ESTIMATION OF VOLUME IN TIMBER STANDS BY STRIP SAMPLING

By A. A. HaseL
California Forest and Range Experiment Station'

1. Introduction. The present paper is the second of a proposed, series, in
which it is intended to present a systematic study of the properties of several
methods of sampling timber stands and statistical treatments of the samples.

The effects of size, shape, and arrangement of sampling units on the accuracy
of sample estimates of timber stand volume were reported in the earlier paper [1]
for 5,760 acres of the Blacks Mountain Experimental Forest. With complete
inventory data, the nature of stand variation was shown to be such that 2.5-acre
plots, the smallest size tested, were more efficient sampling units than larger
plots, i.e., for a given intensity of sampling the sampling error was smaller.
Long, narrow plots were more efficient than square plots of the same size.
Line-plot sampling units consisting of two or more equally spaced plots along
lines of fixed length were as efficient as single-plot sampling units and more
efficient than strips consisting of plots contiguous end to end. Improvement in
the accuracy of estimates was obtained by subdividing the area into rectangular
blocks of equal size, and sampling each block to the same intensity. By sys-
tematic sampling, whereby the center lines of parallel line-plot or strip sampling
units were spaced equidistant, the sample estimates of stand volume were im-
proved over estimates from comparable random samples. Treatment of the
volumes on individual plots of systematic samples as random sampling observa-
tions, however, as is sometimes done in practice, was shown to give seriously
biased estimates of sampling error.

In the present paper we shall be concerned with sample estimates from strip
samples taken within blocks of irregular shape, and consequently with sampling
units which vary in length within samples. The methods will be equally
applicable to line plot samples.

Following the general ideas expressed by Neyman [2] it is felt that: (1) If the
formulae of the theory of probability have to be applied at all to the treatment
of samples, the theoretical model of sampling must involve some element of
randomness. (2) This element of randomness may conveniently be introduced
by a random selection of the sample, but may also be assumed present in the
distribution of deviations of timber stand volumes in the area sampled from a
postulated pattern. (3) Many attempts to treat systematic arrangements
statistically are faulty because the treatment consists in applying to systematic
arrangements formulae that are deduced under the assumption of randomness.
If the arrangement of sampling is a systematic one, and random errors are

1 Maintained by the U. S. Department of Agriculture at Berkeley, in cooperation with
the University of California.
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180 A. A. HASEL

aseribed to Nature, then the treatment of the data should be based on formulae
deduced under explicit assumption of the syvstematic arrangement of sampling
and of some random element in the material. An example of this kind of treat-
ment is provided by Neyman’s method of parabolic curves [2] devised for the
treatment of systematically arranged agricultural experiments. (4) Lastly, a
mathematical treatment of any practical problem is useful only if the predictions
of the theory are in satisfactory agreement with the empirical facts. Whether
the method of sampling is random or systematic, the mathematical theory of
sampling always involves certain elements that are postulated, either in respect
to the method of sampling itself or in respect to the material sampled. To have
a reasonable certainty that a particular mathematical treatment is useful in
practice it is necessary to make empirical studies to find out whether the devia-
tions from postulates of the theory that may occur in actual situations do or do
not seriously affect the validity of the predictions.

2. Notation and definitions. Before proceeding to the main subject of this
paper it may be useful to explain the meaning of certain statistical terms and
svmbols. Following Neyman, a sharp distinction is made between three differ-
ent conceptions that are frequently confused by the practical statistician.

DeriNttioN 1: If uy, us, -+, uy are any fixed numbers, whether provided
by some already completed experiment involving randomness, or just arbi-
trarily selected, Karl Pearson’s term ‘“standard deviation” of these numbers
and the letter S will be used to denote the expression § = /Z(u; — @)?/N
in which 4 = Zu;/N is the mean of the u’s.

Now let X denote a random variable, that is a variable the value of which is
going to be determined by a chance experiment. Thus X may be the timber
volume on a strip that is going to be selected at random from an area. Denote
by E(X) the mathematical expectation of variable X capable of possessing values
Uy, Uz, **+ ,U,. Then

E(X) = wypr + ups + <+ + UnDa,

in which the p’s are the respective probabilities of all possible different values
of X. :

DeriniTioN 2: The words “standard error of X”’ and the letter o, will be used
to denote the expression

0. = VEX — EX)P-

It will be noticed that the standard error of a random variable X may have
its value equal to the standard deviation of some numbers » but that this does
not mean that the two conceptions are identical or even similar. The E(X),
and consequently ¢, , can be calculated only when the probability law of X is
known, and are constant for the population from which samples are drawn.
On the other hand, S can be calculated for any sample of the population and
changes in value from one sample of u’s to another.
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Before proceeding to the third conception, that of an estimate of the standard
error, which is occasionally confused with the standard deviation or the standard
error, the unbiased estimate of a parameter must be defined [3].

Consider a set of n random variables X;, Xz, ---, X,. These may be, for
example, the volumes of timber to be observed on n strips that are going to be
selected from some area by one random method or another. Denote by 6 a
parameter involved in the probability law of the X’s. For example, § may be
the total volume of timber in the area.

Let F be any function of the X’s.

DEriNiTION 3: If it happens that the mathematical expectation of F is
identically equal to 6, then it will be said that F is an unbiased estimate of 6.

Usually there will be an infinity of unbiased estimates of a parameter 6.
They may be classified by the nature of the function F. Thus linear estimates
may be considered such that

F=N+X1X1+"' +kan

in which the N’s stand for some fixed numbers. ‘

DEeriniTION 4: It will be said that a linear unbiased estimate of @ is the best
linear unbiased estimate (B. L. U. E.) if its standard error is smaller than or,
at most, equal to that of any other linear unbiased estimate.

It happens frequently that, while it is possible to determine the best linear
unbiased estimate F of a parameter, it is not possible to calculate the value of
its standard error, ¢r. For this purpose it would be necessary to know the
whole population sampled. In such cases an unbiased estimate of the square,
o¥, is calculated. An unbiased estimate of the square of the standard error
of F will be denoted by u3. This is the third of the conceptions mentioned
above.

