ON MECHANICAL TABULATION OF POLYNOMIALS
By J. C. McPHERSON
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1. Introduction. The purpose of this paper is to show how automatic
accounting machines, which have been used previously in evaluating such
quantities as Zz" and Zz" "'y, may be used in the preparation of mathematical
tables of integral powers, of polynomials, and of functions which can be approxi-
mated by polynomials. These tables may be prepared for any desired intervals
of the argument such as 1, 7%, 1o, 3, 3, ete.

The method is an adaptation of the general theory of ‘‘cumulative” or ‘“‘pro-
gressive” totals which has proved useful in computing moments and product
moments both with and without accounting machines. The reader unfamiliar
with the mathematical method and its machine applications might refer to such
presentations as those of Hardy [1], Mendenhall and Warren [2, 3], Razram and
Wagner [4], Brandt [5], and Dwyer [6, 7. The main feature of the method is
the computation of summed products or of summed powers by means of succes-
sive cumulated additions. It is shown in this paper how it is possible to use
this same process in constructing tables of powers and tables of polynomials.

2. The Cumulative Formulas. If the numbers F. are defined and finite
forz =1,2,3,.--, (a — 1), a, and if these values of F, are cumulated for z =
@, z = a — 1, etc., then the value in the row headed by = 1 can be written
as 'T,. If these cumulations are cumulated successively with the superscript
indicating the order of the cumulation and the subscript indicating the value of z
which heads the row, then

2T1=2sz’ 3T1=E.(Ll)sz, 31'72=2x(x.—1)1;72,
2! 21
“ro= 3 (z + 2)3(:‘1: + 1)z F,

and in general for 7 < j,

_gledi— G
=2 o F.

Formula (1) is basic to much of the previous work involving cumulative totals.
Various authors have studied such important special cases as (A) where F.
equals the frequency function f, , (B) where F, = zf,, and (C) where F, equals
the sum of all the values of y having the same z value. These special cases have
been found very useful in computing moments and product moments.
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The moments may be expressed in terms of the cumulations in a variety of
ways. The diagonal formulas have the differences of zero as coefficients and are
expressed in terms of 'Ty, *Ty, °Ty, *Ts, °T4, ete. The columnar formulas,
whose coefficients have been recently studied [6, 7], are expressed in terms of
cumulations of the same order, 'T,, with j fixed. Razram and Wagner [4]
have given formulas which utilize the entries of different rows and different
columns but which demand fewer entries for the formulas. Razram and Wag-
ner worked out the formulas through Zz‘f, but the argument holds for Zz'F, .
For purposes of comparison the values of Zz'F, , ¢ = 0, 1, 2, 3, 4, as they appear
in the diagonal, columnar, and Razram-Wagner systems are presented in
Table I.

TABLE I
Values of Zz°F; for 7 = 0, 1, 2, 3, 4.

Fz Diagonal Columnar Razram-Wagner
2F, T, T, 1Ty
ZzF, 2T, 2T, T
zz?F, |?T, + 2°T, 3Ty + T, 3T, + 3Ty = 3Ty,
Ezan 2T1 + 63T2 + G‘T] ‘Tl + 4‘Tz + ‘Tg 2T1 + G‘Tz
ZatF, | 2T + 1437, + 364T's + 2457, | 5Ty + 1157, + 11575 + ST 3T 142 + 125T 545

In developing the theory of the later sections of this paper I have developed
further formulas of the type shown by Razram and Wagner since these formulas
have fewer terms than do those of the other systems and the coefficients are
factorable by (j — 1)!/2. These formulas for Zz°F,, with s even, feature such terms
as *Ty + °T, = *Tyys, "Tays, ete., so that there are two entries from the same
column. For the purposes of this paper it is preferable to have a single entry
from each column and this situation results from continued application of the
formula
@ Tiirny = T + Ton = 7T + 27T
The formulas for Z2°F, with s < 12 are given. The alternative forms are given
for the formulas involving even values of s.

