ON THE MATHEMATICALLY SIGNIFICANT FIGURES IN THE
SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS

By L. B. TUCKERMAN
The National Bureau of. Standards

1. Introduction. The number of mathematically significant figures in the
solution of simultaneous linear equations has received attention from a number
of writers [1-6]. It is an important subject, not only in least squares and
correlations, but in many other problems of science where simultaneous equa-
tions arise: it may not be amiss, therefore, to examine it from a fresh start,
particularly since (as will be shown) some of the rules that have been published
on it fail in certain frequently occurring circumstances.

2.- Definitions. Before proceeding into the subject it will be necessary to dis-
tinguish between the computer’s terms “significant figures” and “‘determinate
significant figures.”” The former are the figures that compose a number, without
the consecutive ciphers that precede or follow them, merely to locate the decimal
point. “Determinate significant figures,” on the other hand, are figures that
are justifiable on computational grounds. From the computer’s point of view,
the number of significant figures remains independent of what is statistically
significant. To avoid confusion in what follows, the term ‘‘significant figures”
will be used in the computer’s sense, and the adjective ‘“determinate” will be
supplied where mathematical determinacy is implied.

To avoid prolixity the term “observational error” will include any uncertainty
arising either from errors in the observations or from the statistical nature of
the problem (e.g. sampling errors, grouping errors, etc.). The observational error
of the result is independent of the particular sequence of computation followed and
the accuracy with which it s carried out.

The term ‘“computational error’” w.ill include all the additional uncertainties
arising from the approximations occurring in the particular sequence of computa-
tion used, including the “rounding off”’ of the final result. The computational
errors, unlike the observational errors, depend tn general upon the sequence of the
intermediate steps used in the computation as well as on the number of significant
Jigures to which they are carried.

3. Criterion of an adequate computation. If the number written down at the
end of a computation is to serve its purpose the maximum possible computational
error must be suitably limited.

A decimal representation of a number containing f significant figures issubject
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to an uncertainty (upper limit of absolute error) of 5 in the (f + 1)th place.
It has, therefore, a possible relative (not absolute) error of representation some-
where between 5 X 107" and 5 X 107/, in magnitude. This relative compu-
tational error sets the limit to any valid final rounding off. Regardless of the
accuracy to which the intermediate steps of the computation have been carried,
this relative computational error introduced by the final rounding off alone
must be suitably limited.

In case all of the accuracy obtainable from the data is not needed in the result,
the sum of the maximum possible computational error (including the error of
the final rounding off) and the maximum possible observational error must be
kept below the error which can be tolerated in the result.

In case all of the accuracy obtainable from the data is needed in the result,
the maximum possible computational error in the result (including the error of
the final rounding off) must be negligible in comparison with the uncertainty
(observational error) in the result arising from uncertainty in the data. Just
how small a fraction of the observational error is “negligible” s necessarily a matter
of judgment, and will depend wpon the nature of the problem. A computational
error that would be wholly negligible in some ordinary computations might be
intolerably large in the adjustment of an accurate geodetic survey. In any case
the only basis for a valid judgment of the adequacy of the computation lies in a
comparison of (i) the maximum possible computational error that can arise in
the sequence of computations including the final “rounding off,” with (ii) the
observational error of the result arising from the observational errors inherent
in the data.

4. Propagation of error in a system of linear equations. Assume that

1) ;aul’t:b., §s=1,2,¢c0,mn,

is a set of simultaneous linear equations derived in some way from observations
and in which the coefficients a,; and the absolute terms b, may all be subject to
observational error. If the relative (not absolute) observational error of a
quantity ¢ be represented by &, it may readily be seen that
ox; = —; }I; (xa/27) Anansdans + 2 (be/7;) A48,
8
2
0A = ; ZL Ak i 00k

where A is the determinant of the coefficients axz , and A is the term corre-
sponding to ax in the reciprocal (not the adjoint) determinant.

