SOME NEW METHODS IN MATRIX CALCULATION'
By HaroLp HoreLLiNg
Columbia University
1. INTRODUCTION

1. The increased practical importance of matrix calculation. This paper will
be concerned chiefly with methods of finding the inverse of a matrix, and of
finding the latent roots and latent vectors, which are also known by a variety of
other names associated with. particular applications, such as principal axes in
geometry and mechanics, and principal components in psychology. These two
computational problems are of extremely wide application. The first is closely
related to the solution of systems of linear equations, which we shall also con-
sider. In the method of least squares the solution of the normal equations is
best carried out with the help of the inverse of the matrix of the coefficients,
since at least some of the elements of this inverse matrix are needed in evaluating
the results in terms of probability, a vitally necessary step, and since the inverse
matrix is useful also in various other ways, such as altering the set of predictors
used in a regression equation. Modern statistics also utilizes quadratic and
bilinear forms such as the generalized Student ratio [15] for discriminating be-
tween samples according to multiple variates instead of one only, the associated
diseriminant functions [10], the closely related figurative distance of Mahalano-
bis, Bose and Roy [5] and the critical statistic in an investigation by Wald [28]
of the efficient classification of an individual into one of two groups. . All these
may be calculated very easily from the inverse of a matrix of sums of products,
or of covariances or correlations, or from the principal components. Considera-
tion of the relations between two sets of variates [18] may utilize both the in-
verse of a matrix and a process resembling the calculation of principal compo-
nents. Similar computational problems arise in applying to sets of numerous
variates the contributions to multivariate statistical analysis of R. A. Fisher,
S. 8. Wilks, W. G. Madow, M. A. Girshick, P. L. Hsu and M. S. Bartlett.
‘Among the non-statistical applications of the inverse matrix and of latent roots
and vectors are problems of dynamics, both in astronomy and in airplane design
[12], the analysis of stresses and strains in structures [26, 27], and electrical
engineering problems [24].

Perhaps no objection to attempts at statistical inference is more common than
that the variation of this or that relevant factor has been ignored. For example
in dealing with time series the need of allowing for t=~: .- and seasonal variation,
perhaps by means of a sequence of orthogonal polynomials for trend and of

1 Revision of a paper presented at the Symposium on Numerical Calculation held Dec.
28, 1941 in New York by the Institute of Mathematical Statistics and the American Sta-
tistical Association with the cooperation of the Committee on Addresses in Applied Mathe-
matics of the American Mathematical Society, For the program of the Symposium see
the Annals of Mathematical Statistics for March, 1942, p. 103.
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trigonometric functions for seasonal variation, is well recognized. It is indeed
desirable to use regression equations with a liberal number of predictors to
eliminate spurious influences, as well as to reduce the error variance, and likewise
in other statistical methods. But the computational difficulties in the joint
analysis of the desired number of variables have frequently seemed too formid-
able. We shall see how efficient techniques, in conjunction with efficient
machines, can go far to facilitate the use of an appropriate number of variables
by reducing the labor to modest dimensions.

While the rise of modern multivariate statistical theory has made available
new exact tests of hypotheses in terms of probability over a wide range of cases
in which multiple measurements are involved, such measurements have been
accumulating on a large scale. In many psychological, anthropometrie, astro-
nomical, meteorological and economic fields, actual measurements are available
on numbers of variates far greater than have been regarded as amenable, within
practical limits, to adequate treatment by the numerical methods generally
used. In some instances the number of cases in which complete sets of these
variates are available is also large. The 1931 census of India included an ex-
tensive sample in which fifty physical variates were measured for each individual.
Karl J. Holzinger and his collaborators have worked out and circulated privately
a complete matrix of correlations among 78 mental tests.  Astronomers have
indicated the desirability of a recalculation of the elements of the solar system
by means of a gigantic least-square solution with 150 or more unknowns, at the
same time deploring the seeming impossibility of this ever being carried out.
To apply the methods of modern theoretical statistics to derive from such
observations all the important information they contain is an enterprise whose
feasibility depends on new numerical methods.

The chief computational problems, apart from those of tabulating and provid-
ing convenient approximations for the probability distributions, are (1) the cal-
culation of the many sums of products of pairs of p variates when p is large, and
(2) operations on the matrices of these sums of products such as finding the
inverse and the principal components. The first problem, which in classical
applications of the method of least squares to long series has seemed the heavier,
has in a sense been solved by the use of punched cards. A card is used for each
case, and all p variates are punched into it. By running the cards repeatedly
through a machine wired at each run to select a particular pair of variates,
multiply them together, and cumulate the products, this part of the work may
be disposed of with great speed. The cost of the machines does at present limit
the economical use of this method to rather large numbers, both of variates
and of cases. This limit has recently been pushed upward by the introduction
of improved multiplying calculators, with high-speed automatic multiplication
and squaring locks. But these mechanical advances, in combination with
recent discoveries in statistical theory, the increasingly felt need to resort to
numerous variates, and the actual existence in many cases of data on such mul-
tiple variates, emphasize the need for rapid, economical and accurate calculations
with matrices whose elements are sums of products.



MATRIX CALCULATION 3

Modern machine methods, especially those of the punched-card type, but
also those using machines such as the Monroe, Marchant and Fridén, tend to
reduce the work of formation of sums of products, in comparison with other
operations, to such an extent as to enhance the relative value of methods in
which such calculation of direct product-sums is important. Thus products of
matrices are much simpler to compute than inverses, and positive than negative
powers. Indeed, powers and products of matrices can be computed by means
of punched-card machines, and for large matrices this is doubtless the most
efficient procedure now available, though considerable rewiring is needed. There
is also a possibility, which does not seem too remote, of development of further
devices to do this rewiring automatically.

2. Iterative and direct methods. Partitioned matrices. In later sections
we shall deal chiefly with certain iterative methods, giving particular attention
to the neglected question of limits of error in stopping at any point, and con-
sidering the rate of approach to the desired solution. For finding the roots of
a matrix and the associated vectors, if the matrix has more than about four rows,
it seems clear that an iterative method is the most economical of labor in all but
very special cases. On the other hand the problems of solving systems of linear
equations and finding the inverse of a matrix do not usually yield readily to
iterative methods unless an approximation to the solution is available to begin
with. This approximation is not necessarily a very close one, but must not be
too wild. It may in some cases be obtained from a general knowledge of the
subject.