SF,='T,, ZaF,=°Ty, 2z°F,="°T1+'To=>Tys="T1+2°T;,
2z ’F, =Ty + 6 *Ts, 22 'F, = "Tis + 12 *Toys

=T 4+ 23T, 4+ 12°T, + 24 °Ts,
2z °F, = ’Ty + 30 ‘T, + 120 °T,,

2z °F, = Ty + 60 *Tays + 360 "Tayy

=T, + 2T, + 60 *T, + 120 °Ts + 360 °Ts + 720 'T,,
=z 'F, = *Ty + 126 *T, + 1680 °Ts + 5040 °T,,
22 °F, = *Tiye + 252 *Tars + 5040 Ty + 20160 *T'ops

= Py + 2°T, + 252 *T, + 504 °T5 + 5040 °Ts + 10080 'T,
+ 20160 °T, + 40320 °Ts,
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(8) Zz°F, =T, + 510 ‘T, + 17640 °T; + 151200 °T, 4 362880 T,
2z F, = *Tiya+ 1020 *Toys + 52920 "T's 14 + 604800 °T'ys + 1814400 " T
=Ty + 2°T, + 1020 *T, + 2040 °T; + 52920 °T; + 105840 'T,
+ 604800 °T, + 1209600 °T's + 1814400 T’ + 3628800 T,
Ty + 2046 “T. + 168960 °T; + 3160080 *T + 19958400 T’
+ 39916800 “T,
2z "F, = *Tiyp + 4092 *Tyys + 506880 "Tspy + 12640320 °T'ys
+ 99792000 "' Ts.s + 239500800 T,
=Ty + 23T, + 4092 ‘T, + 8184 °T; + 506880 °T; + 1013760 "T,
+ 12640320 *T, + 25280640 °Ts + 99792000 T’
+ 199584000 "'T's + 239500800 T + 479001600 “T;.
The derivation of these formulas is obtained with the use of (1), with the use of

4) Ty = Toa + 7T,

4
8
<]
L]

[

and with the use ‘of formulas of lower order. For example we have from (1)

x4+ 49 +3)(z+2)(z+ 1)z
z 120 F,

=57,
so that
>z °F, = 120°T, — 10 =2 *F, — 35 22 °F, ~ 50 2z °F, — 24 2zF,

which after substitution of =z ‘F,, Zz*F., etc. and simplification results in the
value *T; + 30*T, + 120°T;.

3. Tables of powers. If F, = 1 when z = a, but is zero otherwise
then Zz °F. is equal to a’. It follows that the value of a’ can be obtained from
the successive cumulations of this F, with the use of (3). For example in
Table IT

TABLE 11

Cumulations of F. = 1, when x = 6,

0, when z > 6.
a z Fz ir r 3T T 5T
1 6 1 1 1 1 1 1
2 5 0 1 2 3 4 5
3 4 0 1 3 6 10 15
4 3 0 1 4 10 20 35
5 2 0 1 5 16 35 70
6 1 0 1 6 21 56 126
7 0 1 7 28 84 210
8 0 1 8 36 120 330
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6’ =T, + 2°T, = 6 + 2(15) = 36,
6° =Ty, + 6*T, = 6 + 6(35) = 216,
6* =Ty + 2°T, + 12*T, + 24°T; = 6 + 2(15) + 12(35) + 24(35) = 1296.

The values of *T} , *Ts , *Ts and °T; for @ = 6 are italicized in Table II.

To get the values of 5°, 5°, 5*, ete. it would be necessary to start to cumulate
from 2 = 5. Now since the values of '7; are unity, it follows that the values
for a = 5 can be found by taking the entries above those for ¢ = 6. Thus
Ty = 5,°T, = 10, *T, = 20, °Ts; = 15 with 5° = 5 + 2(10), 5° = 5 + 6(20),
5* = 5 + 2(10) + 12(20) + 24(15). It is evident in general that the values for
any a’, @, a' can be obtained by taking the row headed by @ as the bottom row.
Thus using @ = 8, we have 8 = 8 + 2(28), 8° = 8 + 6(84), etc. It then appears
that we may omit the = column of Table IT and consider the cumulations to be
ascending cumulations for @ rather than descending cumulations for z.

A more satisfactory course is to cumulate the coefficients so as to eliminate
the multiplications. Thus the value of 67T could be obtained without multi-
plication by cumulating 6, 0, 0, 0, O ... rather than 1, 0, 0, 0, ... . Several
cumulations may be carried on at the same time so that the additions are not
necessary and the tabulation results in a table of the desired powers.

