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3. The special case. Let us now return to the special case mentioned at the
end of 1—the application to the mean square successive difference.

There p = 1 and B = (0), so that the “distribution” of { is concentrated at
the point 0 Hence wp(¢) is an “improper” distribution, concentrated in the
same way.! Using C and A as described at the end of 1, the above formula
becomes (now m = n — 2, p = 1)

_ T -1) ( ) in—3 -

(I1) | war@(6) O = D] f dp-ws (1 —=p)".

It would have been equally easy, of course, to establish (II) directly.
Putting p = 1/t gives

(I1I1) war(8) = [l — 1) ] f , dt-w ()P — 1),

Iz(n — 2)IT(3
Since wa(y) vanishes for |y | > cos (v/n), we may replace this integral

cos (7/n)/|6]
[ee ]

Formula (III) can be used for numerical work, and also to extend the formula
(3) on p. 391, loc. cit., to even values of .
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In an article appearing in the Annals of Mathematical Statistics' it was pointed
out that while the mean value functions appearing below have been studied
and used since 1840, there appeared to have been no attempt made to investi-

gate the behavior of their second derivatives.
Consider (1) the unit weight or simple sample form

t t R t\1/t
‘P(t) E<xl+x2+ +xn) ,

n

in which the x; are positive numbers and in which ¢ may take any real value;
(2) the weighted sample form

w(t) _ (61113: + 02:1:; + -4+ C”x:‘>1/t
- a+ece+ - Fea ;

#Dirac’s famous ‘‘delta function.” It could be described by a Stieltjes integral.
! Nilan Norris, “Convexity properties of generalized mean value functions,” Annals of
Math. Stat., Vol. 8 (1937), pp. 118-120.
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in which the ¢; are positive numbers, and in which the z; and ¢ are restricted as
in ¢(t); and (3) the integral form

0(2) = (xz 1 = L ? [f(x)]‘dx)m,

in which f(x) is a positive continuous function for r; £ z < 2,.

Since the analysis and results are essentially the same in all three cases, we
restrict our attention to 6(z).

As is well known,’ 6(t) is a monotone non-decreasing function which varies
from the minimum of f(x) to the maximum of f(z) as ¢ increases from — « to
+ . It is further of some importance to study the rate at which the rate of
increase of this type bias is changing as ¢ increases; the rate in question is given
by the second derivative 6”(¢).

The following points were made by Norris, loc. cit.: (1) Since, as we have
pointed out, 6(f) has two horizontal asymptotes, 8(f) must have at least one
inflection point. (2) Consideration of a simple example shows that there is not
necessarily an inflection point at ¢ = 0; ’/(0) can be made to take on any real
value.

Thus it is not true that 6”(f) must be positive for all £ < 0 and negative for
all{ > 0. On the other hand, we shall give simple bounds for §”(¢) in the other
direction; namely, we shall give a positive upper bound of ¢/(¢) for ¢ < 0 and a
lower bound for ¢ > 0. These bounds are precise in the sense that they are
actually taken on in the special case f(x) = const. Their main advantage lies
in the fact that while the expression for 6/(¢) is quite involved, these bounds are
simple expressions in the quantities (t) and 6’(f) which might already have
been computed.

Let

A = log 6(2).

Differentiating, we obtain

v L Ul esl@ras s (1 [ ras),

ENE) =8 L = o
60) f U@l
It follows® that
N =0
and
6@ = 0.
Let

u(®) = £N(2).

2See for instance, G. Pélya und G. Szegd, Aufgaben und Lehrsdize aus der Analysis
(Berlin, 1925), Vol. 1, pp. 54-55 and 210-211.
3See G. Pélya und G. Szegé, loc. cit., p. 210.
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Curiously, while \’(f) and 6''(f) appear to be rather formidable, the closely
related quantity u’(f) is rhade relatively simple by the fact that two of the
terms obtained by formal differentiation are negatives of each other; and
Schwarz’ inequality can be applied to the remaining terms, as follows.

We obtain

([ v@ras) weo = o ([ 150 ae) ([ 10 tog s )
- ( ]; j’ (7)) log f(x) dx)z] :

By Schwarz’ inequality,* it follows that
w' @) = tx(t),
with
x(t) 2 0,

the sign of equality holding if and only if f(x) = const.
From the definition of u(f) we obtain

ey — flone ot = b [ opr P (AO)

W) = A0 + ) = gl [20 @+ wo - 8 ]
whence

IO + 070 = [20’«) + #87() — “%%?l] = x() 2 0;

that is,

Y} 2
W) 2 —), 0 2 % — 20/(0).
It follows that for ¢ < 0, we have
N'(t) £ —2N()/t
and

o s LOF 20,
while for ¢ > 0, we have

N(t) =2 =2V ()/t
and

" '@Or _ 20'(2)
0'(t) = 50

4See G. Pélya und G. Szegd, loc. cit., p. 54.