The Mallock electrical device [22] is capable of solving almost instantaneously
ten linear equations in ten unknowns with perhaps two significant digits in each
result, though this question of accuracy remains to be elucidated. The com-
bination of this device with the iterative method of Section 7 below, and with
the use of partitioning for matrices of more than ten rows, offers what seems at
present the best hope for the systematic inversion of large matrices. Since
only one of the Mallock machines is in existence (it is in Cambridge, England),
some adaptation of the Doolittle or related methods will ordinarily be used.
By taking advantage of the possibilities in modern calculating machines of ac-
cumulating products to reduce the amount of writing required in the Doolittle
method, exceedingly compact and efficient methods have been developed for
solving systems of linear equations and for evaluating inverse matrices by Dwyer
[7, 8, 9], who utilized the earlier work of Waugh, Kurtz, Horst, Dunlap and Cure-
ton cited by him, and for solving systems of linear equations, by Crout [6].
Dwyer gives valuable bibliographies.

By some of these methods, or from a general knowledge of the subject, one
may well obtain approximate solutions correct to a very small number of decimal
places, and then by iteration get as many more places as are required, with
labor far less than would be necessary to carry through from the beginning the
requisite number of places. Further applications of iterative methods arise
when: a least-square solution is to be revised, either on account of new observa-
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tions or beeause of errors discovered in the original observations or calculations.
But however a least-square calculation or the evaluation of any inverse matrix
begins, and whatever intermediate steps are taken, it seems advisable to ter-
minate it with the method of Section 7. This combines a check on the previous
work, at a labor cost equivalent merely to substituting the values found for the
unknowns into the equations, with an improvement in accuracy and a useful
limit of error for the unknowns. '

In the inversion of large matrices there are important possibilities in the
properties of partitioning. For example, a square matrix of 2p rows may be
partioned into four square matrices a, b, ¢, d, of p rows, and written

a b
[c d].
If this is multiplied on the right by another partitioned square matrix of 2p
rows which may be written
A c
|

" where 4, B, C, D are square p-rowed matrices, the product
aAd +bB aC + bD
cA + dB cC + dD
is identical with the result of partitioning the product of the two original 2p-
rowed matrices. If the second is the inverse of the first, this product is the
identical matrix. Consequently, if the first matrix is given, we have for de-
termining its inverse the four matrix equations in A4, B, C, D,
ad +bB =1 aC+bD =0
cA+dB=0 cC +dD =1,
where 1 stands for the identical matrix of p rows and 0 for the p-rowed matrix
consisting entirely of zeros. These equations may be solved just as in elementary

algebra except that care must be used to perform matrix multiplications in cor-
rect ordér. Thus

A= (a—bd%)7", B = —dA

D= (@d— ca'b)™ C = —a”'bD.
These formulae call for inversion of four p-rowed matrices, namely d, a — bd”’c,
a, and d — ca”'b. Without changing the number of such inversions we may

choose alternative sets of matrices to invert, with economy of labor in certain
cases. For example, if b is easy to invert, we may use for D the expression

D = badbd™.
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The formulae and numerical work are further simplified if the given matrix is
symmetric. Other modes of partitioning are also possible, and may be valuable
in various kinds of numerical work. Another method of obtaining the inverse
of a matrix by partitioning is given by Frazer, Duncan and Collar [12, pp. 112-
118], who also give an account of general properties of partitioned matrices.
In the treatment of relations between two or more sets of variates [18, 31],
partitioned matrices appear.

The most efficient method of calculation of a function of a matrix will depend
in part on what else is to be calculated. For example, if the latent roots and
vectors are needed for any reason as well as the inverse of a matrix, it is better
to calculate the former first, and then the determination of the inverse matrix
becomes a trivial task; but if the latent roots and vectors are not needed for some
other purpose it is usually better not to calculate them but to use a more direct
method to obtain the inverse. If in addition to the inverse the determinant is
wanted, or many consecutive powers of a matrix, or if a matrix-multiplying
machine considerably speedier than present procedures becomes available, a
method [3] based on the Cayley-Hamilton theorem that a matrix satisfies its
own characteristic equation may be recommended.

Iterative methods have what Whittaker and Robinson [30] call the pleasing
characteristic that mistakes do not necessarily spoil the whole calculation,
but tend to be corrected at later stages. This of course does not mean that there
is no penalty for mistakes. They have an ohvious tendency to prolong the
number of repetitions required, and if repeated at late stages may actually pre-
vent realization of a substantially correct result. A less obvious consequence of
mistakes near the termination of an iterative calculation is that they tend to
vitiate any limits of error that may be derived, including those that will be found
below. Great care should be used to insure accurate calculation especially in
the last stages of any iterative process.

To-insure accuracy even before the last stages, and therefore efficiency, a
check column consisting of the sums of the elements in the rows of matrices
multiplied and added together may well be carried along. In multiplying two
matrices only the check column of the second factor is used; it is multiplied by
each row of the first factor to obtain the check column for the product. A
computer thoroughly experienced with matrix multiplication may dispense with
the check column at all stages but the last of an iterative process, relying on the
self-correcting property of the process.

A simple but extremely valuable bit of equipment in matrix multiplication
consists of two plain cards, with a re-entrant right angle cut out of one or both
of them if symmetric matrices are to be multiplied. In getting the element of
the ¢th row and jth column of the product, the ¢th row of the first factor and the
Jjth column of the second should be marked by a card beside, above, or below it.
In writing a symmetric matrix it is convenient to omit the elements below the
principal diagonal. The re-entrant right angle is then utilized to mark off the
numbers belonging to a particular row.
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A report [13] on certain iterative methods of solving linear and other equations
and of calculating latent roots and vectors, with engineering applications, was -
published by R. von Mises and H. Geiringer in 1929. As part of a discussion
of certain problems in psychology [16] the present author in 1933 described
iterative processes both for solving systems of linear equations and for finding
principal components, and later [17] showed how to accelerate convergence to
principal components by repeatedly squaring the matrix. Further acceleration
of convergence by other devices has been discovered by A. C. Aitken [2]. Dr.
Geiringer has also discussed a method of solution of equations involving iteration
by small groups of unknowns [14]. The method of Kelley and Salisbury [20]
should be noted. It has been used extensively by psychologists. Definite
limits of error and measures of rate of convergence for this method are missing.
Certain other iterative methods will be discussed in later sections. It will ap-
pear that the most-used methods are by no means the best.

Questions regarding the probability of a matrix of covariances satisfying
particular conditions of computational significance may in some cases be il-
luminated with the help of the theory of the variates as a random sample of a
larger aggregate. This theory was outlined in the latter part of the paper [16].

