = = PLraD =D

by another application of Poincaré’s formula. Summing up for u =
r+1, ..., n, we obtain

(19) — (D1 F Procriny i) o0 F Pl (e )
Adding (18) and (19), we obtain as the sum of the right-hand side of (9)

Proor — (Proaesny + Provernresny + o0 + D1ever(r41)7 - (n=1)'n)
= D1 (e (r42) e eon! = Pl1eer]

by an easy modification of (17).

6. A condition for existence of systems of events associated with the proba-
bilities pl(vl, ey, Vlc).
LEmMA 1: Let any 2" — 1 quantities q(ou, «+- , ax) be given, where k =
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1, ..., n, and for a fired k, (o1, -+ , ar) runs through all the (Z)-comb’inations

outof (1, -+., n). Let the quantities Q(as, - - - , ax) be formed as follows:
Q(O) =1- Q(]-’ tet ’n);
Q(al, ) ak) = = Q(ak+l) te )a”) + Z'Q(VI; Qktly *°°, a”)
v

- Z 0("1, V2, Okl ---,an) + eee 4+ (—1)k—19(1; ,n),

14824']

where (v, .- -, v;) runs through all the (’;)-combinations outof (1, ..., n) —

(k1 ==+, an). Then the sum of all these Q’s is equal to 1.
Proor: Add all these @’s and count the number of times a fixed g(u1, « - - , ux)
appears in the sum. For 1 < k < n this number is equal to

14 (’10) _ (’2°) R (_1)H<Z) = 0.

Hence we have the lemma.

LemMma 2: (Fréchet) Given 2" quantities Qa,:...a,; Where (a1, -+, ) runs
through all combinations out of (1, - - - , n) including the empty one. The necessary
and sufficient condition that there exist systems of events Ey, - .-, E, for which

Play-art = Qlayeay]

(where py; denotes the probability for the non-occurrence of E,, --. , E,) 1s
that each Q = 0 and that their sum is equal to 1.
Proor: Since the probabilities piq,...,) are independent, i.e., unrelated in
magnitudes except that their sum is equal to 1, the lemma is evident.
THEOREM 7: Given 2" — 1 quantities g(ou, - - - , ax) as tn Lemma 1, the neces-
sary and sufficient condition that there exist systems of events E, , - - - , E, for which

pl(aly "'7ak) = Q(alr "’7“")

18 that for any combination (@rpr, -+ ,an),1 S 7 =n — 1, outof (1, ..., n) we
have

_Q(ar-H; “':aﬂ) + ZQ(a'na1‘+17 '“;aﬂ) - E q(avnavﬂaﬁlr '”»aﬂ)
vl

V1yve
4o+ (=1, e, m) 20,
and thus
1—gq@1,..-,n) 20.

Proor: The condition is necessary by Theorem 6. It is sufficient by Lemma
1, 2 and an obvious formula expressing pi(a;, + -+ , @) in terms of the py,...;1’s.