In preparation of a power table, the formulas (3) become a series of instruc-
tions on the way in which we are to do the cumulating. For instance the

formula:
z’ = 5040 °T, + 1680 °Ts + 126 ‘T, + °T},

teds us that to form a table of the seventh power we must cumulate® the coeffi-
cient 5040 eight times; add in the coefficient 1680 when there are six operations;
the coefficient 126 when there are four; and the coefficient 1 when there are two
remaining. A change in subscript tells us that the coefficient when first included
forms a separate total ahead of the ones already partly figured. When the sub-
script does not change, the coefficient is to be included in the first summary card’
total. The final cumulating operation prints the actual table.

To prepare a power table by machine we secure a set of cards punched all alike
with the numbers from 1 to 9 punched diagonally in successive columns across
the card. The machine is wired to add the coefficient of the highest term by
selecting the proper digits from the diagonals, cumulate after each card and sum-
mary punch each total. This way of starting saves one cumulation. The
summary cards are cumulated repeatedly in the same manner until the number
of operations indicated by the highest term is completed. When the number of
operations remaining equals j of another term °T;, a card for the coefficient of
that term is included in the tabulation ahead of the summary cards. This
automatically adds the new coefficient to each term of the series. When the
subseript ¢ in “T; changes, the new coefficient card must form a separate total;

1 This operation is generally known as progressive totalling in machine operation.
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when it does not change, the coefficient card must tabulate in the first summary
card total.
To illustrate the tabulation of power tables, the formula for the cube table is—
3 4 2
=06 Tz + T1 .
The successive operations yield the following table:

TABLE III
Operation number
* 1 2 3 4:23
1 0 0 1 1
2 6 6 7 8
3 6 12 19 27
4 6 18 37 64
5 6 24 61 125
6 6 30 91 216
7 6 36 127 343
8 6 42 169 512
9 6 48 217 729
10 6 54 271 1000

In actual machine work, operation 1 can be omitted and work begun with opera-
tion 2. The machine is set to add the coefficient 6 of the highest term from
each card and an accumulated total is printed and punched for each card tabu-
lated, giving the results shown under operation 2. An additional card is punched
for the coefficient of thé second term, 1, and placed ahead of the cards produced
in operation 2. The cumulation and punching is repeated, giving the results
shown under operation 3. The summary cards from this operation are cumu-
latively tabulated, giving the results shown under operation 4, which is the
table of cubes desired.

Similarly, for a table of the fourth power, the formula zt =24°T, + 12T, +
2°*Ty 4+ *T, indicates the following operations—

TABLE IV
Operation number
‘ 1 2 3 4 5:x4
1 0 0 0 1 1
2 0 12 14 15 16
3 24 36 50 65 81
4 24 60 110 175 256
5 24 84 194 369 625
6 24 108 302 671 1296
7 24 132 434 1105 2401
8 24 156 590 1695 4096
9 24 180 770 2465 6561
10 24 204 974 3439 10000
11 24 228 1202 4641 14641
12 24 252 1454 6095 20736
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Note in operation 3 where the subscript does not change, the coefficient 2 is
added to the first card punched by the machine, while in operation 4 where it
changes, the coefficient 1 appears as a separate total.

4. Tables of polynomials. To tabulate values of f(z) = a + bz + ¢’ -
(where a, b, ¢, --- , are positive or negative coefficients) the method is similar
to that of preparing power tables except that the coefficients to be added are
determined by multiplying the coefficients of the formulas for the different powers
by the values a, b, ¢ etc., adding the coefficients of like terms in the various
formulas, and using these resultant coefficients in place of the simple coefficients
used in the power tables. Thus if we wish to tabulate values of f(x) = 4 + 3z +
22° + z° the coefficients are found as follows:

42" = 4'T,
+3z = +3°T,
+ 27° = + 2°T;, 4+ 2.2%T,
+ 7f = + ’Ty + 30 ‘T, + 120 °T,

fx) = 4'To + 62Ty + 4°T, + 30*T, + 120 °T,

This equation gives instructions to perform six operations with 120 as coeffi-
cient; adding the coefficient 30 as a separate total when there are 4 operations
remaining; adding 4 to the first summary card total when there are 3 operations;
adding 6 as a separate total when there are 2 operations remaining; and adding 4
on the last operation.