II. LiINeaArR EqQuaTiOoNs AND INVERSE MATRICES

3. Accuracy of direct solution of linear equations. The question how many
decimal places should be retained in the various stages of a least-square solution
and of other calculations involving linear equations has been a puzzling one.
It has not generally been realized how rapidly errors resulting from rounding
may accumulate in the successive steps of such procedures as, for example, the
Doolittle method. In this popular algorism for solving a system of equations

y:d
j_zlaiixi=gi t=1,---,p),

the equivalent of successive eliminations of @1, @z, - - - , Z—1 to obtain an equa-
tion in z, alone is accomplished by calculating successively

Aij1 = Qi — ailalj/all , Ji1 = @i — a.‘lgl/an (thJj =2 3,--+, 1)
then
Q.12 = Qij1 — at’2-la2i~l/a22~l )

gitz = i1 — Gi2102.1/02.1 (Gj=3,,p)

and so forth. Let us suppose that each of the a;/s and g/s is subject to an
error concerning which it is known only that its absolute value does not exceed
e. Thus if they are given accurately to £ decimal places only, we have ¢ =
107%/2. Let the actual errors be represented by éa;; and 8g;. If these are
small an estimate of the error in g;.; may be obtained by expanding in a Taylor
serics and retaining only the linear terms:
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8gi1 = 8g; — 2 5, — & sai + 9—'1221 bay .
a1 an a1
The closest upper bound for this error obtainable without special assumptions
regarding the values of the given quantities is specified by the inequality

)-

The a’s and g’s are often correlation coefficients. Any set of normal equations
of least squares may be reduced to a form in which this is the case, and this re-
duction has considerable merits. The various correlation coefficients are fre-
quently of interest in themselves, and their use in the normal equations
practically insures that all the quantities appearing at any stage are of the same
order of magnitude. This last is a very substantial advantage, partly because
of the check column which is customarily carried along, in which each entry is
the sum of the other entries in its row. Since the absolute value of a correlation
coefficient is less than unity, and since a;; becomes equal to unity, the last in-
equality gives in this case

o
a1

9
an

[125¥ )1
2
a1t

| 8gi-1 | _<.€<1 +

l 6g,-., | < 46,

and no closer inequality appears possible. In the same way we find for this
case in which the a’s are correlation coefficients that

I 50,",-.1 | < 46.

Proceeding from these inequalities in the same way, and neglecting the fact
that | @1 | < 1 though like ay, it is put equal to unity in the argument, we find
for the errors in a;;.12 and g..1» the estimated upper bound 16¢, with an actual
upper bound somewhat higher unless a; = 0. Continuing in the same way we
find for @;;.12..cp—1y and gi.12..¢p—1) the estimated limit of error 4”~ le, with a pos-
sibility of a somewhat higher value up to 4” '¢/a, where a is the determinant
| a:;| < 1. The rapidity with which this increases with p is a caution against
relying on the results of the Doolittle method or other similar elimination
methods with any moderate number of decimal places when the number of
equations and unknowns is at all large. Thusif p = 11 the limit of error exceeds
a million times ¢, indicating that if only one decimal place is wanted in the value
of x, the original correlations must be utilized to at least seven decimals, even
if we neglect the additional errors introduced by dropping decimals beyond
those retained in the intermediate stages of the calculation. The errors ac-
cumulate further during the back solution, so that if all the unknowns are
wanted with one-place accuracy it is necessary to use the original correlations
with substantially more than seven decimal places. For larger values of p the
increase in the error limit is startling. Thus for p = 27 (the number of tests
reported to be involved in a certain current procedure in classifying military
personnel) the limit of error even for the first unknown evaluated is 4”¢, repre-
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senting a loss of about 16 decimal places of accuracy, while the correlations in
Holzinger’s 78-rowed matrix would need to be carried to no less than 46 places
to insure even an approximate accuracy in the first deecimal place of one of the
regression coefficients in a formula derived by least squares for predicting one of
his variates in terms of all the others.

These high limits of error may possibly be reduced in the following ways:
(a) a more exact study of the error might be made by meana of terms of the
Taylor series of orders higher than the first; (b) the positive definite character
of a correlation matrix (or other matrix of normal equations) might be utilized
in an attempt to arrive at lower limits of error; (c) instead of considering the
maximum possible error we might depend on some mutual cancellation of dif-
ferent errors and content ourselves with statements in terms of probability.
The compounding of different errors of rounding, which may individually be
regarded as having a probability distribution of uniform density over a fixed
range, quickly gives rise to an almost exactly normal distribution of known
mean and variance, so that the probability approach is attractive. However
the limits of error obtained in this way with, for example, a five per cent level of
probability of a greater error, though somewhat smaller than the limits asso-
ciated with certainty, are disappointingly large. Investigations of the types
(a) and (b) have not been made; they would apparently be very ¢umbersome,
and (a) might have the effect of increasing the error limits considered above
instead of cutting them down. Use of the check column does not provide any
safeguard against the errors of rounding appearing in the original correlations,
though from the probability standpoint, a carefully devised use of the check
column may mitigate the accumulation of errors in successive stages.

To control such errors reliance is often placed in a substitution of the solution
obtained in the given equations. This is not completely satisfactory, since
under some circumstances large errors in the solution may yield only slight
deviations of the left from the right members of the equations, and since some
deviations must be expected in any case in which only a limited number of
decimals is carried along. Moreover this substitution, even if it reveals the
existence of errors, does not usually make clear at once what should be done
about them. A recalculation to a larger number of decimal places is horribly
laborious. There is here a distinct need of using an iterative process for im-
proving on the solution obtained, and setting definite limits for the errors.

4, The classical iterative method. The iterative method which seems to be
the oldest and the most used for solving systems of linear equations, and which
may like all other methods of doing this be applied to find the inverse of a
matrix, is that of Gauss and Seidel. It seems also to be used in the “method
of relaxations” [26], which has been recommended to engineers but lacks limits
of error and measures of rate of convergence.

This classical method, starting with any assumed values for the unknowns,
begins by changing the value for the first unknown so as to satisfy the first
equation; this is possible if the coefficient is different from zero. The revised
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set of trial values is then further altered by changing the second unknown so as
to.satisfy the second equation. Then the third unknown is altered so that the
third equation will be satisfied, and so forth. When all the unknowns have
been thus altered the cycle may be begun again, and repeated until the differ-
ences between consecutive values of each unknown become small enough to
indicate a satisfactory convergence. The method converges if the matrix 4 of
the coefficients a,; is positive definite, as it is for the normal equations of least
squares, and also in certain engineering applications [7, 8, 9]. Moreover the
character of being positive definite insures that each a;; differs from zero, so that
- the successive adjustments indicated are all actually possible. In the published
discussions, proofs of convergence have sometimes been omitted, and in some
cases (e.g. [30], Sec. 130) the proofs are incomplete. Even the fuller proofs
[13] and [16] fail to give explicit limits for the errors in stopping at any particular
stage. But from the discussion [16, pp. 502, 504] it is easy to see that positive
numbers d; and k exist, with k& < 1, such that the error in the mth estimate of z;
is less than dk™. 'This limit of error diminishes in geometrit progression with
successive iterations; hence the number of decimal places of accuracy increases
approximately in arithmetic progression. The progression is however irregular
and the trial values may fluctuate considerably. Numerical determination of
limits of error does not appear to be easy. Experience with the method indicates
that it is satisfactory only in case a really good approximation is available to
begin with, in spite of its universal convergence.