The reason for the extensive use of the linear unbiased estimates and of their
standard errors considered as measures of accuracy is the so-called Theorem of
Liapounoff. Its content can roughly be explained as follows: If the variables
X:, X,, ---, X, are independent and the number n not too small, then the
probability that F — @ will exceed a fixed multiple of o, is approximately equal
to the probability as determined by the normal law. The above conclusion
remains true whatever the probability distribution of the X’s that is likely to
be met in practice and also in certain cases where the X’s are mutually dependent,
for example, when they are determined by sampling a finite population without
replacement [4].

The above conclusions do not apply to estimates that are biased in the sense
of the above definition. . Also the standard error of such an estimate would not
be a satisfactory measure of its accuracy.

3. Description of data. Complete inventory data from the Blacks Mountain
Experimental Forest, located in the Lassen National Forest, provide suitable
material for testing the applicability of sampling theory to timber cruising.
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The timber is a virgin, all-aged stand, classed as pure pine type, with more
than 90 per cent of the volume in ponderosa pine and Jeffrey pine. Most of
the volume is in over-mature trees, i.e., trees over 300 years in age. The stand
is considered to be fairly representative of the medium and the poor site qualities
of the northeastern California plateau.

With the exception of a few localities, all of the area was mapped as of uniform
timber type according to the standards commonly used. Being fairly uniform
also with respect to site quality, it may therefore be considered as a single
stratum. Variability of stand volume from place to place within a stratum may
be generally expected to be less, on the average than variability between places in
different strata. Likewise, within a stratum, variability within compact sub-
divisions may be expected to be less than average variability within the whole.
Heterogeneity can therefore be controlled somewhat by subdividing the stratum
into blocks and treating each block as a separate population.

More frequently than not, in practice, volume estimates are needed both for
the total timbered area and for separate working units or compartments within
the area. In general, working unit boundaries are defined by roads, ridge tops,
drainage channels, and regular land subdivision lines. These working units
can be taken conveniently as blocks, or if large enough, may be subdivided into
two or more blocks. Such is the basis used for subdividing the area in the
present study.

The complete inventory data for these blocks are given in Table I. All the
strips are 23 chains in width and extend in an east-west direction. The length,
X, is given in 10-chain units, and the volume, Y, is given in units of 1,000 feet
board measure.

4. Method of estimation based on correlation between volume and strip
length. The usual practice in sampling timber stand volume is to take measure-
ments on plots or strips that are either regularly spaced or selected at random
from all possible plots or strips within blocks. Oftener than not blocks are
irregular in shape, and the number’ of plots along lines or the lengths of strips
will vary. This variation introduces the matter of proper ‘“weighting” in calcu-
lating sample statistics. Such is the case in 15 of the 20 Blacks Mountain blocks.
* If we let Y, represent the volume on the ¢th strip of length X, with length
expressed say in 10-chain units, and assume that the entire block contains a
population of N strips, then the average volume to the unit of strip is 8 "=
N N

> Y/ 2 Xi. Itisobvious that, if Y X;is known, and this is assumed to be
[ % fm=]
true, the problem of estimating 3 is equivalent with that of estimating the total
volume. The usual procedure of estimating is this: _

Out of the N strips within the block a sample of = is taken, giving n pairs of
numbers selected out of the X’s and Y’s. Let us denote them by

T1,Y1;%2,Y%2;5°° ;%0 Yn.
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The ratio b = 2 y; / > x;, is then considered an estimate of 8, so that the

=1 / =1 .
.estimate of the total volume in the block is b ) X .

=1
Our purpose now will be to study the above estimate b from the point of view
of unbiasedness. In this paper it is assumed that the sampling of strips is
purely random. To find out whether b is- an unbiased estimate or not, its
expectation must be calculated. This will be done in two steps. To begin
with assume that the values 2,2, , - - - , x, are chosen in one way or another and
fixed. The value of b will then depend on the 3’s only. It is possible that to a
given value of z, say z; , there will correspond just one value of y; in the block,
but generally there will be several strips of the same length 2, with varying
volumes of timber. The selection of any strip of this group to be included in
the sample will keep the denominator of b constant, but will cause some variation
in the numerator. The expectation of b caleulated under the assumption that

the 2’s are fixed is
(1) E(b|x17127"',xn)=ZlE(yilxi) lei)

in which E(y; | z;) denotes the expectation of y; calculated under the assump-
tion that z; has a fixed value. Obviously E(y; | z:;) will be what is called the
regression function of y on z, or of volume on the length of strip.

It is safe to say that the graph of E(y|z) would almost always be rather
irregular. On the other hand, it is known that the substitution of smooth curves
representing the regressions for the true irregular polygons frequently gives
results that are surprisingly accurate. Therefore it would not be unreasonable
to use the assumption that E(y | ) can be represented by a polynomial of some
moderate degree,

E(y|x) = Ao + Az + As® + -+ 4+ 42"

Substitution of this expression in (1) gives

n n
2. @ PIE

E(b|x1,$2,"<‘,xn)=n—Ao—-i-Al-{-Azfjl +....|..A8":1

n

;xz‘ in in

i=1 i=1

But this is the conditional expectation of b, calculated under the assumption of
fixed z’s, is only an intermediate stage in the calculations. We need an absolute
expectation, calculated under the assumption that the z’s are selected at random.

This gives

> o > o
(@) E(b)=AoE< n—)+A1+A2E R PR ] =

n
2 T PIE2 P2
1=1 1=1

1=l
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TABLE I (Conlinued)
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VOLUME IN TIMBER STANDS
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The value of 8 has the form of (2), except that instead of E(Zx7/Zx;) it contains
ZX7/ZX;:. Since in general the former does not necessarily equal the latter,
for the unbiasedness of b it is necessary and sufficient that 4y = Ay = .-+ =
A, = 0. This condition implies that the regression line of y on x is a straight
line and passes through the origin of coordinates,

@) E(y|z) = Aw.

Whether (3) is satisfied is a question of fact and can be authoritatively an-
swered only by direct studies of regressions on some extensive inventory data.
t may be noted also that in order to presume that (3) is usually satisfied, it
should be established for a large number of areas. On the contrary, if a study
of only a few areas shows that (3) is not true, then it would not be wise to take
it for granted when attempting to make a sampling inventory of an un-
familiar area.