The first few totals appear thus—

TABLE V
Operation number
’ 1 2 3 4 5 6:f(z)
0 4
1 0 0 0 0 6 10
2 0 0 30 34 40 50
3 120 120 150 184 224 274
4 120 240 390 574 798 1072
5 120 360 750 1324 2122 3194
6 120 480 1230 2554 4676 7870
7 120 600 1830 4384 9060 16930
8 120 720 2550 6934 15994 32924
9 120 840 3390 10324 26318 59242
10 120 960 4350 14674 40992 100234

It is not necessary to confine these tables to values for whole numbers, as we
can tabulate equally well values of f(x) for intervals of z of .1, .01 or .001 or 3,
4, L etc. In this case, before combining formulas for different powers we multi-
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ply both sides by the desired interval raised to the power to which z is raised in

that particular formula, then add like terms as before.

To tabulate the previous example in .1z intervals we proceed as follows

4z = 4.000 'T,
3z/10 = + .3,

2(z/10)* = + .02, 4 .04%T,

(z/10)° = + .00001 *T, + .00030 ‘T, + .00120 *T}

flz) =4'Ty  + .32001°T; + .04 °T, + .00030 ‘T + .00120 °T
TABLE VI
Operation number

’ 1 2 3 4 5 6:/(z)
1 0 0 0 0 .32001 4.32001
2 0 0 .0003 .0403 .36031 4.68032
3 .0012 L0012 .0015 L0418 .40211 5.08243
4 .0012 .0024 .0039 L0457 .44781 5.53024
5 .0012 0036 .0075 .0532 .50101 6.03125
6 .0012 .0048 .0123 .0655 .56651 6.59776
7 .0012 .0060 .0183 .0738 .64031 7.23807
8 .0012 .0072 .0255 .0993 .73961 8.07768
9 .0012 .0084 .0339 .1332 .87281 8.95049
10 .0012 .0096 .0435 L1767 1.04951 10.00000

Where any coefficients are negative in the equations expressed in ‘T terms,
they are simply added in as minus figures.
To round off the preceding function to 3 decimal places, we add 5 to the con-
stant term 'T, in the position to the right of the last decimal retained, i.e. in
The constant term is then 4.0005.

this case the 4th decimal place.

Ezact
4.32001
4.68032
5.08243
5.53024
6.03125
6.59776
7.23807
8.07768
8.95049

10.00000

Counter reads
4.32051
4.68082
5.08293
5.53074
6.03175
6.59826
7.23857
8.07818
8.95099

10.00050

Prints
4.320
4.680
5.082
5.530
6.031
6.598
7.238
8.078
8.950

10.000

5. Automatic calculation of polynomial coefficients. Frequently when
polynomials are being evaluated, the process of forming the coefficients can be
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performed automatically from a punched-card table. Such a table consists of &
set of cards for each power z° containing the multiples of all the coefficients of
each of the terms ’T; in the formula (3) for that power. These multiples are
1,23,4, ---,9; 10, 20, 30, 40, ..., 90; 100, 200, ..., 900; 1000, 2000 etc.,
and may be produced automatically by making a linear table of each coefficient-
in the manner described in this paper. Each card is punched with the informa-
tion called for by the heading of the following card form:

/ . . . coeff. X
s 3j ) multiple multiple
‘ 07 06 03 00005 008400

The particular figures indicated are those which would be punched for the
term 5(1680)°T; in the representation of 5z’ according to formula (3).

The table is used by withdrawing the cards for the coefficients a, b, ¢, d, ete.
of the desired polynomial. For instance, if one of the polynomial coefficients is
14485 2, we select from the 2" section of the table all cards containing the multi-
ples 10000, 4000, 400, 80, and 5. In the z’ table there are 4 cards for each multi-
ple, one each for terms *Ty, *Ts , ‘Tz, and *T;. These cards are combined with
the cards selected for the other coefficients of the polynomial and sorted to bring
all cards for each °T; together. The cards for each term ‘T; are then automati-
cally added on the electric accounting machine.

6. Subdividing tables. In preparing tables it may be desired to prepare
the table in more detail at certain points, giving values of the function at 1/10,
1/20, 1/50, or 1/100, etc., of the interval of the rest of the table. This may
readily be done by recalculating the coefficients of the cumulative terms, and
using these values in the same manner as the original ones.