6. An acceleration and extension of the classical iteration. This classical
scheme may be improved in the following way if numerous cycles of revision
of the trial values are expected to be needed for the requisite accuracy. The
first step, consisting of replacing the trial value z, by

@ = (@1 — @ — <+ — a1,%p)/ a0

and leaving zz, - - - , 7, unchanged, amounts to subjecting the p + 1 variables
%o, T1, ", Zp to the homogeneous transformation

xo’) = To

’

Z1 = (it — QX — -+ — G1%p)/an

x; = T2

R LRI

xp = xﬂ ’

where the symbol z, , introduced for convenience in order to make these equations
homogeneous, is always equal to unity. The matrix of the transformation,

1 0 0 0 oo 0
gi/an 0 —ap/ay —aupfan -+ —ap/an
ro| 0 0 1 0 - 0
! 0 0 0 1 o I

oooooooooooooooooooooooooooooooooooooooooo
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is of course singular. If X, denote the one-column, (p + 1)-rowed matrix of
the initial trial values, with unity at the head of the column, the column matrix
X1 = T1X, is the result of this first operation, again with unity at the head of
the column. The trial values obtained by the second operation appear likewise
in the column matrix X; = T, X; = T.T1X,, where

1 0 0 0 0 0
0 1 0 0 0 0
T, = gz/am —azl/azz 0 —arz:;/azz —044/022 '"azp/am
? 0 0 0 1 0 o |
0 0 0 0 0 1

The result of a complete cycle of substitutions may be written X, =
TpTp - -+ ToT1Xo, where the matrices T'; are of the same simple character
illustrated by T; and T2. This same result will be obtained, because of the as-
sociative law of matrix multiplication, if we first calculate numerically the
matrix

T = Tpr.l e Tle

and then X, = TX,. (Experience shows that computers need at this point the
caution that the matrices must be arranged in their proper order. A good pro-
cedure is first to form T.T, , then to multiply this by T; on the left, etc.). This
requires rather more work than the original Gauss-Seidel scheme, and therefore
is not worth while if only one cycle of substitutions is needed. '

The advantage lies in the fact that 7' may readily be squared, and T°X,, gives
a result equivalent to that of two full cycles of iteration by the Gauss-Seidel
method. Furthermore, T may be squared to give T%, which may also be
squared, and so on. Obviously k such squarings give a matrix which, when mul-
tiplied by X, , yields the same result as 2* complete cycles of the original sub-
stitutions. In terms of the number % of squarings the number of decimal places
of accuracy tends to increase in geometrical instead of arithmetic progression.
This modification of the classical method does not seem to have been published
heretofore, though both it and the method of Section 7 have been in use by the
author and his students since 1936.

R. A. Fisher [11, Sec. 29] has introduced the valuable method of finding the
inverse of a matrix A by solving together p systems, each of p equations in p
unknowns, with the same matrix 4 of coefficients, but different columns of
unknowns; these several columns of unknowns are the elements of the identical
matrix. The technique of carrying this out by any of the methods resembling
that of Doolittle is a simple extension involving replacement of the right-hand
members of the equations by 1’s and 0’s and carrying along p such columns
instead of one while applying exactly the same linear operations to the rows as
in the older problem. This, like the problem of solving linear equations, has
been elegantly adapted to efficient calculation with modern machines by Dwyer
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[7, 8, 9]. The foregoing iterative methods may also be applied in this case, but
the matrix T will be different for the different columns. When the given matrix
is symmetric (as is implied by the positive definite character assumed in
the proofs of convergence) the number of iterations required is generally cut
down because the determination of each column determines also the elements
of the corresponding row which lie in other columns. Iteration by groups
[14] may well have a place here.

An observation of A. C. Aitken’s [1] is noteworthy in connection with the
solution of equations with a non-symmetric matrix, and with the finding of the
inverse of such a matrix. Writing the equations in the matrix form AX = G,
we see that the solution X = A7'G is also the solution of the system (4’4)X =
A'G, where A’ is the transverse (also called the transpose or conjugate) of A.
Evidently A’A and A’G can be formed by direct multiplications and additions,
without divisions. Since A’A is symmetric, any of the methods for solving
symmetric equations are applicable to the new system. To find the inverse of 4
we may first find the inverse of the symmetric matrix A’A and then postmultiply
it by A’; for (A’A)7'4’ = A%

6. Roots, norms and convergence of matrices. The norm of a matrix A may
be defined as the square root of the sum of the products of its elements by their
complex ¢onjugates, and denoted by N(4). If A is real and a;; is the element
in the ¢th row and jth column,

(6.1) N(4) = Vzzd;.

This is the same function which Wedderburn [29, p. 125] defines as the absolute
value of A and denotes by 4 with a heavy vertical bar on each side. Since it
is rather troublesome to avoid confusing this with the determinant of A, we use
the notation N(A4), though the analogy with the ordinary absolute value of a
quantity is very suggestive in connection with proofs of convergence and limits
of error obtained by means of the “triangular inequalities” below. Rella [25]
gives a different definition of the absolute value of the matrix as the maximum
of the absolute values of its roots.
The triangular inequalities, whose proof is easy with the help of the Cauchy

inequality, are: ‘

(6.2) N(A + B) < N(4) + N(B),
6.3) N(AB) < N(A)N(B).
From the last it follows that for any positive integer m,
(6.4) N(@A™ < IN@I™

Hence if N(4) < 1, the limit of N(A™) as m increases is zero. It then follows
that the limit of A™ itself is zero, i.e. that cach of its elements approaches zero,
because of the definition of the norm.

The identical matrix of p rows, which we shall denote simply by 1, has the
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norm 4/p, while a scalar matrix % (i.e. one with the quantity k in cach clement
of the principal diagonal and zeros elsewhere) has the norm k& 4/p. The norm
of a p-rowed orthogonal matrix is v/p.

The roots of a square matrix, also known as the latent roots or characteristic
roots, are the values A\;, -+, A\, of A for which the determinant obtained by
subtracting A from each element of the principal diagonal vanishes. By expand-
ing this determinant in powers of A and using a relation between roots and coeffi-
cients of an equation, it is evident that the sum of the roots equals the sum of
the elements in the principal diagonal. This sum is known as the trace of the
matrix and denoted by tr(4). Thus

(65) Ax + )\2 + e + )\p = tl‘(A).
From the definitions of the transverse and norm of 4 it is plain that
(6.6) [N(A)]* = tr(44")

if A is real.
If f(x) is any polynomial in z, f(4) is a matrix whose roots arc known [29,
p. 30] to be f(\;), (¢ = 1,2, ---, p). In particular, the roots of A™ are A} .

