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1. Introduction. When an investigator is interested in all of the latent roots
of the characteristic equation of a matrix and not in its latent vectors, it is
sometimes desirable to expand out the determinental equation in order to de-
termine explicitly the polynomial coefficients (pi, pz, - -+, P.) in the expression

@) D) =N —a|=\"4+pA" + -+ paoih + Pa .

This can be done in a variety of ways, all of which are necessarily somewhat
tedious for high order matrices. Except for sign the coefficients are respectively
the sum of a’s principal minors of a given order. These can be computed
efficiently by ‘“pivotal” methods [1]. Alternatively through the utilization of
the Cayley-Hamilton theorem, whereby a matrix satisfies its own characteristic
equation, the p’s appear as the solution of # linear equations [2, 3]. In a third
method Horst has employed Newton’s formula concerning the powers of roots
to derive the p’s as the solution of a triangular set of equations, the coefficients
of the latter only being attained after considerable matrix multiplication [4].
A fourth method suggested to me by Professor E. Bright Wilson, Jr. of Harvard
University, consists of evaluating D(\) for n values of A, presumably by efficient
“Doolittle” methods; to these n points, Lagrange’s interpolation formula is
applied to determine the n coefficients explicitly.

2. The New Method. The present paper describes a new computational
method based upon well-known dynamical considerations. A single nth order
differential equation can be converted into ‘“‘normal’’ form, involving = first order
differential equations. This is easily done by defining appropriate new variables.
If the original nth order differential equation is written as

@) X0+ X0 + - 4 paaX'(©) +pa =0,
then the new normal system can be written as
3) X)) = 20 Xi(), G=1,-n
where
0 1 0 0
0 0 1 0
B =] oo
@) 0o 0 0 - 1
—Dn —Pn— — Pn-2 et —D1
is the so-called companion matrix to the polynomial in question.
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The reverse process of going from a normal system in many variables to a
single high order equation is not so simple. Yet it can be done, and in so doing
we attain the required polynomial coefficients [5]. If

) z'() = ax(t)
represents the normal system in matrix form, then symbolically
(6) D(dit) X0 = X170 + p X0 4 - A paa Xi(0) + pa.

Because we wish to find out the expanded form of D()), this relationship is of
no use to us. Since similar matrices have the same characteristic equation,
ours is the problem of finding a non-singular matrix C, such that

@) C'aC = b,

where b is of the form given in equation (4).

This problem can be approached from an elementary algebraic viewpoint.
The relationships in (5) represent n linear equations between 2n variables,
[X1(t), Xa(), -« -, Xalt), X1(2), Xa(t), -+, Xu(®)]. These are not sufficient to
eliminate the 2(n — 1) variables not involving the subscript 1. However, inas-
much as (5) holds for all values of ¢ we may differentiate it repeatedly until we
finally have the system of equations

.__X(n) 4+ - + anX(n—l) + e+ al,.XE,"“) —0
_Xs.ﬂ) + a”le(n—l) + . + a'me‘n—l) ~0
Xt 4 4 oan XM 4 g XD 0

(8) e T

_X{n + aanI + -+ anan =

These are n’ linear equations in n* 4 n variables. We wish to eliminate all
variables which have a subscript other than one; namely, (X,,---,X,,
Xo, o, Xn, oo, X8, oo X™). Theseare m + 1)(n — 1) = n* — 1in
number. We may utilize all but one of the n* equations to perform this elimina-
tion. The remaining equation after substitution will be the desired high order
equation, and its coefficients are the polynomial coefficients.

Ordinarily one would solve all but one of the equations for the values of the
variables to be eliminated. These would then be substituted into the remaining
equation. Actually from the computational standpoint it is unnecessary to
solve completely for any unknowns. The so-called “forward’’ solution of the
usual Gauss-Doolittle technique automatically performs the elimination or
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substitution, without necessary recourse to a ‘“back’’ solution for the values of
the eliminated variables. These values are in any case of no interest.

There is no unique order in which the equations must be reduced. Indeed,
when one order fails because a leading principal minor vanishes, we may switch
to another. A suggested convenient order is given below. Let

[all ,) (50} Q1n
Do |
Qo1 | Qoo *** Q2p an R ..
: = [__—I___:,; I = (61'1'): (l’] =1--,n— 1)
|

sl : S\ M
An1 : QAn2 * *° Qpn
Then, consider the partitioned matrix
-7 M 0 --- 0 0|0 -8 O -~ 0 7]
0O -I M --- 0 0|0 O -S .- 0
0 0 0 --- —I Mo 0 0 Sy
9 W= o o 0 --- O R|O O 0 cee —ap
o o0 0 --- R 0|0 O 0 0
0 R 0 010 1 —an 0
B R 0 --- 0 0|1 —au O 0 |

It is simply the matrix of the equations in (8) with the variables
(X1, X1, -+, X{™) shifted over to the right-hand side, and with the equations
in which the variable one leads off being placed at the bottom.

If the usual “forward’’ Doolittle technique is followed, then the final elements
computed, corresponding to the elements in the lower right-hand box, are the
coefficients (1, p1, P2, ***, P»). It is the present writer’s experience that the
Crout form [6], like Dwyer’s {7] the last word in Doolittle abbreviation, is to be
recommended, particularly since we are dealing with an asymmetrical matrix.
A clerk masters its ritual in a few minutes, and the speeds achieved once the
operations become mechanical are impressive.