There are many formulas for the determination of the subdivided differences
given in various texts on interpolation, such as those given by Comrie [8] and
Bower [9]. One effective method is to use formulas (3) to calculate the sub-
divided differences. The values called for in the formula for the highest power
are taken from the table of the function at the regular interval, giving effect to
the rule involving subscripts. These' coefficients are reduced by an amount
sufficient to cancel the coefficient of the highest cumulative term, and the coeffi-
cients of the remaining cumulative terms are reduced in proportion according
to formula (3) for the highest power. Usually the coefficient of the highest term
of the formula will divide evenly into the coefficient taken from the table, and
the other reductions are calculated by multiplying this result by the other
coefficients of the formula. The highest remaining coefficient is then reduced
by an amount sufficient to cancel itself, and, by use of the formula (3) for the
power whose highest cumulative term matches the highest remaining coefficient,
the reduction to the remaining cumulative terms is calculated and subtracted.
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The highest remaining coefficient is reduced in a like manner, and this process is
continued until all the cumulative coefficients have been analyzed.

The partial cumulative coefficients thus computed are multiplied by the de-
sired subdivision 1/m raised to the power of the corresponding formula (3),
and recombined to form the new coefficients, as shown in the example below.
In taking values from the table, when the subscript does not change, the tabular
value must be reduced by the amount of the higher coefficient with the same
subscript, to give effect to the rule that the coefficients in such cases are incre-
ments (see last example in section 3).

To subdivide the polynomial of section 4 at x = 7.0, we take the italicized
values from Table V starting at f(7) as 'T,, and proceed as follows:

GTs 5T3 4T2 !lT2 2Tl 1 To
960 10324
From Table V .. ... 120 -120 3390 -3390 15994 16930
F).............. 120 840 3390 6934 15994 16930
a® ... 120 30 1
, 840 3360 6934 15993
bat 840 420 70 35
2940 6864 15958
L 2940 490
6864 15468
d* ... ... ... 6864 3432
12036
€T o 12036
16930

If the interval is 1/10 we have:

eTs .BTB 4T2 8T2 2Tl lTl)
z*/10° = .00120 .00030 .00001
35z'/10° = 0840 .04200  .0070 .00350
4902*/10° = 2.94000 .49000
34324 /10° = 68.6400  34.32000
12036z/10 = 1203.60000 +16930

f(z) = .00120 °T; + .0840 °T; + 2.9823 ‘T, + 68.6470 °T; + 1238.41351 *T; +
16930'T, provides the coefficients for subtabulating the function at the desired
interval, beginning at the argument z —= 7.0.

7. Accuracy of Tables. When thb~ values of the coefficients are not
exact, owing to the original values for a, b, ¢ etc. or the dropping of decimals in
the computation of the coefficients, the errors accumulate fairly rapidly. Each
coefficient will introduce its own error into the summation.



326 J. C. MCPHERSON

To maintain accuracy throughout a long table it is advisable to transform f(z)
by Horner’s method of decreasing the roots [10, pp. 100-101], compute new
coefficients for the transformed equation at intervals, and prepare the table in
sections. Decreasing the roots by r gives us a new starting point at z = r.

Since two or more functions may be computed at one time, a function for
which the coefficients are not exact may be computed by adding in the usual
way from the starting values and subtracting from the ending values simul-
taneously. As many digits as agree in both tabulations of the function may be
considered correct.

The tabulations can be made to practically any degree of accuracy on the
equipment available, as the newer machines can be formed into counters of any
capacity up to 80 digits. In practice, counters of 16, 20 or 24 digits will ordi-
narily suffice for the accuracy desired and two or more functions can be evaluated
simultaneously. Cards are read and added at the rate of 150 per minute, or read,
added and listed on the tape at the rate of 80 per minute and new summary
cards produced at the rate of 40 per minute (on alphabetic equipment with gang
summary punches). Computation may be carried out with additional decimal
places and the final tabulation of the function rounded off to the nearest number
retained.

8. Summary. The cumulative or progressive-total method is shown to be
applicable to the preparation of tables of functions expressed in the form of
a power series.

The cumulative formulas for the powers through the twelfth power have been
presented, and simple methods are given for transforming a power series into its
corresponding cumulative formula, for changing the interval of the table,
rounding off the values of the function, and subdividing the table at desired
points.

It is hoped that this discussion will make tables in printed or punched-card
form more generally available as a tool for the computer. Since tables may be so
readily prepared by this process, the usefulness of the tabular method of solving
problems is greatly increased.

The author wishes to acknowledge his thanks to Professor P. S. Dwyer for
various suggestions, particularly in connection with section 2.
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