To investigate this point, linear regression equations of volume on the length
of strip were calculated for 15 blocks of the Blacks Mountain Experimental
Forest and it was found that the constant terms were both positive and negative
with their absolute values varying from 12 to 677. The conclusion drawn is
that the usual estimate b of the average volume per unit of strip is likely to be
biased and that there is justification in looking for an alternative method leading
to unbiased estimates.

6. Best linear unbiased estimate of volume, based on the linear regression of
volume on length of strip. In this section will be suggested a method of es-
timating the total volume, say 6, of a timber stand, which could be considered
as an improvement on the one considered above. The new method consists of
using a linear unbiased estimate of §. In order to deduce the form of this
estimate, certain assumptions have to be taken for granted concerning the
timber stands to be sampled, and if it happens that these assumptions are
unsatisfied in a particular case, the new estimate will not necessarily possess the
desired property of unbiasedness.

In deducing .the estimate F' it will be assumed that the timber stand to be
sampled satisfies the following conditions: (1) That the regression of timber
volume on length of strip, X, be (approximately) linear and (2) that the vari-
ability of the Y’s for a fixed X is precisely known. It will not be assumed,
however, that the linear regression line passes through the origin of coordinates,
and this will allow F to be unbiased in such cases, as exhibited above, where b is
biased. Following the Markoff method [5], [3] it can easily be shown that there
is an infinity of linear estimates of  which are unbiased under condition (1).
It follows that a choice can be made among them so as to diminish the standard
error. This, however, is possible only when something is known about the
variability of the Y’s when the value of X is fixed. For the present we shall
assume condition (2) concerning this particular point, but in practice this will
generally be quite impossible. This point will be considered further in Section 6.
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Consider then a sure or non-random variable’ X able to assume the particular
values X;, Xs, .-+, X,. Assume that there is a finite population =; of N;
numbers i1, %, *+* , Uiy, corresponding to each value X;, ¢ = 1,2, -+, s.
Assume that the mean u;. of the population =; is a linear function of X, i.e.,
for any ¢,

Ui, = A +BX,',

with some unknown values of 4 and B.

Assume that out of each population ; there is selected without replacement
a random sample of n; individuals, with 0 < n; < N;, and denote by %4,
Yiz, - , Yin; the values of the u’s to be drawn.

If the regression of the amount of timber on the length of the strip is linear,
then the problem of estimating the total stand is equivalent to that of estimating

8

0= N4 +BX) =AY N, + B N:X;.

i=1 =1 =1

Since the length of the strip, X, could be measured from any arbitrarily chosen

origin, no generality will be lost by assuming . N;X; = 0, so that § =

=1
A Y N;= AN (say). Weighting the y;;equally for each fixed 7 the B. L. U. E.

=1

of § may be denoted by

(4) F = El ni)\iyg. ’

in which y;. =.Zy;;/n; . Here the N’s must satisfy the conditions of unbiased-
ness,

(5) E(F) = o,

and of optimum,

(6) o> = minimum.

It may easily be shown that condition (5) will be fulfilled by (4) if the A\,/’s are
so selected that

(7) Z NN = N; Z mhX; = 0.
1=l

=1

3 This is an English translation from an excellent French term ‘‘nombre certain’’ and
“fonction certaine’’ to denote a non-random number and non-random function, invented

by Fréchet.
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Condition (6) may now be considered. From the general formula for the
variance of a linear function of several random variables and the fact that Yij
is independent of y;; ,

Up = Z {n.)\ S + nz(nt - 1))\ E[(ytk - U;. )(Jd - U )]}

i=1

8 2
(8) =2 [n;k%S? - N.S_‘ (niA} — n,-)\f)]

t=1

= Sl m 2 3 A ),

in which S? stands for the (S.D. )2 of the population =;, i.e.,
i = N, 2 (un - U;.)
s i=1

In addition to satisfying equations (7), the \’s must be selected so as to mini-
mize (8).
Using the method of Lagrange, we find

9) A = :4752 (e + BX)),

for the case where 0 < n; < N;and 4; # 0. If n; = N;, then A; = 0 and
a + BX; = 0.

Assume first that all n; < N;,72 =1,2,---,s. Then a and 3 are obtained
from equations (7) after substituting in them (9), namely

aZw; +BZw,X.=N

10
( ) aZw.X,+ﬁZWzX3=O,

where, for simplicity

n (N: — Dn; ;
11 g = — = .t . =W
an BT W s A"

If w; is considered as the weight of the observations at X = X, it will be con-
venient to introduce a weighted mean and weighted S.D. of X’s as follows:

Zw,X sz'X?
et _

9

5 = =1 . 2 _ i= _2
12) T 7 S W7 T
With this notation equations (10) can be rewritten and easily give
Ni
B = - —_»§2 )
(13)
_ N(S: + 2%

= - ~.

ws:
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Substituting these values into (4), simple transformations give
(14) F = N(g — b,
in which § = Z wyy;./W, and b, represents the unbiased estimate of B and is

given by
bo = [(1L/W) 2 wiX:ys. — #5)/8:.
The next step is to calculate o . Substituting (9) in (8) and using (11) and
(12) gives
o = W(a + 82)" + WE'S..
Using (13) gives finally
N2 1-:2
(15) o= (1 + §:>'
If X is the length of a given strip in any chosen units and X the average of
such X’s for a given block, then (14) and (15) may be written
F = Nlj + (X — 2)]
(16) N? (X - 2?
4=+ E52]

Similarly for the case where one of the n,’s equals N, , for example, n; = Ny,
we find -

(17) F = N[y.. + (X — Xy)),
in which

> wilXi — X0) (¥ — )

b= =t
g wi(X: — X1)?

Also
(18) 4= NE-X)

Zz w(X; — X)°
It should be emphasized that X, in the above formulae does not necessarily
represent the smallest of the X’s but the one of them for which n; = N;.