For the trivial case of determining the coefficients corresponding to a two by
two matrix the W matrix is of the form

—1 Qg2 010 — Qa1 0
0 -1 (127] 0 0 — Qa2
(10) ,' 0 0 a0 1 —an

0 Q12 01 —an 0

The Auxiliary Crout matrix becomes

—1 [127) 010 — Qa9 0
0 —1 ax»|0 0 —an
(11) 0 0 an|0 1 —an

0 —ap azzl 1 (—an — an) (—a1pen + anax)
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The answer in the lower right-hand box will immediately be recognized as the
correct one. I have found it convenient to vary the precise Crout routine by
dividing vertical columns by the ‘leading” diagonal element, rather than
horizontal columns. This is a matter of indifference and saves some computa-
tions. As in the higher order cases, the presence of the identity matrix along
the diagonal reduces most of the computations to mere copying. Actually the
intelligent computer will soon notice that most of the copying may be eliminated
since the numbers in question are to be added in later in other sums of products.
After eliminating unknowns corresponding to the equations above the line on
which (9) is written, there results the system

R 0O 0 0 0 -« 0 0 1 —an
RM 0 0 0 0 [ 0 1 —an —RS
RM2 0 0 0 0 coe 1 —dan —RS _RMS
a2) | -
| RM"*|1 —ay —RS —RMS --- e eee —RMMTS

Thus, it would be simpler to start from this stage, avoiding unnecessary copying.
This remark shows that the present method is related to the Cayley-Hamilton
methods described in [2] and [3], since the above set is derivable from the set

(e1 A°|1 0 O 0
e A'10 1 0 0
a A0 0 1 0

(13)

es. A0 0 0 --- 1

The last named set appears in the Cayley-Hamilton method when the first row
of the powers of the original matrix are used in setting up n equations to deter-
mine our » unknowns. Although related, the two methods are distinct since
in the Cayley-Hamilton method one would arrive at a different set of equations
after straightforward elimination of one variable, and since it would be shorter
to dispense with the identity matrix used in the Aitken method in favor of the
solution of a single set of equations by the usual Doolittle ‘‘back-solution.”

The reader will easily see how the method may be modified to handle the more
general case of determining the coefficients of

(14) D) = |ex + a| =0,

where ¢ and @ are any matrices. The method also can be used to reduce a
polynomial equation involving a determinant of the nth order, each of whose
coefficients are of a given degree in A, to a lower order determinant whose coef-
ficients are of higher degree in A.
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The present method derives the p’s as the algebraic solution of high order
linear equations. It would therefore seem inferior to those methods which need
only solve a system of n equations. However, two remarks are in order. The
matrix of the high order system can be written down immediately without
computation. Furthermore, most of the elements in the matrix are zeros, so
that a mere counting of the equations is not a true indication of the labor in-
volved. '

3. Some comparsions between present method and other methods. Within
the brief compass of the present work it is not possible to give an exhaustive
appraisal of the comparative computational efficiencies of the methods men-
tioned. In general, a computing method is to be judged in terms of the number
of multiplications that it involves, although other considerations such as the
number of additions, the magnitude and sign of the numbers handled, the
repetitiveness of the operations involved, the adaptability to punch card ma-
chinery, etc. are modifying factors. In this discussion the power of a method
will be taken to be an inverse function of the number of multiplications that it
involves.

It may be said first of all that inasmuch as the minimum number of multi-
plications involved in computing an nth order determinant is of the order of
n°, even with the most efficient “pivotal’”” methods, direct computation of the
coefficients by principal minors involves, for sufficiently large n, computation
of the order of n*. The same is true of the Wilson method described above.
The Horst method, and any other that requires the explicit » powers of an nth
order matrix, also asymptotically requires multiplications of the order of n',
This does not mean that the above three methods are equally powerful for small
n, nor even asymptotically, since the coefficients of the n* term in the formula
for the requisite number of multiplications may not be equal. In fact, Riersol
[1] has shown that his method is better than Horst’s for small n, but asympto-
tically less powerful.

It can also be shown that the Cayley-Hamilton methods which simply involve
products of the powers of a matrix with row or column vectors are asymptotically
more powerful than any of the above methods, the work only increasing as the
cube of n. This is true whether the longer Aitken form of reduction is em-
ployed or whether the usual Doolittle back-solution is followed. The present
method is also an efficient one in the sense that its requisite number of multi-
plications increases with the cube of n. For small values of » and asymptotically
it can be shown to be more powerful than the Cayley-Hamilton method which
uses the Aitken method of reduction, although in the limit as n becomes large
the ratio of the powers of the two methods approaches unity.

It is of the greatest interest to compare the power of the new method with the
shorter Doolittle C-H method. It can easily be shown that the coefficients of 7’ in
the expressions giving the respective requisite number of multiplications differ
in such a way as to make the C-H method more powerful after some value of n,
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the ratio of the respective powers approaching the limit 8/9. However, for
low order matrices the new method is the more powerful. The reader may
easily verify this for the case of a second order matrix. Below a sixth order
matrix the present method seems to involve the smaller number of multiplica-
tions. For a sixth order matrix the two methods seem to involve the same num-
ber of multiplications (multiplications by unity not being counted). For
matrices of the seventh order or higher the C-H method seems to be optimal.

As compared to an explicit evaluation of the coefficients by a straightforward
computation of principal minors according to the fundamental definition of a
determinant as the sum of signed products of elements, all of the methods
discussed are efficient, since the work in the former increases faster than any
power of n. However, for each of the methods discussed, in singular cases the
method of reduction may fail so that modified procedures will be necessary. In
actual practice such singularities will ““almost never’’ be encountered. But in
the neighborhood of such singular points the computations become extremely
sensitive to any rounding off of digits. Consequently, it is from the nature of
the case impossible ever to develop exact rules for the maximum error involved
in any given calculation.
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