Consequently
(6.7) AT+ N+ - A7 = (A7),

All the roots of a zero matrix are zero. But the fact that all the roots of a
matrix are zero does not necessarily imply that the matrix is zero; for example
the roots of

68 2 —1]

are both zero. But for real symmetric matrices the vanishing of all the roots
does imply the vanishing of the matrix; for the sum of the squarcs of the elements
of a symmetric matrix equals the sum of squares of the roots, since A = A/,
and by (6.7), (6.6) and (6.1),

=N = tr(4?) = tr(AA’) = [N = =2d%;.

Moreover, by continuity considerations, a sequence of p-rowed symmetric
matrices must approach zero if all the roots approach zero, and conversely.
From this it is evident that a necessary and sufficient condition that A™
approach zero as m increases, when A is symmetric, is that all the roots of A
be less than unity. This provides a sharper criterion of convergence than the
requirement that N(A) < 1, which is sufficient but not necessary for conver-
gence. The latter is however far easier to apply in most numerical work, since
it is far easier to compiite N (4) than the greatest root. Moreover it is casy to
set an upper bound for N(4) in various ways, of which the crudest is to notice
that, by (6.1), N(A) cannot excecd p times the greatest absolute value of any
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element of A. Also, the test in terms of the norm is applicable to asymmetric
as well as symmetric matrices.

From these considerations regarding the convergence of A™-we deduce at once
the following result. If the norm of a square matrix is less than unity, then all
the roots are less than unity in absolute value. The converse is not true, as the
example (6.8) shows.

For any real square matrix A, symmetric or not,

(6.9) M+A+ -+ < INATR

To prove this, we observe first that 2a;;,6;5 < ai; + aj:, and consequently
tr(4?) < tr(44’). From (6.7) and (6.6) we then have Z\} < tr(44’) =
[N(4). This reasoning shows incidentally that =A} is real, though the indi-
vidual roots may be complex. ‘

Not only for investigating convergence, but also in the important but neg-
lected problems of setting definite limits of error after a finite number of steps,
the norm is an extremely useful function. If a matrix is to be computed with
such accuracy that the error in each element is less than 3, and A is the matrix
of errors, the requisite accuracy will according to (6.1) be attained when N(A4)
< 8. The definition and theorems regarding the norm are valid without any
restriction to square matrices, for which alone the roots are defined. For
example, we may use the norm to derive an inequality concerning the solution
of the system of p linear equations

2aix; = i,
which may be written in matrix form AX = G, where A is a square matrix and
X and G are matrices each of one column and p rows. From (6.3) we find
N(@) < N(A)N(X), whence
N(X) > N(G)/N(4).

We shall now deduce a result which seems to be new to matrix theory and
which we shall later apply to find limits of error. If 4 is any matrix such that
1 — A is non-singular the identity

Q—A) 7 '=14+A+A+ - +A™ 4 4"0 - A)7

holds, and may be demonstrated exactly as if A were an ordinary scalar quantity.
Suppose that N(4) < k < 1. Taking the norm and using (6.2), (6.3) and
(6.4), we have

N — Ao+ b+ 4™ 4+ "N — 4)7).
Since k < 1 we may solve for N[(1 — A)™"]. Summing the geometric progres-
gion, we obtain:
-1 1

1/2
_ay<?
N -1 S0
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This holds for every positive integral value of m, and therefore in the limit when
m becomes infinite. Thus we find that

(6.10) N - D7 <" - 1 1

whenever N(4) < k < 1.

7. An efficient inversion procedure. Let Co be an approximation to the
inverse of a matrix 4, and consider the following sequence of operations. Cal-

culate

(7.1) . C1 = Cy(2 — AQ)),
and then in turn C; , Cs, - - - where
(7.2) Cmi1 = Cu(2 — ACS).

Let us inquire as to the conditions under which the sequence of matrices C.,
converges to A", the maximum error that may be committed in stopping at
any stage, and the rate of convergence. Suppose that C, is a good enough
approximation to A" to make the roots of the matrix

(7.3) D =1- AC,

all less than unity in absolute value. Then increasing powers of D approach
zero, and the convergence of C,, to A will follow from the relation

(74) Cn = A_l(l - Dzm)y
which will now be proved by mathematical induction. From (7.1) and (7.3),
Ci=A(AC)(1 + D) = A1 — D)1 + D) = A1 — DY),
so that (7.4) is verified for m = 1. Now assume (7.4) for a particular value
of m, and substitute it in (7.2). This gives
Cmy1 = A7(1 — D™ + D™) = A1 — D),

which being of the same form as (7.4) completes the induction.

If N(D) < k < 1 the roots of D are all less than unity in absolute value, as

shown in Sec. 6, and the foregoing result holds. Assuming this to be true we
now derive an upper bound for the error in C,, in terms of k¥ and N(Cy). Ac-

cording to (7.3),
A7 = (@ - D)L

Hence, by (7.4),
Cn— A7 = —A7'D"™ = -Cy(1 — D)™'D™".

Therefore, by (6.3), (6.4) and (6.10),
(7.5) NCn — A™") < NC)E™ (p]-”2 -1+ Té%)
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This sets an upper bound for the difference between each element of.C,, and the
corresponding element of ‘A™*. A slightly looser but simpler limit may be
obtained from this in terms of the greatest absolute value ¢ of any element of
Cy. Since N(Cy) < ¢p,

(7.6) N(Cwn— AT < K"cp (p”z -1+ l_i_k)

The great value of this method, whenever a good enough initial approximation
is available to make N (D) less than unity, is that the number of decimal places
of sure accuracy increases in geomefric progression, rather than in arithmetic
progression as with the usual methods. Consequently this method will always
be the most efficient if a sufficiently large number of decimal places is required.
Moreover, a limit can be set in advance for the number of iterations that will be
required in order to insure any required degree of accuracy. If certainty of
correctness in the sth decimal place is required we may choose m so that the
right-hand member of (7.6) is less than 107°/2. In terms of logarithms to the
base 10 the number of decimal places whose accuracy is assured by m iterations
is thus at least

7.7 2" |logk|—log2 — logep[p* — 1 + (1 — k)™

These limits of error can be bettered after some iterations have actually been
made. When C, becomes available we may calculate k, = N1 — AC,), which
may be used in place of k in the formulae just derived if m is replaced by m — r,
and is generally enough smaller than & to make a marked improvement.

The elements of the matrix of errors will actually, of course, be smaller than
the norm of this matrix in every practical case, in a ratio fluctuating about p".
The limits obtained by our formulae can be reached only in case the entire error
of the matrix C, is concentrated in one element, a very unlikely event. Thus
the limits given above will usually be quite conservative.

As the iteration proceeds the elements of the matrix D,, = 1 — AC,, = D™
will diminish rapidly in case of convergence. For this reason it may sometimes
be better to calculate C,,1 not directly from (7.2), but from the formula

(78) Cm+1 =Cn + CnDn

in which the last term can be regarded as a correction of C,, which will often be
very small. This method, however, lacks the self-checking feature, so that
its use at the final stage is dubious.