The case where two or more of the n/’s are respectively equal to the corre-
sponding N’s need not be considered in detail. Together with the assumption
of a strict linearity of regression such an assumption, for example, that n;, = N, ,
and n, = N, would lead to the conclusion that the regression of volume on the
length of strip is accurately known and that the estimation of 6 could be made
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without error. Owing to the fact that the hypothesis about the linearity of
regression is, at best, only approximately correct, the errors of estimation will
always be present and it is imperative either to arrange the sampling so as to
have at most one of the n;’s equal to the corresponding N;, or to base the
statistical treatment of the sample on a theory different from the one con-
sidered here.

6. Additional hypotheses concerning S;. The formulae (16) with the w,’s
determined by (11) are impossible to apply in practice because we do not know
the values of the 87. The best we can do is to make plausible guesses as to
what may be the values of the S?. These guesses are bound to be at most
approximately correct and therefore the estimates of # that one can apply in
practice will be only “approximately best.” It is easy to see, however, that we
may keep them unbiased.

Suppose that we denote by r3 the presumed value of S7. Substituting this
value in place of S? in (8) we should repeat all the calculations, leading us to
such \; that will assure the unbiasedness of , say

F‘, = Z ni)\zyi.,
1=1

and also a minimum value of, say
2 nt(N - nt) 2
Z.:; TN

The values of the A} will be obtained from the same formulae as those of A,
except that instead of S? they will depend on 7}. Consequently F, will have
the same form as F,
(19) F, = N[’ + bo(X — 2)],
with the difference that #, #/, S;, and b will now have to be calculated with
different weights, say

(N l)n.. %
(N e } V= :givi.

If the form of the unbiased estimate F, is as that of F, the square of its standard
error o. is more complicated. In order to calculate it we have to go back to (8)
and substitute into it the new values of \: obtained from the guessed weights ¢. ,

) N; —

A = m(ﬂ + B'X)),
with
N ,
o = om (8. + )
(20) v
P AV
|? Vs
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we have

2 ni(N [ Bt ) /2

= L s
(21) ,
= gl vipile’ + B'X5),

where p; = Si/ri. It will now be helpful to introduce notation for another
kind of weighted mean and weighted (S.D.) of the X’s, with weights equal to
vip; . So let us write

Z U:Ps E vip‘X

(22) & 8= S — 2"
Z Vipi

Z Vi pi

Expanding (21) and using (20), we have

N ? E Vi pi . =2 Q2
T I( 2 /I) z Sz
) Ol € {[1 T ] T 5 }

Formula (23) refers to the case where the X’s are measured from their popula-
tion, mean, X. In order to reduce it to the case where the X’s are given in
their original values we have to substitute (' — X) for # and ("' — X) for .
Thus

2 ' X "
(24) 0': = N__Z_v_‘.f.t{[l + @ - X))@ — f}")]z + & — X)z S }.

|4 S’ S? g2
Applying a similar procedure to the case where n, = N; = 1, but n; < N;
forz =23, .. ,s, we easily find

l_ _ i v:(Xs = X)) (% — 91
(25) Fa = Nl—y1 - (Xl - X) =2

Py ’

E vt(X - }&1)2

=
and

< 2
2 _ . . g vtpi(Xi Xl)
(26) o, =N(X,—-X)

[Z vi(X: — Xl)z] '

=2

This formula will help us to test the appropriateness of guesses about the
values of S7. It will be noticed that the X’s contain S2 or r? in the same powers
in the numerator and in the denominator. It follows that all we need to guess
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is a system of numbers proportional to S} and not the S} themselves. Our
problem will be to test a few such guesses on the data of the Blacks Mountain
Experimental Forest and see which of them gives generally a smaller value of ¢} .

Table II gives values of the S, calculated for 15 blocks, together with the
corresponding X;. In a few cases N; = 1 and consequently S; = 0. These
cases are not included in the table. Using the values of S} from Table IT and
assuming systems of the n.’s, the values of o7 were calculated for these blocks.
These would be the true (S.E.)* of the best linear estimates of the total timber
volume in each block, but it would never be possible to calculate them from
sample data.

The o’s were calculated using the following guesses concerning the S7:
(1) That they do not depend on X;, (2) that they are proportional to X,
and (3) that they are proportional to v/X;. The ratios o%/s; for all blocks
taken together were found to be .770 for guess (1), .769 for guess (2), and .777
for guess (3). It is seen that, on the average, the guess that the S? are propor-
tional to X; gives the smallest average value of o; . It is interesting, however,
to note that the differences between the three guesses are, for all practical
purposes, negligible.

Ratios like o3/, are sometimes described as the “amount of information’ in
F, as compared- with that in the best linear unbiased estimate F. This ex-
pression was introduced by R. A. Fisher. In certain cases it has the following
property which justifies the term used: Let n be the size of the sample which
serves for calculating F,, then, if it were possible to calculate the best linear
unbiased estimate F, the same accuracy of estimation would be obtained by
using a smaller sample size nos/o. . In the case considered in the present paper
the above circumstance does not occur. Still, the ratio ¢%/05 seems to be con-
venient to describe the situation.

7. Another scheme for estimating 6. It will be noticed that the ignorance
of what are the S? is not the only circumstance which makes it difficult to apply
the above formulae. There is also another one connected with the values of N;.
We have N; = 1 in several blocks and for several different strip lengths. Trne
this might have been avoided by defining block boundaries in such a way that
N; > 2, but it was considered best to conform strictly to the practical situation
where the N/s may be smaller. In such cases we may include in our sample
all the strips of a given length, say X;. If we apply to such samples the above
formulae, deduced under the explicit assumption that the regression of ¥ on X
is strictly linear, we shall force the fitted regression line through the point
(X1, Y1.). As the assumption of strict linearity is obviously not exact and the
exhaustion of strips of length X is possible only when there are very few such
strips, the whole procedure may lead to serious inaccuracies in the final estimate.
One safeguard against this is never to exhaust strips of any given length when
dealing with formulae deduced from finite populations.

The fact that the true regression point (X1, Y;.) does not actually lie on a
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straight line makes it uncertain whether taking into account the finiteness of
populations of strips of the same length is beneficial to the accuracy of the
finite estimate. In the preceding sections we worked on the assumption that
there is but a finite number of strips of the same length and on an inaccurate
assumption that the regression is strictly linear. In the present section the first
assumption will be dropped, having in mind that the effect of the inaccuracy of
the second assumption may thereby be reduced.

