SOME GENERALIZATIONS OF THE LOGARITHMIC MEAN AND OF
SIMILAR MEANS OF TWO VARIATES WHICH BECOME
INDETERMINATE WHEN THE TWO VARIATES ARE EQUAL

By Epwarp L. Dopp
University of Texas
1. Introduction. The logarithmic mean m of positive numbers,  and y, as
given by
y—z y—z
1 — 3
M "= log.y — log.z _ log. (/%)

is of considerable importance in problems' relating to the flow of heat.

The logarithmic mean arises, moreover, in less technical problems such as the
following: Given that incomes ¢ in the interval, z < t < y, are distributed with
frequency inversely proportional to ¢. That is, with ¥ = a positive constant,

2) o(t) dt = (k/t) dt

is the number of individuals with incomes lying between ¢ and ¢ + dt. Then,
with > 0, the total number f of individual incomes is

v
3) f= f o(t) dt = k(log y — log x).
The combined income g of the group is

4 g = j;” top(t) dt = k(y — x).

And thus the logarithmic mean g/f of the two numbers z and y in (1) is the
arithmetic mean of all the incomes; that is, the average income—at least to a
close approximation if the group is large enough that integration may replace
summation.

Now m in (1) becomes indeterminate, if x = y. Nevertheless, if ¢ > 0, and
z — cand y — ¢, then m — ¢. Thus, we may properly speak of m as a mean of
these two variates, z and y.

This logarithmic mean is one of a set of means studied by Renzo Cisbani’®, the
general form being

1See Walker, Lewis, and McAdams, Principles of Chemical Engineering, McGraw Hill &
Co., Part IV, Logarithmic mean temperature difference.
2 R. Cisbani, ‘‘Contributi alla teoria delle medie.”” Metron, Vol. 13(1938), pp. 23-34.
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B bz+j _ az+i 1/z
) 2= [ = a,-)]

and the logarithmic mean appearing when ¢ = 1, j — 0.

In a chart between pages 28 and 29 Cisbani exhibits thirty varieties of these
means (5). It will be noticed that z is ¢ndeterminate if a = b.

Some methods for dealing with means which may become indeterminate
forms I have indicated in a recent paper.’

Now a generalization from a meah of two variates to a mean of three or more
variates may sometimes seem to be immediate. However, for the arithmetic
mean (z + y)/2 of two variates r and y, the function [min. (z, y, z) + max.
(z, ¥, 2)]/2 is as much a generalization as is the arithmetic mean (z + y + 2)/3.
Actually, the direction in which generalization is to take place is arbitrary.
However, it is natural to expect the generalization to arise from a problem
somewhat similar to one that may give rise to the original mean. And it is
desirable that to the generalization should be carried over as many properties
or characteristics of the original as is possible.

In the foregoing illustration, we considered a single interval 2 =< ¢ < y in
which incomes are distributed in accordance with a relative frequency propor-
tional to ¢(f). And the arithmetic mean of all these incomes was obtained as a
logarithmic mean of the two range limits z and y, at least approximately, allow-
ing integration to take the place of summation. If ¢(¢) had been kt™** instead
of kt', then the average of all the incomes would have been the geometric mean
of the fwo range limits z and y.

To effect a first generalization, we shall now suppose an original interval x, to
z, , to be divided into n subintervals by points z, such that

(6) To <. T < Xy < +o0 < Ty < Zn

For each subinterval z,_; to z, the same function ¢(¢) will be used to describe
the relative frequency; but the fotal population for this subinterval will be con-
trolled by a positive constant k, , in general different for the different subintervals.
This may be described as stratification. To make this more concrete, let us
suppose, as before, that ¢(tf) = k/t. Then, with zo > 0, the mean M, which
will be described more in detail in the next section, will take the form

— EI‘ kr(xr - xr—l)
2.1 k. log (z./z,1)

Applied to incomes, M would, like m in (1), give average income. To get
some idea of the significance of &, , let us imagine that in some community there
are f, individuals in the income bracket z._; to z,, say from $1001 to $2000.
Let us suppose now that f, other individuals with incomes between $1001 and
$2000 distributed in exactly the same manner move into this same community.

(M) M

3““The substitutive mean and certain subclasses of this general mean.”’*Annals of Math.
Stat., Vol. 11(1940), pp. 163-176. See p.171.
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Then k, would be changed to k, = 2k.. But, of course, among the entire 2f,
individuals the relative distribution of incomes is ezactly the same as among the
original f, individuals.

In this interpretation k. is a weight for a bracket of items. But, taking M in
(7) just as it stands, k, is the weight for the consecutive pair of numbers z,_,
and z, .

2. The first generalization. When ¢ is in some interval, I = (a, a’), finite or
infinite, let ¢(f) be a non-negative, integrable function of ¢.