5. Upper limits to observational errors. The sign and magnitude of the
relative errors dax; and 8b, are unknown, but we shall assume that it is possible
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in any problem to assign to them upper limits
l 0Qnk I and l 5b. l

which in magnitude they cannot exceed. If the problem is such that the values
of each of the daw and the 8b, are wholly independent of each other, it is then
possible that their magnitudes may all reach their upper limits | ax | and | 8b, |
simultaneously, in which case upper bounds of éz; and 6A may be placed at

| 8| = ; Zk: | (mi/x;) Anione | | San| + .Z | (ba/2:)Aui| | 8, |

3
() |6A|=§;,;1A;.;,au,||6a;.k|

6. Indefiniteness of the problem in the general case. The values of the dan
and b, may not be independent of each other, in which circumstance knowledge
of the law of their dependence would make it possible to assign upper limits to
the magnitudes of éz; and §A. These upper limits can not be larger than the
upper bounds shown in equation (3), and in special cases they will be much
smaller. Since the dependence of dax: and 8b, may in general have any form
whatever, cases can and will occur in which the upper limits of the relative
errors of dz; and §A may have any ratio whatever.

7. Case of independent errors. Any general discussion of the errors that can
occur in z; and A must be based either on some special assumption or on the
limiting assumption that the errors are independent. It is this latter assump-
tion that underlies the usual discussion, and will be the basis of what follows.
Equation (3) gives the upper limit to the éz; and A under these assumptions.

8. The ratios of |dz;| and | 5A | are still indefinite in spite of the assumption
of independent errors in the coefficients. However, equation (3) does not deter-
mine any definite ratio or inequality between the upper bounds | éz; | and | 5A |.
The nature of the observations may be such that some of the errors in the an
and b, are very small and some relatively large. Not infrequently it is safe to
assume that some of them are free from appreciable error and to ascribe all the
error of the z; to the error in one or two of the ax: or b,. If any statement of a
definite relationship, either as an equality or an inequality between | A | and
the | 8z; | is valid for all possible sets of linear equations, it must at least hold
in the special case in which the errors of all the b, and the errors of all except one
of the ax: are negligible.

If such a statement of a definite general relationship between these upper
limits of errors can be made, it must be possible to write down an equation or an
inequality between any one of the expressions | A | and some or all of the
corresponding expressions | (zx/z;)4s; |, j = 1, 2, - - - , n, that will remain true
no matter what be the values of the ax and the b, in the original set of simulta-
neous equations. It is obvious that the ratio of | Am | and | (zx/z;)An;|,
(7 # k), depends upon the values of the ax , and sets of equations can be found
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to give any assigned value to that ratio. It is therefore impossible to state any
rule that will restrict the ratio of the relative error of A and the relative error
of any one of the z;, valid for all possible sets of linear equations.

9. Definite statement about the sum of the relative errors in the unknowns.
However, in the summation ) | éz; | there occurs the term corresponding to

i
J = k, for which | (zx/x;)As;| = | A |, so that under the assumption that the
anx and b, are independent sources of error, we may write the inequality

(4) ;Mxil{l«ml

which states that the sum of the upper bounds to the relative errors of all the z;
cannot be less than the upper bound to the relative error of the determinant A.
A corresponding statement can easily be proved for the standard deviations.

A limiting case can be constructed in which the inequality (4) reduces to

(5) Zj)lszfl-—-lml

and in which all of the | éz; | are equal. For this case,
(6) | 8A | = n | 6z; | for all values of j.

If » < 10 it is obvious that there will be at least one more determinate signifi-
cant figure in each of the z; than in the determinant A of the coefficients.

It is frequently assumed that the number of determinate significant figures in
the solution for any unknown cannot exceed the number of determinate signifi-
cant figures in the determinant A of the coefficients. We see now that this state-
ment can not be generally valid, even under the assumption that the ax and b,
are independent sources of error. As a matter of fact, it is necessary in some
cases to compute some or even all of the unknowns to more significant figures
than are determinate in the determinant A of the coefficients, if one would retain
in the result all the accuracy that is obtainable from the data.

Cases in which the relative observational error of every one of the unknowns
is less than the relative error of the determinant A probably occur rarely in
practice; in fact the only ones that I have seen are those that I constructed
purposely to show that such a thing is possible. However, cases in which the
relative errors of one or several but not all of the unknowns are much smaller
than the relative error of the determinant A, occur fairly frequently.