The assumption that each of the N; is infinite will be made only in deducing
the \; and will be reflected in weights. Formula (11) will now reduce to w; =
n;/S%. If we assume further that S} = X7/k, where v and k are some con-
stants, then

kn,
w; = Xw W= Zwt—kZXw
and the final estimate is
(27) F = N[j + b(X — 2)].
The square of the standard error of F has again the same form as in (16),
(X -2’
(28) or = W[l o |

the only differences being in W, #,and S2. Ify = 0, so that the S? are assumed
to be constant, then

Wi = kng ; ’W=k2n,~,

and all the symbols %, 3, and S; assume their customary meaning of ordinary
means and of ordinary (S.D.)’.

It would be easy to deduce explicit formulae for y = 1/2, etec., but they are
not elegant and, if the necessity arises, the calculations could be carried through
by starting with @; = 1/X}. The omission of k& does not influence the form of F.

The question whether the combination of one true hypothesis about the N;
being finite, with another incorrect one that the regression is strictly linear, is
better than that of two incorrect hypotheses, will be studied by means of a
sampling experiment in Section 9.

8. Unbiased estimates of ¢ . While it may not be unreasonable to hope
that a guess of a system of numbers proportional to the S? may be successful,
it is entirely hopeless to try to guess the actual values of the S¥. It follows
that, if it is desired to obtain from the sample some sort of measure of the
accuracy of F, we have to calculate an estimate of o .

We shall treat the problem by assuming that the regression of ¥ on X is
strictly linear and that the S? are proportional to X7 and that the N; are all
finite. It will be noticed that they will enter the formulae by means of the
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ratios (N; — 1)/(N: — n;). If it is desired to obtain formulae referring to the
assumption of infinite N/’s, it will be sufficient to replace these ratios by unity.
Of course, the symbol N will always represent the total number of strips in the
actual block on which it is desired to estimate the volume of timber and will
not be affected by the assumption of the N /s being infinite.

On these assumptions

E(y:;) = A + BX;,
‘712/.'; = E(ys; — A — BXi)z = Sf = kX;',

with some value of vy supposed to be accurately guessed, which however need
not be specified, and with an unknown factor of proportionality, k. The square
of the standard error of y;. is then known to be

2 _ SINi—m _ , XI(N:i— n)
(29) W T Ni— 1 - 1)

The right-hand member of (29) is equal to the reciprocal of what we have
formerly denoted by w; and described as the weight of the observations at
X = X:. We have mentioned above that the formula giving F does not
depend on the values of the w;, but on proportions between the w;. In other
words, if we drop the unknown factor k and denote by w; the ratio

nmN: — 1) _
XI(N; — n)

(30) 0
which involves only known quantities, these new weights will lead to exactly
the same value of F as the original weights. It will now be convenient to alter
the definition of weight and use formula (30). With this new meaning of w;,
(29) could be rewritten oj,. = k/w; .

Let us further use the letter m to denote the number of those X's for which
we have at least one observation. In other words m will be the number of
different lengths of strips in the sample and also the number of different y:.'s
that we are going to calculate from it.

Now let us go back to formula (16) giving the square of the standard error
of F. We notice that, while # and 'S; do not depend on the unknown factor of
proportionality, k, the sum W of the original weights does depend on it and with
our new meaning of w; ,

1
W = % Z ws .«
It follows that ¢> should now be written in the form

2 g =\2
(31) o = zk:N [1 + (—X—S',i)]

wi

T
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and that, in order to estimate o} it is sufficient to get an estimate of k. We
easily get an unbiased estimate of k by merely applying the second part of the
Markoff Theorem [3]. According to it an unbiased estimate of k, based on
m — 2 degrees of freedom is given by the ratio

Sl =7 = bXi = B

62) i=1 m— 2 *

in which %, 7, and by are calculated according to the assumptions made regarding
N;and y. It may be expected, however, that the estimate (32) will not be a
very accurate one because the number of degrees of freedom on which it is based
may be very small.

In an attempt to find a better estimate of & we shall proceed by analogy and
calculate the expectation of a sum similar to the one in the numerator of (32)
but depending explicitly on the particular y;;’s, namely of

m

E Z lyii — 7 — bo(X: — x)lz w‘

tem] ju=l

It will be noticed that if the N; are finite, y. jand y;; are dependent and that the
Theorem of Markoff does not apply to S;. Introduce the notation

Nij = y;,--—A - BX.',

_zﬂu‘—yt_A BX;.

n‘ =1

Easy, but somewhat long calculations show that S5 can be rewritten in the form

i Z w; g (é w.'m.)2 + ;S!: [.2'::1 wi(X; — :i:)n,-.:r

tm=] el n; zm:
Wy

im=]

which is most convenient for calculating the expectation sought. We notice
first that

E(%) = kX7,

E(’?f) = 0':;- = };"-

Further, as y;. and y;. are mutually independent if ¢ > j, the same is true for
n:. and ;. . It follows that ‘

E(y.—.n,u) = 0, 1 7 j.
Consequently

E(i w.-n.-) = E(Z w.m) = Zm:wa(ni.) = kZm;w,-.

i=1 i=1 t=
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Similarly and for the same reason
E [Z wil(X; — E)ni.]* = kS: E w; .
It follows that
n _ | shmV—1) ]
E(Sv) k[g N = 21,

and that the ratio

m ng

. st ; ,Z; lyi — § — bo(X: — x)]’ W
mNe—1 _, mN; — 1) ’
g N; — n; —2 g N; — n; -2

is an unbiased estimate of k. In cases where either all n; = 1 or all N; are
infinite the denominator of (83) reduces to the number of degrees of freedom
in S5, equal to Zn; — 2. In other cases the denominator of (33) is greater
than the number of degrees of freedom. Whether the numerical difference is
large or small depends on the fractions (N; — 1)/(N; — n;). We may expect
that in many practical cases it will be small.