And in I let the points at which ¢() = 0, if any, form a null-set. Then, with
tin I, write

t
@® () = f #(t) dt.
And, supposing that in (6), a < z9, a, < a’, set

© L= [ s0d=8@) - s@;  r=12-,n

Tr—1

Then f, > 0; since ¢(f) > 0 and is continuous almost everywhere in (z,_; ,
z,). Since in any finite subinterval of I, {¢(f) is integrable, we may set

(10) () = f o dt = f “16(0) d.

(1) o= [ ydt = ¥@) - 9.

Now, by a mean value theorem, there exists a number ¢, such that
(12) gr/fr = t: y Ty < t,’- < Zr.

Taking positive numbers k,, the weighted arithmetic mean of ¢./f., with
weights k.f, is then

— ZI‘ kfg" = Er kr[\I’(xr) - \I/(xr—-l)] .
Z;.. krfr Z{‘ kr[é(xr) - q’(xr—l)]

If ¢(f) = k/t, this becomes the mean (7) associated with the logarithmic
mean. Now, since for (13) the weights k.f, are positive, it follows from (12)
that )

(14) 20 <HSEMZt, <.

Suppose, now, that b lies in I, and that subject to (6) each ., — b. Then,
by (14), M — b. And thus M is an internal mean of 2o, z1, - -+, Z», although
with the z’s all equal, M assumes an indeterminate form.

In (13) the weights k. are applied to pairs of numbers, either to ¥(z,) — ¥(x,—1)
or to ®(x,) — ®(x,_;), whereas in most weighted means, the weights are applied

(13) M




THE LOGARITHMIC MEAN 425

to tndividual numbers. We consider now a form equivalent to (13), but in
which the weights c, are attached to the individual numbers. It seemed possible
%0 get a more general mean than (13) by abandoning certain conditions upon
the weights ¢, which first arose. But such relaxing of restrictions leads to diffi-
culties, as will be shown. By setting

i15) co = —ki, cn = kn; ¢ =kr — krpa, r=12.--,n—1,

we may write M in the form;

(16) = 28 e¥@)
i 2.0 ¢ @(z,)
On the other hahd, if we choose ¢’s subject to
an) ¢ < 0, < —(+ea+ - +ca) for0<r<n,
.18) = —22.0""¢;

then positive &’s can be found to pass from (16) back to (13).
The question arises whether if the conditions (17) are abandoned, and with
she ¢, not all zero, (18) is retained as

(19) ° dre =0; Some ¢, # 0,
# in (16) will continue to be a mean of o, #1, - - -, z,, possibly, an external
nean.

it may be noted that the condition ), ¢, = 0 arises from the fact that when
parentheses are removed from (13), each k. is matched by —k, .

By an example, it will be shown that under (19) alone, M in (16) may fail
w0 be a mean. In (8) and (10) take @ = 0. Then with n = 2, ¢(f) = ¢, take
w=1,¢= —2 ¢ = 1in (16). Then

2 _ 21:2 'i" x2
2 M= _To—enTr
' 0) 2(310 — 2z, + xz)

fb>0,e=20—b,n=2—b,and § = z, — b, then

162—2n2+£2
3 = P L
21) M b+2 pp el
if now 5 = 2¢, and ¢ = 3¢ + ¢, then
22) M=b+ 2+6e+)/2—b+1, as e — 0.

Since M does not approach b here, when z,, z;, and 2z, — b, in the manner
specified, M in (20) is not a mean of z, , z;, and ..

“We may enquire, further, whether the function M in (16) could be a mean if,
discarding (13), (17) and (18), we put upon ¢, the single restriction ¢, > 0. In
:hat case, if xp < ¢ < z,, then, since ®(¢) and ¥(¢) are continuous functions of
~—see (8), (10)—it would follow that if each z, — ¢, then M — ¥{¢)/®({). But
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if M is to be a mean of o, 21, - -+, &, then M — ¢ when each z, — ¢. Thus
we are led to ¥(¢) = i®(¢). Except possibly for points of a null set, ®(f) and ¥(¢)
have derivatives ¢(¢) and y(¢); and thus

(23) ¥ = ¥'(Q) = @' () + () = t(t) + ().

But then, since ¢ (t) = tp(f)—see (10)—it would follow that &(f) = 0 almost
everywhere in I; but ®(¢) > 0, if £ > a. Hence the assumption ¢, > 0 is not
sufficient to make the function in (16) a mean of xo, z;, -+, Zn .

In the simple case of n = 1, M becomes

(2 — ¥(xo) |

(24) M= B@) = ()

and this is a symmetrical function of z, and z, .
The question arises whether if n > 1, M in (13) or (16) can be a symmetrical
function of 2o, 21, -, x,. Assume, if possible, that withz < y < 2,

co¥(z) + a¥(y) + ¥(2)
co®(@) + a®(y) + . P(2)
is a symmetrical function of z, y and z. Now if a/b = ¢/d, and b — d £ 0, it

is well known that a/b = (a — ¢)/(b — d).
Hence, if H(x, y, 2) = H(z, y, x), and ¢, % ¢z, then

_ (co = ¢9) [¥(x) — ¥(2)]
(26) H(z,y,2) = o = o) [B@) = @)’

(25) H(x,y,2) =

which is not symmetrical in the three variables. Then H is not symmetrical
in z, y and 2, unless, possibly, when ¢, = ¢, .

