ON SOLUTIONS OF THE BEHRENS-FISHER PROBLEM,
BASED ON THE ¢-DISTRIBUTION

By HENRY SCHEFFE

Princeton University

1. The Problem. The problem [1, 2] is the interval estimation® of the dif-
ference of the means of two normal populations when the ratio of the variances
of the populations is unknown. The reader who wishes to see the present
solution before considering theoretical details will find it recapitulated in the
Summary at the end and will want to refer to the following notation:
(@1, 22, ,2m)and (y1, Y2, - - -, Yn) are random samples from normal popu-
lations with means « and B, and variances u and », respectively. Define
8 = a — 3. We assume m =< n, and that the variates in each sample are in
the order of observation, or else have been randomized.

Recently Neyman [3] has called attention to a solution which we shall desig-
nate as (B), and which is a special case of an unpublished solution of Bartlett®.
It will be simpler to describe (B) later, but we mention now that it has the
following advantages: (z) its validity does not depend on the values of unknown
parameters, (7¢) the required computations are simple, and (447) only existing
tables are needed, the widely available Fisher ¢-tables. An unsatisfactory
aspect of (B) is that when the sample sizes are unequal, # — m of the variates
y; are completely discarded. The solution below shares with (B) the advan-
tages (7), (#), (¢17); indeed, it is identical with (B) when » = m, but when
n # m it is free from the above objection.

2. Simple Solution. We begin with a simple restricted approach; later we
will review the result from a somewhat broader standpoint. If random variables
dy, dz, ---,dn are independently normally distributed with mean & and vari-
ance ¢°, and if L and Q are defined from

L= g:ld.-/m, Q= 2 @ — LY,

then m*(L — 8)/¢ and Q/s® are independently distributed; the former is a
normal variable with zero mean and unit variance; the latter, Q/c* = xh-1,
where x; is a generic notation for a random variable distributed according to
the x*-law with & degrees of freedom. The quotient

1 We treat the problem from the standpoint of confidence intervals, rather than signifi-
cance tests, since when the former are available for § so is a whole class of the latter, namely
for any hypothesis § = &, for all 5o. Furthermore, questions of the existence of ‘“‘best’’
tests and “‘best’’ confidence intervals are closely related [5a).

2 How far Bartlett followed the path of this paper is not clear from the brief mention
of his results by Welch [4], except that he did establish the sufficiency of certain ortho-
gonality conditions.
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m{(L — 8)/1Q/(m — DI = tu,

‘where ¢ denotes generically a variable having the ¢-distribution with & degrees
of freedom. Define #;, from

1) Pr (=t <t = te = e
Then a set of confidence intervals for & with confidence coefficient e is
@) [6 = L = twse{Q/tm(m — DI}
Denote by E(I) the expected length of the confidence interval (2),
E() = 2tn,Jmim — DI7E[(Q/o")1],
3) EQ) = tms,&mao/m},
where
o = 2k E(a) = 8/k)'T@k + 1)/T3k).

The symmetrical choice (1) of the limits on the ¢-distribution minimizes (3).
We consider using in connection with the confidence intervals (2) linear
functions

€Y , di=xi"'z;ciiyiy t=1,2,+-,m.
£

The variables d; have a multivariate normal distribution. Necessary and
sufficient conditions that the d; all have the same mean &, equal variances ¢,
and zero covariances, are easily found to be

(5) =1, 2 cacy = by,
=1 k=1

where 8;; = 1,6;; = 0if 7 » 5. If (4) are used in (2), E(I) is given by (3) with
o = u + c’». Hence to minimize E(!) we must find an m X n matrix ¢ = (c;;)
satisfying (5), and for which ¢’ is minimum. The minimum value of ¢’ is m/n:
this is easily proved by the use of vector algebra.

Let v; be the i-th row of C, and let ¥ be the 1 X n matrix (1,1, ---, 1). De-
note the transpose of a matrix by a prime. Then the conditions (5) read

(6) v =1, yoi= 8.