10. Remarks on the case of “near indeterminacy.” The major interest in
curve fitting centers around the condition of ‘“near indeterminacy,” i.e., of a
small or near vanishing determinant A. Even in the circumstance where the
relative error of the determinant is much greater than the relative error of some
or all of the coefficients and absolute terms, the relative error of one or more of
the unknowns may be much smaller than the relative error of the determinant,
as may be seen from what follows.
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In accurate experimentation the endeavor is, wherever possible, to arrange the
experiment so that the quantity sought comes directly from the measurement as
represented by an equation such as

)] z = p.

However, so ideal an experimental arrangement is rarely if ever possible, and it
is a common experience to find that the measurements are represented by an
equation such as

8 zr+qy+rz+su+ ... =p,

where gy, rz, su, etc., are small corrections that must somehow be evaluated.
For simplicity, the discussion will be confined to the almost trivial case

9) z+qy = p.

Not infrequently the only way the correction can be evaluated is to rearrange the
conditions of the experiment so that another equation is obtained in the form

10) z+qdy=17.

Sometimes the nature of the experiment is such that it is not possible to change
the coefficient of ¥ by more than a small amount, under which conditions

(11) : ¢ = q(1 + 8),
and
(12) ' =p(1l + o),

where 8 and « are small in comparison with 1. The solution of equations (9)
and (10) now gives

lp q

p’ d|_pd —pq

13 xr = = = 1 — .

(13) T g 7 —q p(1 — a/B)
1 ¢

The quantity ¢ — ¢ seen in the denominator of this equation is the determinant
A of the coefficients, and by equation (11) its value is 8g. Since B¢ is assumed
to be small here, the solution for = encounters a near vanishing denominator.
It would, however, be wrong to assume that the number of determinate signifi-
cant figures in z that can be obtained by solving the equations is necessarily
limited to the number of determinate significant figures in the denominator A.

If the experimenter has been fortunate in finding suitable experimental condi-
tions, the denominator A = g, although small in comparison with either ¢’ or g,
will still not cause difficulty. It will be observed that the coefficients of ¢’ and ¢
in the denominator are equal (both being unity). Now if the coefficients p
and p’ in the numerator are nearly enough equal, so that ¢’ and ¢ occur in both
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numerator and denominator so nearly proportionally that the uncertainties in
g and ¢’ produce nearly compensating errors in both numerator and denominator,
then = will be given to more determinate significant figures than are found in
the denominator A. It can then be said that the experiment is successful in
evaluating the correction term gy in equation (9).

On the other hand, in less fortunate circumstances, to the exasperation of the
experimenter, the denominator A = ¢’ — ¢ = fq is not only small, but p’ and p,
although still nearly equal, differ enough so that the errors in ¢’ and ¢ are not
compensated by the nearly equal coefficients in the numerator. The experiment
will then fail to improve the approximation p for z by failing to evaluate the
small correction gy in equation (9). This would be an inherent defect in the
experiment and could not be removed by any manner of computation.

The same conclusion would of course be drawn from the coefficient of p (viz.,
1 — a/B) at the extreme right of equation (13). It is not the size of 8 that
alone determines the number of determinate significant figures in z, it is rather
the ratio between « and 8. In the fortunate experimental circumstances de-
scribed above, the near equality of p’ and p offsets the near equality of ¢’ and ¢
by reducing the term a/B to a value small compared with unity; the term «/8,
being small, acts to reduce the effect of the uneertainties in ¢ and ¢’ (i.e,, in ¢
and B) in the evaluation of . On the other hand, in less fortunate circum-
stances, the correction term a/8 can not now shield x from the uncertainties in ¢
and ¢’ since the relative difference a between p and p’ is not small enough to
reduce a/B to innocuity.

11. Numerical illustration of compensating errors. As a ‘horrible example”
especially constructed to emphasize the theoretical possibilities, take the fol-
lowing special case—

1000.10000z + 10.00000y = 1010.10000

(14)
1000.00000x + 10.00000y = 1010.00000

wherein it is assumed that the coefficients and the absolute terms (assumed to
be derived from the observational data) are all correct to the fifth decimal place
as given, and no closer estimate of their errors is possible. So far as known, the
upper limit to the absolute observational error of each is then the same, i.e.
5 X 107°, but the coefficients of z (a1 and a5), and the absolute terms (b; and bs),
all have nine determinate significant -figures, while the coefficients of y (a2
and az), have only seven. Thus,

|8au| > 5 X 107°,  |éan| > 5 X 107°, |ob| > 53X 107,
| 8b2| 5 X 107,
but
(15) |60 | > 5 X 107,  |éam|» 5 X 107,
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andz = 1,y = 1, A = 1, whereupon a substitution of values from (15) into (3)
gives the inequalities