Likewise from H(z, y, z) = H(z, 2, y), we are led to the conclusion that H
is not a symmetrical function of z, y, and z, unless possibly when ¢; = ¢;. But
€ = ¢ = ¢y substituted into (15) makes k; = k» = 0, which is contrary to
hypothesis that &, > 0. Then in (25) the constants ¢;, ¢; and c; can not be
chosen in conformity with (15) so as to make H(z, y, z) a symmetrical function
of the three variables.

Symmetry in two variables will appear, however, if the mean (13) reduces
to a mean of just two variables as it does when each k, = k, constant, in which
case,

W(z,) — W(xo)

@7 M= ) = o)

Although in the generalization (13) symmetry is thus lost, another property,
homogeneity is retained in what seem to be the most important cases.

Most means Q(z, ¥, - - - , w) in common use are homogeneous functions of their
arguments. That is, if ¢ is a constant, and Q(z, y, - - - , w) and Q(cz, cy, - - - , cw)
are both defined when z, y, - - - , w lie in some interval J, then
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(28) Q(cx, Y, ", C’l,l)) = CQ(I, Yy -y w)

This homogeneity is associated geometrically with ruled surfaces, in particular
with cones.
With reference to (8) and (10), let us write

¥(y) — ¥(x)
29 F(z,y) = ————.
) ©0 = 56) = 5@
And now, let us consider a speciai variety of means obtained by taking in (8)
(30) o(t) = ¢,

where ¢ is any real number. Then F(z, y) is a homogeneous mean; that is,
(31) F(czx, cy) = cF(z, y).

This is valid, indeed, even in the special cases, ¢ = 0, —1, and —2, which lead,
respectively to the arithmetic mean, the logarithmic mean (1) and to a second
variety of logarithmic mean

m = ylog (y/x)’
y—x

(32)

exhibited by Cisbani. It may be noted that ¢ = —3/2 leads to the geometric
mean, and ¢ = —3 to the harmonic mean of z and y.

It is conceivable that for ¢(t) other functions than *—functions not equivalent
to ¢? in integration—might be used to lead to a homogeneous F(z, y) in (29).
But such functions, if any, would hardly seem to be in common use.

The M in (13) retains the property of homogeneity, at least for ¢(f) = t%;
and so will also the more general means exhibited in the next section.

3. Further generalization. The means of Cisbani (5) suggest the following
generalization. Let p be an integer or the reciprocal of an odd integer. With
the notation of (13), take k£, > 0, and

(33) F,= E;‘ krﬂ,: G, = Z;‘ k.g?,
(34) M, = [G,/F,]'*.

Indeed, if in (8) and (10), @ = 0, then g. > 0; and we may take for p any real
number except zero. Now, M5 may be described as the weighted arithmetic
mean of (g./f,)” with positive weights k.ff . And hence M, is an ¢nternal mean
of 2y, 21, -++, s ; that is

(35) Ty S M,, <z.

Furthermore, if in (8), ¢(t) = t?, where ¢ is any real number, then M, is a
homogeneous mean of @o, 21, -+, Za .
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Another generalization may be obtained by writing

(36) m, = g/fr,

(37) M, = [Zkm?/2k]".
And still another

(38) M = [mf-mb? - mip] R

These means (37) and (38) are internal; and they are homogeneous, if F(z, y)
in (29) is homogeneous.

The foregoing means are not, for n > 1, symmetrical functions of
Ty, T2, -+, Tn. Now the mere abandonment of (6) may lead to functions like
(20) which are not means at all. But symmetry may be introduced as follows.
First, lay aside (6), but suppose that the z, are all different. Then let

(39) fro= [ at,  ga= [ w0 @
wherer = 0,1, ---, (n — 1);r < s £ n. Then, let
(40) U=3fi., V=2¢.;

where U and V is each a sum of n(n — 1)/2 terms: Let W be the double-valued
mean

(41) W = £[V/U""

Then W is a symmetric function of 2o, z1, -+, . If, in (8), a’ = 0, ther
in (12) each g./f, < 0; and in (41) the negative value of W is an internal mean.
But the positive radical is external. On the other hand, if @ Z 0; then g,/f, > 0;
and the positive radical in (41) is internal. In this case, it may be well to use
for W only the positive value of W.

In the more general case where a < 0 and a’ > 0, the fractions g,/f, may have
different signs. But, in all cases, at least one of the two radicals (41) is an

internal mean of zo, 1, -+, .. Moreover, W is homogeneous, if in (8).
o) =t
Finally, let
(42) My = gr,s/fr,a,
(43) Z = £{[zm} ]/nin — 1)}

Then Z is symmetric; and at least one value is internal. If a > 0, we would
naturally take Z > 0; and this Z is then an internal mean. Moreover, Z is
homogeneous if the m, , are homogeneous; that is, if F(z, y) in (29) is homogene-
ous for every z and y in I.