First suppose vectors v1, v2, - -+ , vm satisfy (6). Then it is possible to adjoin
n — m orthogonal vectors ym41, - ** , vn, 50 that the complete set satisfies the
second group of conditions (6). Since this set is a basis in n-space,

V= Z gk Yk,
=1
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where the g are scalars. Now
1 =wl«’=§ywevi=g.~c’, i=1,2,m,
and thusgy = go = -+ = g = ¢ . But
n=y = ,;"1 giveve = me” + k;ﬂ gic’ = me”,

and hence ¢ = m/n. On the other hand this lower bound for ¢’ may be at-
tained by taking any set 8i, B2, --- , Bm of orthogonal vectors with norms
m/n, that is, ﬁ,ﬂ; = §;;m/n, and rotating them so that their equal angles vector
A= (n/m)(B1 + B+ - -+ + Bn) coincides withy. Then AS = ¢, where S8’ = I.
For v; = 8:S,

v = B:SS'N = BN =1,
yovi = ISiSS,ﬁ;' = BB = dim/n,

so that equations (6) are satisfied with ¢* = m/n.
An especially neat solution of this minimum problem was obtained by the
above method; its validity may easily be verified directly. It is

i (m/n)* — mn)™ + 1/n, j=m,
ci =
’ 1/n, j> m.
Then

di =z — (m/n)y; + (mn)™ ?_.; Yi — f\:.‘{ yi/n,
and L and @ become simply L = & — Fand

@ Q= 2 (ws — @),

® = i zi/m, G = gy.-/n, W= — (m/n)ly,, a= zm: ui/m.

We may now write (2) as®
9) &= — tn1,{Q/[m(m ~ D S6=2— 7+ tnrelQ/Im(m — D]}

The solution (B) mentioned at the beginning, consists of taking ¢,; = 8;; in
(4), so that the conditions (5) are satisfied with ¢ = 1. Hence for both (B)
and (9) the expected length of the confidence interval is given by (3), but with
o* = u + vfor (B), while ¢* = u + (m/n)v for (9).

3 Obvious modifications of (9) will make it suitable for “‘one-sided’’ estimation.
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3. More General Solutions. We now generalize our approach to the following
extent: Let L be a linear form and @ a quadratic form in the variates
Ty, Tm, Y1, Ya, with coefficients independent of the parameters
(i. of p.). If for some constant h i. of p., and some function f of the parameters,
k(L — 8)/f and Q/f" are independently distributed, the former according to the
normal law with zero mean and unit variance, the latter according to the x*law
with £ — 1 degrees of freedom, then the quotient

(10) h(L — 8)/1Q/(k — VT

will have the ¢-distribution with & — 1 degrees of freedom, no matter what the
values of the parameters.
We note that necessarily then

(11) E(L) = 3,

(12) ff = RE[L — 9)".

The t-distribution of (10) leads to the confidence intervals
(13) |6 — L| = it dQ/(k — )/h,

where {1 . is defined by (1), and the confidence coefficient is e. Proceeding as
toward (3), we find that the expected length of (13) is

(14) E(l) = tk—l'QCk_lf/h-.
If L=§a.-x;—gbey;,
(15) E(D) = aX o — 63 b

Since a; , b; are i. of p., it follows from (11) and (15) that
(16) 204'=Zb¢=1.

ta=] t=1

Writing =1 — a 7 =Y — B,
a7 L_5=Zlaifi—§bi"7i;
(18) E(L — 8 = u }'_‘{ a+ v Zl b = fY/n’
from (12); thus (14) may be written

m n ]
19) Em=meb;£+Q¥ﬂ.

From (18) we also have

(20) S = d'u+ b,
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where

@ =r2ad, V=¥

t=1
are i. of p.
4. Lemma. We propose to prove next that the maximum value of % is m,
that is to say, it is impossible to obtain a t-distribution for a quotient (10) with
more than m — 1 degrees of freedom. For this we need a lemma, to the effect

that certain well known sufficient conditions for a quadratic form to have a

x’-distribution are also necessary.
Since under our assumptions A (L — 8)*/f* = xi and Q/f* = xi-1 are inde-
pendent, therefore Q*/f* = xi , where

Q* =1L -93"+Q.
To shorten the notation, write
11‘,-, i=1,2 -,m,
“= %my t=m+1,--,m+n,
& =E@), §i=2z—a, o =EQg.