(16) |éz|»3 X107,  |ay|»3 X107  |sAa| P 1.01 X 107%

So far as known, the determinant A may thus be in error by as much as 1 per
cent, and y by as much as 3 per cent, yet z is known closer than 1/30th per cent.
Here the value of the unknown z cannot be adequately represented by less than
four significant figures, and might even require five, in spite of the fact that
neither A nor y requires more than three significant figures to represent all that
is certainly known about them.

The reason for this disparity in relative errors can be more easily seen by
substituting numerical values for all the coefficients in the expression for z
except a;; and a. The possible relative errors of a» and as; are, as noted
above, about 100 times as great as the possible relative errors of an, @, b1,
and b., and are the controlling errors in A. In the solution

_1010.10000a5; — 1010.00000a1,

) * = 1000.10000az: — 1000.00000a::’

however, both a;; and as; occur in both numerator and denominator, and more-
over the coefficient of each in the numerator is nearly equal to its coefficient in
the denominator, so that a change in either a;2 or @ changes both numerator
and denominator nearly proportionally, with the result that their ratio x is
known much more accurately than either the numerator or the denominator A.

This kind of compensation of errors in a computation is not confined to the
solution of simultaneous equations (and it is not an infrequent occurrence in
other computations). This is one of the many reasons why it is impossible to
give general rules for the retention of significant figures that will be valid for
all types of computations.

12. Geometrical analogy. Moulton [4] illustrated his reasoning by the fol-
lowing geometrical analogy. The solution of three linear equations is equivalent
to finding the point of intersection of three planes. When the determinant of
the coefficients is small in comparison with the coefficients themselves, these
planes are either nearly parallel, or the line of intersection of any two of them
is nearly parallel to the third. In these cases small uncertainties in the location
of any one of the planes correspond to large uncertainties in the position of their
point of intersection.

In the first circumstance the planes might all be nearly parallel to one of the
three coordinate planes, with the result that large uncertainty would afflict the
value of the determinant and two of the unknowns, the third being much more
accurately determined.

In the second circumstance, the line of intersection of two of the planes might
be nearly parallel to one of the coordinate axes. When that happens, large un-
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certainty will afflict the value of the determinant, but only one of the unknowns,
the other two being much more accurately determined.

This geometrical analogy can be extended to cover simultaneous equations
with any number of unknowns. Near-vanishing of the determinant A of the
coefficients necessarily implies relatively large uncertainties in the determinant
and also in at least one of the unknowns, but not necessarily in all of them.
These are, of course, very special cases, but, as noted above, they are of frequent
occurrence in actual problems.

13. Evaluation of computational error. The relative computational error in
z; must be kept within certain definite limits which depend upon the particular
problem to be solved (section 3). To do this it is necessary to be able to calcu-
late an upper bound to the relative computational error inherent in any particular
sequence of computations.

In many computations it is easy to write down a simple formula that will set
an upper bound to the relative computational error involved in that particular
sequence. This formula contains numbers fi , f2, f3, etc., each representing the
number of significant figures accurately computed at some particular step.
Once a simple formula for relative computational error is written down, it is
easy to choose values of f, f2, f3, etc. that will give an upper bound to the
relative computational error not larger than the permissible limit of maximum
possible computational error outlined in section 8. This method of determining
an upper bound of the relative computational error should be used whenever such
a simple formula can be found. For example, to compute z from equation (13)
we may use the following sequence:r, = ¢’ — ¢, e = /g =B,13=p' — p,rs =
Ta/p =a,Ts = 7’4/7‘2 = a/ﬁ’rﬁ =1l—r=1-— a/ﬁ77'7 = Pre = p(l - a/ﬂ) = Z.
z may then be written as a function of these partial results, viz.:
as) z=r;=pre = p(l —15) = p(1 — ry/rs) = p(1 — r3/pry)

= p(1 — rg/m).