We shall write
S Ew'z(yu-y)’/ztvn
tml M Juml Sl
§ w.-(X.- -— 5)3/.‘. /; w;s
- Sz Sy :
It follows that

8= wSi - Y.
faml
Substituting this formula into (33) and then the result of this substitution in
place of k in (31), we finally get

2 _ a2 81 — ) [ X - f?)’]
@4 b= N =D ) S
= N;—n; -

The case where one of the n; is équal to the corresponding N;, e.g., where
n; = N; = 1 is treated in a similar manner. Using formula (18) and the nota-
tion adopted above, we can write

N(X, - X)? )
f: wi(X; — Xl)2

=2

2
0’p=k
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The unbiased estimate ur of o7 will differ from this expression in that instead
of the unknown factor & it will contain its unbiased estimate. To find this
estimate we proceed exactly as above and calculate the expectation of

m ng

8o =2 2 lyi — w. — bo(X; — X)r ;3:’

i=2 j=1
with

zz wi(X; — Xl)(?/i- - y1°)
by = = .

m

Z wi(Xe - X1)2

1=2

The unbiased estimate of o= is

2 2 T\ 2
35) = (NSO . N X, - X)"
D EEE 13w - X
i=m2 i — n; i=2

The number of degrees of freedom, f, on which u} is based is
f = Z ng — 1.

9. Empirical tests of the preceding theory. Applications of any mathematical
theory involve certain assumptions about the phenomena studied that are not
exactly true. In order to have a reasonable hope that the predictions of the
theory will be comparable to the actual facts, we must perform empirical tests
and see whether such deviations from the assumptions underlying the theory as
are usually met in practice influence materially or not the working of a given
theory. Our object in the present section will be to test whether and to what
extent such deviations influence the applicability of the theory. For that pur-
pose it will be useful to enumerate the more important uses of the theory that
are likely to be made.

The first point refers to the choice of the standard error o of the best linear
estimate F as the measure of accuracy with which F estimates the unknown
volume of timber, 6. If all the assumptions were true, the Theorem of Lia-
pounoff would guarantee that, when the size of the sample, Zn;, is only mod-
erately large, the frequency distribution of the ratio

(36) (F — 6)/or,

would be very approximately normal about zero with unit S.E. If this were
actually true then the value of o, would be a justifiable basis for the choice
between various alternative estimates of 8. However, the discrepancies between
the hypothesis underlying the theory and the actual facts may easily produce a
bias in F, or may deprive or of the above important property.
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Therefore, the first thing that we have to test is whether in such conditions
as are actually met in practice the ratio (36) is in fact distributed in repeated
sampling in a way that is comparable with the normal law. The data of the
100 per cent survey of the Blacks Mountain Experimental Forest will serve us
for the test.

The second important application of the theory is connected with the use
of ur. The purpose of calculating ur is to characterize the accuracy of the value
of F obtained from the sample. The most appropriate way of doing so is to
calculate the confidence interval for §. This has the form [5]

(37) F — tal“' S 0 S F + taﬂr

in which ¢, denotes the “Student’-Fisher ¢ taken in accordance with the number
of degrees of freedom in ur and the chosen value of P. The confidence interval
has the property that, if calculated for a great number of samples, the frequency
with which the true value of 6 will lie between the limits F = f.ur will approach
the value @ = 1 — P defined as the confidence coefficient.

The above statement concerning the confidence coefficient is strictly true if,
apart from the various hypotheses that were enumerated, the distribution of the
y’s is normal. As a result of a theorem by Kozakiewicz [6] the same statement
will be approximately true also for non-normally distributed y:;s, on condition
that the sample sizes are considerable. In the situation Where the above theory
is to be applied all these assumptions are not satisfied. Still the formula for the
confidence interval may well work, but before accepting this we have to have
some experimental evidence. The crucial point that it must cover is whether
the ratio, say

(38) t=(F — 6)/ur,

does or does not follow in repeated sampling a distribution which is sufficiently
close to the theoretical one, known as “Student’s’ distribution. If the empirical
distribution of ¢ does approach ‘‘Student’s” law, then the frequency of correct
statements concerning 6 in the form (37) will be approximately equal to the
chosen «, and conversely.

The nJs for this experiment were fixed according to the systems shown in
Table III, with all X’s having a chance of appearing in the samples, and the
n{s quite closely proportional to the N,’s and approximately 25 per cent of the
latter. Random sampling numbers [7] were used in making the selections of n;
strips out of any group of strips. A total of 150 block samples were drawn,
equally distributed among the 15 blocks.

There are 95 samples for the case where all n; < N;. For these, formula (19)
was used to calculate F and formula (24) for o7 , using the guess that the S?
are constant over all strip lengths. On the hypothesis that the ratio (36) is
normally distributed about zero with unit S.E., we divide the range of variation
of possible values of (36) into 20 intervals such that, if the hypothesis is true,
then the probability of an observed value falling in any particular interval is
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TABLE III
Systems of ni’s for sampling experiment
Block Xs Ng n Block Xi Ng I n Block X; Ns "
1 10 4 1 9 3 2} 1 14 1 1
11 4 1 4 3 2 1l
12 8 2 5 3 1 3 1
5 1
Total 16 4
6 2} .
2 8 2 1 7 2 6 7 2
9 14 3 8 4 1 7 16 4
Total 16 4 Total 16 4 Total 27 7
3 4 8 2 | 12 1 4 1 15 1 1
5 4 1 2 2} o i 2 1
6 4 1 4 4 i 3 1} 2
; 4 1
Total 16 4 5 3} L 6 2
6 2 5
4 3 2 1 |
7| 14 3 | 8 | 1 7| 17 4
— 10 1O 9 3
Total 6 4 | 12 1 i 10 1
14 1 | _
5 5 2} 1 Total 21 7
6 1
7 3 1 9 4 1 18 1 2} 1
9 8 2 15 4 1 2 2
Total 14 4 Total 27 7 b
5 11
6 8 4 1 13 1 2) 6 1} 1
9 12 3 2 1T 1 7 p)
—_— 3 1 8 6 2
Total 16 4 —_—
Total 14 4
8 1 1 4 2} 1 19 2 6 1
2 I 6 2 3 16 4
4 1 5 18 4 _
6 1 Total 2 5
26 6
7 4 1 Total 20 1 16 4
8 5 1 | 2 16 4
Total 13 3 ’ Total 32 8

equal to .05. For 95 samples then, the expected frequency in each interval is
4.75. The observed frequencies are shown in Table IV.
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The agreement between the observed and the hypothetical distribution is
tested by means of the fourth order smooth test for goodness of fit [8]. The test
is designed so as to be particularly sensitive to such deviations from the hypo-
thetical distribution that could be described as “smooth.” It is used here
because it is expected that, if the actual distribution of the ratios considered