This iterative process has been noticed previously [12, p. 120], but without a
limit of error or observation of the geometric progression in the number of
accurate digits.

If the initial approximation is not good enough to make N(D) < 1, it may
be improved by other methods, such as those of Sections 4 and 5, to the point
at which this more rapid method becomes applicable. But in some cases (e.g.
the second example of §8) the method converges even though N(D) > 1, as
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may be demonstrated at a later stage at which the norm of the matrix corre-
sponding to D becomes numerically less than unity.

For the mass of least-square and other problems in which the inverse of a
matrix is needed, the best procedure appears to begin with one of the methods
described by Dwyer [7, 8, 9], carried to a small number of decimal places, and
then to calculate D from (7.3), a step equivalent to substituting the approximate
solution obtained into the equations. It may then be evident at a glance that
the norm of D is so small that the method of the present section will converge
rapidly to give as many more places as desired. If N (D) is too large for this,
and if gross errors have been eliminated, there is a choice between recalculation
from the beginning, the classical iterative process, and the acceleration of this
process by matrix-squaring, with perhaps some iteration by small groups. The
choice will depend partly on how much the elements of D need to be reduced.
The classical iteration (or sometimes the process of this section) is appropriate
for correcting a slight excess of N(D) over unity, its matrix-squaring extension
for larger alterations.

Let E, be the error in Cy , so that Co = A™ 4+ E,. Then by (7.1),

Ci= (A + Eo)(1 — AEy) = A™ — EyAE,.
If E, is the error in C; , so that C; = A™ + Ey , we thus have
E1 = —EoAEo .

If A is symmetric, we naturally take Cy as a symmetric matrix, and this will
cause Ky, C1, and E; also to be symmetric. If also A is positive definite, it will
follow from the last equation that E, is negative definite, or negative semi-
definite. Consequently the diagonal elements of C; tend to underestimate the
corresponding elements of A7') and never exceed them. Furthermore, the
value of a quadratic form whose matrix is A" will be at least as great as the
estimate of ‘it based on C;. The squares, both of the multiple correlation
coefficient and the generalized Student ratio [15], can be expressed as such
quadratic forms. Hence both these statistics are slightly underestimated when
C; is used in place of the true matrix of coefficients. Later approximations Cpm
do not change the signs of these biases, though they make their magnitudes
approach zero in case the conditions for convergence are satisfied, and definite
limits converging to zero are easily found for them in such cases from the results

above.

8. Illustrations and further comments. We shall indicate symmetric matrices-
by writing only the elements on and above the principal diagonals.
To illustrate various methods Dwyer [7] has evaluated the inverse of

1.0 4 b .6
1.0 3 4

1.0 2

1.0

A=
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as
2.0710 — .1913 - 7759 —1.0109
1.2842 — .2186 — .35562
1.3989 2732
1.6940

If the accuracy of the calculation had been only such as to insure correctness
in the first decimal place the approximation to A~ would have been

2.1 -2 -8 —1.0',
_ 13 -2 - 4
Co=| 14 3|
1.7

It is easy by mental arithmetic alone, without the use of a machine or side
calculations, to see that

—.02 02 0 —.01
. _ 0 0 —-.02 .03
D=1-4C = 01 —-.01 0 —.02
—.02 04 —.02 0

and further that N(D) = 4/.0052 = .072. This is so much less than unity
that the iteration process of §7 will converge rapidly. As a matter of fact,
without determining the sum of the squares of the elements of D we could
have observed at a glance that N (D) must be less than four times the greatest -
absolute value of an element, and thus have a value less than .16. In the same
way N(C) is seen to be less than 8.4; actually it equals 3.8588. The latter
value, with ¥ = .072, p = 4, substituted in (7.5) gives for the norms of the
successive error matrices E,, = Cr, — A7),

N(Eo) < 8.03k = .578,
N(E)) < 8.03k* = .0414,

N(E:) < 8.03k* = .000216,
N(Es) < 8.03k* = .000 000 0058.

This promises merely that after one application of the iterative process the
results will be accurate to one decimal place, which we know already but might
not have known for sure in such a case; that a second iteration will give results
accurate to three places, and that a third will give results accurate to about
eight places. These estimates will however be improved after actually com-
puting C; . This may well be done by (7.1) if a machine is available; otherwise,
and almost as easily, by (7.8) we obtain

2070 — 190 — 776  —1.011
0 = 1282 — 218 — 355
re 1.398 274

1.692



18 HAROLD HOTELLING

and N(C;) = 3.8163. (We have now passed beyond the stage of easy mental
calculation, but might alternatively use the easy upper bound 8.28 for N(C1),
obtained as before.) We shall use this value instead of N(Co) in (7.5) and at
the same time use for & the value of N (D), where
Di=1—AC=1—- AC(1 +D)=1- (1 — D)1+ D) =D".

This is most easily found from D, from which it may be written down directly
by mental calculation:

6 -8 -2 8
-8 14 —6 4

2 —6 6 —4

2 -2 -8 18

The norm of ‘D; is seen by the crude method to be less than .0072, and is actually
.003212. Taking the latter value for k we have, similarly to (7.5),

N(E,) < NCOF"™™" X 200323 = 7.645k™ "

D1 = ].0_4 X

Thus,

N(E,) < .0246,
N(E;) < .000 0789,
N(E;) < .000 000 000 8.

The reduction in these limits of error is due to the difference between [N D) =
.0052 and N(D*) = .003212.
Using C: = C; + C1D, we obtain:

20710366 — .1912542 — .7759568 —1.0109294
C, = 1.2841486 — .2185780 — .3551910
- 1.3989056 2732260 |°
1.6939852

From this we calculate

112 —164 — 40 168

| -164 288 —136 88
D:=1-ACG=10"X1 ‘g _128 100 —104]’
48 — 32 —184 364

agreeing with the value obtained from the formula D, = D}, and finally C; =
C:(1 + Dy) =

2.071 038458 — .191256831 — .775956284 —1.010928 962
1.284 153 005 — .218 579235 — .355 191 257

1.398 907 104 273 224 045

1.693 989 071

which as shown above is correct to at least eight decimal places, and doubtless
more, in each element. The estimate of A™! obtained by Dwyer by several
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direct methods to four places is corroborated by this result excepting for a
slight error in the element in his first row and third column.