Applying first order error theory we find

i f/f/ﬁl (1) | + [ em) | + |e(ra) | + | etr) | + | e(rs) |}

|e() | =

(19)
+ | e(re) | + | e(rr) |

where €(r;) represents the relative error in r; arising from the computation by
which r; was determined from the preceding partial results, r1, 75, -« , 7,
and €(r) is the total relative computational error in z when so computed. It
is easy to keep e(z) within any desired limits by suitably limiting each error term
of (19). Since a computation accurate to f significant figures involves a relative
computational error not greater than 5 X 1077, any desired limits can then be
set to each error term of (19) by a proper choice of the number of significant
figures that should be carried in that step.
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Unfortunately there seem to be no reasonably simple formulae for determining
upper bounds of the relative computational errors that arise in the solution of
simultaneous linear equations in more than two variables. This does not ab-
solve the computer from the necessity of ensuring that his computational errors
are suitably limited.

The method I have found most economical is to carry the solution of simulta-
neous linear equations to the capacity of the machine, and as each partial result
7; is obtained, write it as

(1l £ €),

where 7; is the value actually found and e; is a positive number representing the
accumulation of uncertainty introduced by all preceding steps in the computa-
tion. At the end of the computation each of the unknowns is found.in the form

(20) zi(l £ ¢),

where z; represents the value found and e; is the upper bound of the relative
computational error in z; .

A comparison of e; with the upper bound of the observational error | éz; | of
equation (3) will then indicate whether the computation is adequate. If the
comparison shows that the computation was inadequate, it will show in which
steps the number of significant figures f; was too small, and by how much.
The computer can recompute, carrying these steps to the requisite number of
figures with the assurance that his recomputation will then be adequate. The
comparison will further indicate in which steps if any the number of significant
figures f; was larger than necessary.

When a computer has thus set suitable upper bounds to the relative computa-
tional error in the solution of a set of linear equations, he is in a position to plan
solutions of future similar sets so as to perform his computations more eco-
nomically and yet safely. This is especially true when the solution of simulta-
neous linear equations arises week after week in routine testing.

14. Conclusions. Summary rules have been published, purporting to be safe
guides to computers in avoiding needless work, and ensuring that the computa-
tions are carried to a sufficient degree of accuracy. Many of them are useful
guides for certain types of computation and for limited ranges of the numerical
values entering into the computation, but none of those that I have seen can be
used generally. The only safe rule, where the matter is of importance, is to
calculate the maximum possible computational error that can enter in the par-
ticular sequence of computation followed, and make sure that it is kept within
the necessary limits.

It is sometimes necessary to carry the intermediate steps of a computation to
many significant figures beyond the significant figures given in the data, or kept
in the result. The relative error of one of the unknowns may be very much
smaller than the relative errors of the data from which it is computed, while the
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relative error of another of the unknowns may be larger. The methods of
ensuring that the computations are adequate are outlined in section 13.

For the best sequence to follow in the elimination of the unknowns, I shall
pass along a suggestion of Dr. W. Edwards Deming which he gave in one of our
discussions of this subject. I venture to pass it along, because it has worked in
every special case that I have constructed in an attempt to prove that it does
not hold generally. If ever the suggestion fails, the computer may change the
sequence; but in any case he is obliged, as stated above, to calculate the maximum
possible computational error that can enter into his calculations. Dr. Deming’s
suggestion is this: “To evaluate some but not all of the unknowns to the highest
possible computational accuracy, retaining as few significant figures as possible
in the intermediate steps, solve the equations by successive elimination, elimi-
nating first and evaluating last the unknowns of greatest inherent relative
accuracy.”

15. Summary. Expressions are given for the maximum observational error
in the unknowns of a system of simultaneous linear equations, in terms of the
relative errors of the coefficients and absolute terms therein. In order to extract
all the information possible from a system of linear equations representing ob-
servational results, it is not sufficient in general to assume that the relative errors
in the unknowns are as large as the relative error in the determinant of the
system. In many problems the computation of some of the unknowns must
therefore be carried to more significant figures than are determinate in the
determinant of the system. Methods are outlined for evaluating computational
error in the solution of linear equations to ensure that the computations are
adequate. :

In conclusion I wish to express my thanks to Dr. W. Edwards Deming who
has given much of his time to assist me in the preparation of this paper. He has
made valuable suggestions on the material to be included and the general manner
of presentation. In addition he has criticized the manuscript in detail and
assisted in the final revision.
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