TABLE IV
Frequency distributiont of (F — ) /or and (F — 6)/ur calculated under various assumptions
Assumption of finite population of strips Assumption of infinite population of strips
(F —0)/ep (F — 0)/up (F — 0)/up
Allm < N Onens = Ni | Allm <Ni |Onew=Ni || Allm<n; | Oneormore | pop
nE n nk n n e n

5 1 4 9 3 4 7

3 1 5 1 4 2 6

5 2 6 2 7 2 9

8 1 4 0 2 1 3

3 2 4 2 5 4 9

4 2 5 3 4 3 7

8 1 6 2 6 0 6

3 2 4 2 5 4 9

3 2 5 2 8 2 10

7 0 6 1 5 3 8

1 0 3 0 4 0 4

4 1 3 0 4 4 8

6 1 5 2 7 5 12

5 1 6 3 3 7 10

5 1 6 1 7 1 8

2 1 6 3 9 5 14

5 2 8 4 6 1 7

4 6 5 3 4 0 4

10 1 3 2 2 6 8

4 6 1 2 0 1 1

Total 95 44 95 44 95 55 150

VA 1.326 33.812 5.463 13.091 9.055 Il 2.572 8.764

P .85 <.01 .25 .01 .06 .63 .07
P(x? .57 <.01 .63 .09 .18 .12 .21

does differ markedly from the normal or from “Student’s” one, then still the
curve representing this actual distribution would be a “smooth’’ one, presumably
with a single mode, and would cross the hypothetical curves at only a few
points. There is empirical evidence to show [9] that in such cases the smooth
test of fourth order is more powerful than the usual x* test.

4 By 20 intervals of equal probability.
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The criterion used in the smooth test of the fourth order is denoted by ¢ .
If the hypothesis tested is true, then ¥} is distributed, approximately, as x
with 4 degrees of freedom. To calculate ¢ we proceed as follows:

Let z be a random variable and H denote the hypothesis that the distribution
of z is given by a perfectly specified function f(x). The range of variation of z
is divided into 2s = 20 intervals,

("'°°7 a'l)r (al,aﬁ): 0ty (@, +°°)’

so that, if H is true then the probability of x falling within any such interval is
exactly equal to .05. Such a subdivision can frequently be made easily from
appropriate tables for f(xr). We associate with these intervals a variate z whose
value corresponding to the kth interval will be

. =2Ic'—-l__}=2(k-s)—1

* 43 2 4s ’
It will be seen that if we start at the point a, and follow up the intervals to the
right and to the left, then the corresponding values of z will be

1 3 2s — 1
z-—-:’:4—s,:f:4—s, . ,:E—-—‘—~4s .

Consideration of the variable z is then substituted for that of the observed
values ;, 22, - -+ , %, of 2. If any value z, falls in the kth interval ay—, <
zm < ay, then this is interpreted as an observation of x which yielded the
value 2z, . Let n, denote the number of observed z’s which fall in the interval

k=1,2 ¢--,2s.

28
(@z-1, ai) and let the Gaussian symbol [2'] stand for the sum [2] = ) mgzi .
Kol

To apply the fourth order smooth test such sums have to be calculated for
1 =1, 2, 3, 4. Then they are substituted into the equations below, deduced
under the assumption that the number of intervals of subdivision of the range
of z is equal to 2s = 20.

ui = n”'(3.468,440[2])’,

us = n7'(13.500,884(2"] — 1.122,261n)",

u; = n”'(53.857,548[2"] — 8.031,507[z])’,

ui = n“(213.148,007[z‘] — 46.239,587[2°] + 1.139,500n)".

Finally ¢i = ui + u3 + w3 + ui. If the calculated value of y; exceeds the
tabled value of x* with four degrees of freedom, corresponding to the chosen
level of significance, then the hypothesis tested, H, should be rejected.’

I

]

5 The above expressions for the u’s differ a little from those published in the original
paper on the smooth test because in the latter the test.was designed to apply only to un-
grouped observations. The present formulae obtained in the Statistical Laboratory of the
University of California appear in print for the first time. Obviously if the number of
intervals 2s is increased, the formulae for grouped data will approach those for un-
grouped ones.



VOLUME IN TIMBER STANDS 203

The agreement between the observed distribution and the expected distribu-
tion is shown to be excellent in Table IV, the probability of a greater difference
occurring through errors of random sampling alone being .85. The correspond-
ing P for the x° test, where consecutive pairs of intervals are combined to make
10 intervals in all, is .57.

For the case where one n; = N; = 1 there are 44 samples. For these samples
the value of F was calculated from formula (25), and the value of o% from
formula (26), again taking the values of the S as being constant over strip
length within blocks. In this case the deviation from expectation shown in
Table IV is greater than can be attributed to chance alone. These results are
also obtained by the x” test, which gives x° = 25.091 and P < .01 on 9 degrees
of freedom.

The conclusions we draw from these results where one of the assumptions
made is that the population of strips is finite, are that the block boundaries
should be so defined that all N; > 1, or if this is not done, that the systems of
n's be such that no sampling is done from strips where N; = 1. The fact that
some n; = 0 when the corresponding N; > 1 has no appreciable effect on the
working of the theory. In the previously described test for samples in which
n; < N;the N used in formulae (19) and (24) always referred to all strips in the
block, regardless of the fact that strips of some specified lengths X; did not
appear in particular samples.

Using the same samples, the distribution of (F — 6)/ur is compared in a
manner parallel to that described above, to the distribution of the ‘“Student’-
Fisher ¢, taking into account the number of degrees of freedom.

The formulae used for estimating o> , namely for calculating u} , are (34)
where all n; < N;, and (35) where one n; = N;. The estimates of §, namely F,
remain unchanged from those previously calculated.