(ii) Suppose that the approximation in the foregoing example had been even
cruder, with determination of the elements of A only to the nearest integer.
This would give

2 0 -1 -1
1 0 O
Co = 1 o}’
2
1 -4 5 -2
-1 0 1 —4
D= %9 _3 5 1
0 -4 4 -4

The sum of the squares of the elements of D is 1.51, so that the norm is greater
than unity, and it is not clear at this stage whether the iterative process we have

been using will converge or not. But upon computing
15 —-.11 18 27
Dt = .01 17 -.16 19
15 —.27 36 .09
12 .04 0 .36

we find that N(D*) = 1/.6093 = .7806, and since this is less than unity we are

assured that the process will converge.

use of a machine or written side calculation:

Ci=Co+ CD =

We may write immediately, without

Utilizing the value of D? already determined, we readily find

Cz = Cl + 01D2 =

20 -1 -9 —-11
1.0 1 - 4
1.0 3
1.4
2032 — .138 — .848 —1.056
1.138 —042 — 372
1.182 274 |°
1.558

From this point on a machine is needed for efficiency. The next step is to
calculate D*, either by squaring D? or by the formula D* = 1 — AC, ; both
methods may be used as a check. The result is:

D'=10" X

808 — 730 1094
20 786 — 830
846 —1560 1998
616 80 152

1330
890
540 | °

1696
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We may now consider the accuracy of further approximations, inserting in
(7.5) N(C;) = /13.385572 = 3.659 in place of N(C,), m — 2 for m, and. k =
N[D' = .4119. Thus

N(E:) < (9.8807)(.4119) = 4.0699
N(E;) < (9.8807)(.4119)° = 1.6764
N(E,) < (9.8807)(.4119)* = .2844
N(Es) < (9.8807)(.4119)° = .00819
N(Es) < (9.8807)(.4119)" = .000 006 79.

Because of the roughness of the initial approximation in this case the con-
vergence is rather slow at first, but later it is much accelerated. So far as the
limits found above show, five iterations are necessary to be sure of even approxi-
mate two-place accuracy in the results (somewhat better limits could be ob-
tained after actually calculating C:, still better ones from Cj, efc.), but the
_sixth iteration gives results sure to be accurate nearly to five places. Perhaps
the best treatment of a numerical case of this kind is to work out the solution
by Dwyer’s method to two, three or four places, and then to apply the iterative
process once, and as many more times as necessary to obtain the required
accuracy.

The final step should, for the sake of checking, be a calculation of C,4; from
Cm(2 — AC,), rather than from C» + C.D™".

Upon observing that N(D) > 1 we might have used the Seidel process to
improve each row of Co. This process is however extremely slow, and in the
present example is markedly inferior to that used above.

(iii) If we start from the result which Dwyer gives to four decimal places as
Co , We obtain

1 4 -3 -2
e — 10 3 -2 1 0
D=1-4C=10"X| 3 "3 _; 1

0 2 0 -2
We find N(Co) = 3.8188, and putting ¥ = N(D) = .00085 we have from (7.5),
N(E.) < 3.8188 (.00085)*"(2.00085) < (7.6408)(.00085)".
Thus N(E,) £ . .0000055,
N(E;) < .000000 000 0004.

9, Certain other methods of successive approximation. A class of methods
for solving linear equations, which may be extended to find the inverse of a
matrix, is given by Frazer, Duncan and Collar [12, pp. 132-133], generalizing
a method of J. Morris.- In this method the matrix A of the coefficients in the

linear equations, or the matrix to be inverted, is written as the sum of an easily
inverted matrix V, for example a diagonal or triangular matrix, and another
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matrix W, Then
A=+ VWV = (1 - N7,
where f = —V'W. If the latent roots of f are all less than unity in absolute
value, and a fortior: if N(f) < 1, the series
1+f+f+f+=0-0"
converges. To solve the equations AX = @, where X and G are column vec-
tors (i.e. matrices of one column) is to determine
X=4"¢=(Q1-'H,
where H = V7'G. The method of Frazer, Duncan and Collar is to calculate
the successive vectors
Xo=H Xi=H+fXy,, Xo=HA+fX\, -, X,=H+ X, -.
It is clear that
X, =Q+f+f+ - +H.
The error in X, is therefore the vector
E, = f“(l _ f)—IH.

We may ascertain a limit for the errors if N(f) < k < 1. Indeed, by (6.3)

and (6.10),

NE) < k(e - 1+ 1) van,

where p is the number of unknowns; and no individual unknown will have an
error greater than N(E,).

Convergence of this method, if existent, may be accelerated by matrix-
squaring. Indeed, upon calculating in turn f*, f*, f°, f%, - - - by repeated squar-
ings, we need only to work with the sequence

Xo=H, Xi=Q10+4+nNX, X=(0+//MNX,
Xi=(A+f9%, Xu=(QQ+75%, -,

omitting the intermediate approximations. This will be worth while for solving
a single set of equations only in case such great accuracy is required as to de-
mand the use of rather high powers of f. Each squaring of f consists of the
formation of p® sums.of products, so that determination of, say, Xs by this
method requires 4p® such sums after f has been determined, in addition to the
5p involved in finding X;, X3, X7, X1, Xu after the squarings. By the
method of Frazer, Duncan and Collar the corresponding number of sums of
products would be 31p. Since 4p® + 5p < 31p only in case p < 6, it appears
that the matrix-squaring is justified only for six or fewer unknowns unless a
larger number of terms is required. Furthermore, increasingly high powers of
a matrix, to be useful, need usually to be expressed with more and more signifi-
cant digits.
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If more than one system of equations with the same matrix A is to be solved,
these methods have the advantage that the same matrix f can be used for all
the vectors @ of right-hand members. In such cases the value of matrix-squar-
ing is enhanced in comparison with that in which only a single system of equa-
tions is to be solved. Determination of A™ is equivalent to solving p such
systems in which the several column vectors G together constitute the identical
matrix. If more than p of these systems of equations are to be solved it is best
to find A~ and then form the various solutions A™'G from the columns @ of
right-hand members.

It is worth noticing that the matrices 1 + f, 1 + f7, etc., are commutative, as
are all rational functions of a single matrix. In difficult cases this may occa-
sionally provide a useful check.

This method differs from the other iterative methods with which we are
concerned. in that errors of calculation are not automatically corrected by it.
This is a serious disadvantage, especially for the inexperienced computer, and
makes desirable the careful maintenance of a check column. On the other hand,
it does not require any preliminary knowledge of the solution. Indeed, it should
be classified rather with the direct than with the iterative procedures on this
account.

The critical element in determining the success of this method is the possi-
bility or impossibility of finding suitable matrices ¥V and W, such that V™ can
be calculated easily, and such that the elements of f = — VW are sufficiently
small to make the roots all numerically less than unity. Morris uses for V the
matrix derived from A by replacing all the elements above the principal diagonal
by zeros. This insures that the corresponding positions in V™ are also occupied
by zeros. The other elements of V" are then determined fairly easily. If the
non-diagonal elements of A, whieh appear in W, are sufficiently small, this fact
will insure small enough elements in f to make convergence rapid.