Let Q = E‘ QotRs 2ty

where the indices s and ¢ range from 1 to m + n throughout. Then g, isi. of p.,
and

Q=2gutti+2X 08+ 6

where
% = 5‘: Qs 0tt, q= z.: Qs s«

From (17)
(L — 8) = Z‘I DutSales

where p,; are i. of p. Putting qu = @u + Pu, qf. are i. of p., and

(1) Q =gt +2 E @+ g

The moment-generating function of Q*/f is
+e e 2, 2
8(0) = Blexp 0@/ = o [ -+ [ exp (@211 - 3 T3/ I ..

There exists a non-singular linear transformation from the {’s to v’s such that
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2;?3/03 = va,

(22) Z; Qoe Sole = E s
Then
(23) anfc = E‘:Pﬂ)n

6(0) = C:e"”’ II [:” exp {—3[v* — 200\, " + 2p.v)/f*]} dv

=" TT (1 — 20M./7%) 7 exp {20°P2/(F* — 20M.f%)).

Now Q*/f* = xi if and only if

6(0) = (1 — 2007,
Hence
(24) =0, ¢=0,

and k of the A\, must be equal to f* while the remaining X, vanish. No generality
is lost in assuming

(25) M=A= - =N=f M1 = *+* = Amgn = 0.
Letw; = fv;,i=1,2,---,k From equations (21) to (25) we deduce that

k
(26) Q=X qi bute = 2wk,
where qf, is i. of p., and the w, are linear combinations of the {, such that

(27) E(ww;) = f8:;.

That the conditions (26) are necessary* for Q*/f* = x; constitutes the desired
lemma.

6. Maximum Number of Degrees of Freedom. We have seen that the w;
in (26) must be of the form

(28) w; = ; ai;i ki + Z; bijn; .
We substitute (28) and (20) into (27) and write the result in matrix form,
(29) _ wAA’ + vBB' = (a’u + b1,

where I ; is the identity matrix of order j, 4*™ = (a;;), B™" = (b:;), and when-
ever a new matrix is introduced, a superscript » X ¢ indicates that it has r rows

4 We have incidentally proved sufficiency.
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and ¢ columns. Now if we knew that A4’ and BB’ were i. of p., then we could
equate coefficients of u and » in (29) and immediately draw the desired conclu-
sion ¥ = m. But that AA4’, BB’ are i. of p. is not obvious, since this need not
be true of A and B. However, we do know that the matrices

F=4'4, G=A4'B, H=PRBB

are i. of p. because the matrix (qf,) of (26) is

F @
& H)®
Multiplying (29) on the left by A’ and on the right by A, we obtain
(30) wF* + Q@ = (% + bH)F.

(30) must hold identically in u, ». Since the coefficients of u, » are now i. of p.,
we may equate them, hence GG’ = b’F. Similarly multiplying (29) by B’ and B,
we get G'G = a’H. Now® for any matrix M, rank M = rank M’M = rank MM".
Thus rank F = rank H = r,say. Again, F = A’A, therefore r = rank 4 < m.
Since F is a positive® matrix, i. of p., there exists a non-singular P™ ", i. of p.,
such that

31) F=PI,.P=AA,

where I ;, is the j X j matrix the first 7 of whose diagonal elements are unity and
all other elements zero. Let T"*™ = AP™. Then

32) A = TP, T = I,
from (31). Likewise we can write
(33) B = U"R™", vu = I,,,

where R is non-singular and i. of p. Then G = A’B = P'T'UR, hence T'U =
(P)'GR™ is i. of p. We note

T = (T;ch, OkX(m—r))’ U = (U;:Xr’ OkX(n—r))’
where
T =UU =1,.

_(T: _(TiU: 0

§ A gimple proof [5b] of this useful theorem is the following: Let r = rank M, p = rank
M'M. p = rsince the rank of the product cannot exceed the rank of a factor. M contains
r independent column vectors; the Grammian matrix of these vectors is non-singular and
appears as an r X r minor in M’'M. Hence p = r. Furthermore, all principal minors of
M'M are Grammian matrices (which always have non-negative determinants), hence M'M
is always positive—we use this below.

Since
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o e o e . ’ o
isi. of p., so is its minor V™" = TiU;. Write

PIXM RIX”
P = Pém—r))(m ’ R = Rgn—r))(n *

Then from (32), (33),

(34) A = T1P 1, B = U1R1 .
Substituting (34) in (29), we get
(35) uTWP\PiT] + vU,RRIU; = (a’s + b))k,

and multiplying by T on the left, T; on the right,
uPiPy + wWWRRV' = (a'u + VW),
Again the coefficients of u, » are i. of p., so
P\P; = d'l,,

(36) VRRIV' = VI,.