The results from this second application of the theory as judged by the smooth
test in Table IV lead to the same conclusions as were made from the first applica-
tion of the theory, namely, that under the assumption that the population of
strips is finite no N; should be exhausted in the sampling.

It is interesting to note that the application of the x* test to the observed
distribution of (F — 6)/ur corresponding to samples with one n; = N; = 1,
did not reject the hypothesis that it follows ‘‘Student’s” law. In this case the
range of ¢ was divided into 10 intervals of equal probability and the value of X
obtained was 15.091. With 9 degrees of freedom this gives P of the order of .09.

The ratio (36) cannot be determined under the assumption that the population
of strips is infinite where one n; = N; because the values of S3/r; cannot be
obtained for such strips. Under this assumption it is impossible to calculate
or by the formulae deduced in the present study and the first use of the theory
must be omitted. However, the estimate of ¢% from samples can be calculated
and the ratio (38) determined.

The estimates F were calculated using formula (27), taking n; = w;. This
same formula applies whether or not one or more of the N; are exhausted. Each
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sample from Block 15 and one sample from Block 12 exhausted two or more
strip lengths and their estimates could not be calculated under the assumptions
made heretofore, but these can now be obtained under the present assumptions.
The estimates up were obtained from (34) for all samples, taking the S? as
constant over all strip lengths and n; = w;. The fact that one or more N;
are exhausted does not change the procedure for such samples in any way.

For the case where all #; < N, in Table IV, the value of P = .06 obtained by
the ¢ test indicates that the agreement of the observed distribution with
expectation, although not close, is acceptable. When the data are regrouped
into 10 classes and the x* test is applied, we get P = .18 on 9 degrees of freedom.

The ¢} test applied to the distribution of (F — 6)/ur for samples where one
or more n; = N; indicates that the correspondence with expectation is good.
This result is in marked contrast to the corresponding results in previous tables
and bears out the belief previously expressed in Section 7, based on intuitive
considerations, that by dropping the assumption of finiteness of number of
strips of a given length, the error of the assumption of strict linearity of regression
would be compensated for to some extent. On the basis of these findings we
can add the conclusion that if, in éampling, the number of strips of a given
length are exhausted, the assumption of finiteness should be dropped and the
sample estimates calculated from formulae deduced under the assumption that
all N; are infinite.

There remains some question as to statistical treatment of samples in which
alln; < N, , that is, whether to use formulae deduced for finite or infinite popula-
tions. The final choice can best be based on the relative size of the confidence
interval (37). Where all n; = 1 the estimates are the same under both as-
sumptions. For estimates of all blocks taken together the finite population
estimates tended to be within 5.5 percent of 4 in 95 out of 100 trials, while the
corresponding percentage for infinite population estimates was 6.0. We there-
fore conclude that it is better to use the assumption of finiteness of N; where all
n; < N i

The method of sampling considered here is what could be called restricted
random. The restriction consists in that we group together the sampling
units of the same size, select nonrandomly several such groups, and only then
proceed to draw at random 7; units of a group of N;. Frequently the strips
of the same size will be situated within the block close to one another. In those
cases the restricted sampling considered will assure that the sample will contain
elements more or less uniformly distributed over the area of the block.

10. Summary. Several methods of sampling timber stands and statistical
treatment of the samples were considered. Data from a complete inventory of
the Blacks Mountain Experimental Forest served for testing the methods in
practice.

It was found that the usual method of estimating from strip samples taken
within nonrectangular blocks of timber gave biased estimates, unless the linear
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regression of volume on strip length passed through the origin of coordinates.
It was shown that this condition was not a safe one to assume. Consequently
methods of estimation were sought which were freed from this restriction.

The appropriate formulae for the best linear unbiased estimates were deduced
under various combinations of the following assumptions:

(1) That the regression of timber volume on strip length is strictly linear, but

may or may not pass through the origin of coordinates.

(2) That the values of the (S.D.)? of timber volumes on strips of equal lengths
are (a) constant for different strip lengths, (b) proportional to strip
length, and (c) proportional to the square root of strip length.

(3) That the number of strips of a given length in each block is (a) finite,
and (b) infinite. Assumption (b) was based on intuitive considerations
which indicated that this assumption, though known to be false, might
compensate for another false assumption, namely, that of strict linearity
of regression.

It was empirically found that assumption (b) of (2) gave better results than
either (a) or (¢). However, the advantage was small and, in the author’s
opinion, did not justify the extra labor in calculations which are simpler when
assumption (a) is made. Therefore all other calculations were made on that
assumption.

An extensive sampling experiment was made to test whether the smallness
of the samples combined with the conflicts between assumptions of the theory
and the actual facts, influenced the validity of the normal theory.

Whenever the sample did not exhaust strips of a given length, it was found
that the formulae based on the assumptions that the populations of such strips
are finite and that they are infinite both work satisfactorily, generating distribu-
tions similar to those determined by the normal theory. However, the confidence
intervals based on the true assumption that the populations of strips of equal
length are finite, proved to be narrower. Consequently, whenever the sample
does not exhaust all strips of any given length in the block, the true hypothesis
concerning the number of such strips should be used. Formulae (19) and (34)
are therefore the appropriate ones, using weights based on finite populations.

In cases where the sample did exhaust the strips of a given length, the treat-
ment of the number of such strips as finite, combined with the inaccuracy of the
assumption that the regression of timber volume on length of strip is linear,
resulted in marked disagreement between the actual distributions of statistics
and those based on normal theory. This disagreement was not found to exist’
in statistics calculated with formulae (27) and (34) used on the assumption
of an infinity of strips of a given length. This suggests the conclusion that the
exhaustion of strips of a given length by the sample should be avoided and,
when this is impossible, then the formulae based on the assumption of an infinity
of strips of a given length should be used.

The formulae deduced can be applied equally well to line plots as to strips.
With the formulae deduced the most efficient sampling will be obtained when
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the average sample strip length is close to the average for the population, but
where the variation among sample strip lengths is the maximum.

The author is deeply indebted to Prof. J. Neyman for guidance and advice,
and to Miss Evelyn Fix and Miss Phyllis Burleson for help in computa-

tions.
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