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and the points P(¢) take up the whole curve (C), e.g. between ¢ = 0 and .
Then the relations between the given S, become non-linear inequalities, well
known for the problem of moments.
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AN INEQUALITY FOR MILL’S RATIO
By Z. W. BirNBAUM
University of Washington
Mr. R. D. Gordon® recently proved the inequalities
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In the present note we show that the lower inequality can be replaced by the

better estimate
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Proor: According to a well-known theorem of Jensen?, for f(f) convex and
g(t) = 0 in the interval (a, b), the following inequality holds

f[ f 100 dt/ f " 90 dt] < f 10 o0 dt / : o0 dt.

Fora = 2,b= o, f(t) = 1/t, g(t) = te”*"", this inequality gives

f te‘*"dt/ f et < / e“*"dt/ f te ™ dt.

Since

[ te " dt = ¢ and f et dt = ze ' 4 f M dt,

1R. D. Gordon, ‘Values of Mill’s ratio of area to bounding ordinate of the normal
probability integral for large values of the argument,’’ Annals of Math. Stat., Vol. 12 (1941),
pp. 364-366.

2 See for example: G. H. Hardy, J. E. Littlewood and G. Pélya, Inequalities, Cambridge,
1934, p. 150-151.
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we find
] L] 2
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and hence
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