Similarly we find

37) RR; = V'I,.

From (36), (37), VV’' = I,. (35) now becomes

(38) Ty Ty + bWUWU; = (a® + )]k

Multiplication of (38) on the right by U, gives

azuTlV + bzllUl = (a’y + bzl')Ul .
Hence T,V = U, therefore U,U; = T,T;, and putting this back into (38)
we have I, = TyT1 , rank I; = rank T\Ty = rank 71T, = rank I, yk=r=<m.

6. Minimum Expected Length of Confidence Intervals. We now point out
that of all confidence intervals (13) with £ = m, the confidence intervals (9) have
the minimum expected length. Recalling that the a;, b; in (19) are subject
to the conditions (16), we easily find

(39) Zla? 2 1/m, Z; b = 1/n.
From (39) and (19) we have
EQ) 2 tnr.Cmalp + (m/n)s]/m},

and referring to the statement at the end of section 2, the property of (9) asserted
above is now obvious.

7. Asymptotic Shortness of Confidence Intervals. In conclusion we wish.
to compare our results with the case where the ratio of the variances, § = »/u,
is known. If
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Se=X@-2,  S=3w-9,
L-z-9, oh = (u/m) + (o/m),

then (L — 8)/oL, S:/u, S,/v are mutually independently distributed, the first
normally with zero mean and unit variance, and S./ux = x4, S,/v = X2
Hence

L = O[um™ + ™) (St + Sy ™)/ (m 4+ 1 — 2)] = tmins.

TABLE 1
Values of R for ¢ = .96
n—1
5 10 20 40 ©
m=—1
5 1.15 1.20 1.23 1.25 28
10 1.05 1.07 1.09 1.11
20 1.03 1.03 1.05
40 1.01 1.02
TABLE 11
Values of R for ¢ = .99
n—1
L 10 20 40 ®
m—1
5 1.27 1.36 1.42 1.47 1.52
10 1.10 1.13 1.16 1.20
20 1.05 1.06 1.09
40 1.02 1.04

This relation yields the confidence intervals
(40) |86 = L| = twpnse(m + 1 — 2)7m™ + on™)XS. + S,/6)},

where the confidence coefficient is again e. The confidence intervals (40) are
known to be highly efficient; for instance they are of the shortest unbiased
type [5a]. We calculate their expected length to be

E() = tminst.Cminslu + (m/n)v]/ml.
The ratio R of E(I) for (9) to E(l) for (40) is thus
(41) R = (tm—l.ecm—l)/(tm+n—2.ecm+u-—2)-



44 HENRY SCHEFFE

Ask — o, ¢ — 2, tr,e > t,., hence as m — «, B — 1 no matter what the
values of n = m. For small values of m the ratio of the ¢ values in (41) is con-
siderably >1, but this is partly offset by c¢; approaching its limiting value 2
from below so that the ratio of the ¢’s is <1. The behaviour of R for finite m
is indicated in Tables I and II. Table I (II) tells us for example that with
m > 10, and ¢ = .95 (.99), the expected length of the confidence intervals (9)
is at most 11 per cent (20%,) longer than that of the optimum confidence inter-
vals (40) available when the ratio 6 is known. While we may conclude from
R — 1 asm — o, that our solution (9) is asymptotically extremely efficient, we
cannot conclude from Tables I, II that for small m (9) is inefficient, since we
do not know what the lengthening effect of the extra nuisance parameter in the
Behrens-Fisher problem would be on “best” confidence intervals.

8. Summary. In the terminology of the first paragraphs of sections 1 and 3
we have proved that there do not exist a linear form L and a quadratic form @
in the observations such that the quotient (10) will have the i-distribution (for
all values of the parameters) with more than m — 1 degrees of freedom. We
have further shown that of all confidence intervals (13) based on the ¢-distribu-
tion with m — 1 degrees of freedom, and with confidence coefficient ¢, (9) has
the minimum expected length. The quantities needed to apply our solution
(9) are given by (1), (7) and (8). Finally, by comparing this solution with a
known highly efficient solution for the case when the ratio of the population
variances is known, it has been possible to show that at least asymptotically
our confidence intervals (9) are very short.
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