A second method, given by Frazer, Duncan and Collar, chooses for V a
diagonal matrix (one having only zero elements except in the principal diagonal),
or simply the unit matrix. This choice reduces the labor of inversion to a
minimum. Successful convergence will take place when the non-diagonal
elements of A are sufficiently small in comparison with those in the diagonal,
if V is taken as the diagonal matrix containing the diagonal elements of 4.

A third method which may be useful in certain cases, particularly when some
but not all of the unknowns are required, is the following. Let A be partitioned:

]
A==
c,d

where a and d are square submatrices which, being of lower order than 4, are
more easily inverted. Let V and W be the correspondingly partitioned matrices

v a:o] w 0,'b]
“lLold) “Lelo]
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Putting s = a™'b, t = d'c, we have:

B 0_{ s , st| O] (st)*! 0]
- [tio}’ f‘[olts ’ f‘[o ]

If only the first ¢ of the p unknowns are required, @ and b may be taken as
matrices of ¢ rows. If Gy and H; consist respectively of the first g. rows of G
and H, and if G, and H, consist of the remaining rows, then H; = a~'Gy and
H,; = d7'G». Then, in case of convergence, the first ¢ rows of the solution
are given by

(A + st)[l + (st)'0L + (s6)*] -+ Hi — s(1 + t8)[1 + (&)’ + (ts)*] - - - Ha.

Convergence to the correct values is assured here if the norm of any power of
st is less than unity, as is true if and only if the absolute values of all the roots of
st are less than unity. This is easily seen to be true, since as m increases

lim (ts)™ = #[lim (st)™ s.

10. A simple iterative method of solving equations. An entirely different
method, whose convergence is independent of the initial trial values, is the
following. To solve for the column vector X the equation AX = G, we may
start with an arbitrary column of trial values X, and a scalar constant h, and
then for m = 1, 2, --- calculate X,, from

Xn=hG + (1 — hA) X .

If X, is equal to X,,_; it is obviously the desired solution. Otherwise there
is an error

Xp—X=(0G—X)+ (1 — hd)Xpa = (hd — DX + (1 — hA)Xns
=1 = hA) X — X) = ==+ = (1 — hA)"(Xo — X).

This converges to zero as m increases provided the latent roots of 1 — hA are
all less than unity in absolute value. If A has only real roots this is equivalent
to requiring that they all be between 0 and 2/h. In particular, if 4 is a correla-
tion matrix, its roots are all real and positive. Since their sum = #r(4) = p,
where p is the number of rows, all roots of A lie between 0 and p. Conse-
quently the process will converge in this case if 0 < kb < 2/p. It is desirable, in
order to make the error diminish as fast as possible, to take h as large as is con-
sistent with convergence. In some cases a lower limit than p will be known for
the greatest root of A, and then a smaller value than 2/p can be taken for A.
A limit of error is obviously set by

NX,—-X) < [NQ - hA)]"NX, — X).
This method can of course be applied to find the inverse matrix.

It can also be accelerated by matrix-squaring. If we put D = 1 — hd4 we
have for example,
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Xs = (1 + D)1 + D*(1 + DG + D°X,.

The last term will approach zero in case of convergence, and may be omitted
in this type of calculation.

Thus accelerated, the method gives decimal places of accuracy increasing in
geometric instead of arithmetic progression, and is remarkably simple and
straightforward. It is at its best when the roots of A are known to be closely
clustered about unity. A criterion of this is that Z(\; — )’ shall have a small
value, where X is the mean of the p roots A\;. This sum of squares equals
Z\! — p for a correlation matrix 4, and 2\} = tr(4%) = Z2a?; = p + 2. a?;,

<7

H
so that ) \
E ()\,' hand )\)2 = 2%&.‘,‘.

Smallness of this quantity is favorable not only to this iterative method but
also to those of §§4 and 5.

11. Use of the characteristic equation for inversion and for finding deter-
minants. A method differing greatly from the others is based on the Cayley-
Hamilton theorem that every matrix satisfies its own characteristic equation
[29, p. 23; 4, p. 296]. 'This is the equation

an — A ax A1p

(153] A — N .- Q2
= "
@p Ap2 Ttt Gpp — A

= — epuid F €N — -or + (=) A" 4 (=) =0,

where e, (r = 1, 2, --- , p) is the sum of the products r at a time of the roots,
and also equals the sum of the r-rowed principal minors of the matrix A. Sub-
stituting A for A\, which by the Cayley-Hamilton theorem is legitimate, multi-
- plying by A7, and transposing a term, yields

(11.1) A =epq — €p2d + e, 347 — -+ + (=) 04" + (=) A",

This equation provides a direct method of calculating A™ as soon as the ele-
meptary symmetric functions e, of the roots of f(\) = 0 have been evaluated.
This evaluation may be accomplished by means of Newton’s identities [4, p. 243]

connecting the elementary symmetric functions with the power-sums. If s,
is the sum of the rth powers of the roots, these formulae give:

=8
€ = %(01 8 — 82)
es = 3(e281 — €18+ 83)

.....................

1
e, = » (ep—181 — €p282+ -+ £ 8p).
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The procedure is to calculate in turn A%, A%, .-, A*™, then to obtain the s’s
from the diagonals of these matrices, since s, = #r(4"), then to obtain the ele-
mentary symmetric functionse; , - - - , e, of the roots from Newton’s formulae,

and to substitute these in the right-hand member of (11.1). It is then only
necessary to find and divide by e, , which equals the determinant of A. For
this, and for checking the calculations, there is a choice of methods. We may
find the diagonal of A%, without troubling to compute the whole of this matrix,
from the product AA”™ and also; to provide a comprehensive check, from
A?™'A or possibly from the product of two powers of A of exponents approxi-
mating p/2. The sum of these diagonal elements of A” is s, , which may be
substituted in the last of the Newton formulae above with the quantities pre-
viously found to give e, . An alternative method is to multiply 4 by its adjoint
e,A™", which is computed by (11.1), to obtain the determinant e, .

The total number of multiplications, divisions, and additions is distinctly
greater by this method than by efficient direct methods such as that of Dwyer
[7, 9]. On the other hand, this method is straightforward and easily checked;
the divisions involved are of the simplest character, consisting only of the
divisions by 2, 3, - - - , p in Newton’s formulae and of the final division of the
adjoint matrix by one number; and for large matrices it is ideally adapted for
matrix multiplication by means of punched cards. A further very important
advantage of this characteristic function method is that it' yields considerable
additional information as a by-product. Not only the determinant of the
matrix but the sums s, of the principal minors of each order r are determined.
Moreover the characteristic equation, whose coefficients would be exceedingly
difficult to compute directly from definitions for a large matrix, is by this method
made available for the study of the latent roots, which have great interest in
themselves for numerous purposes.

The characteristic function method is applicable whether A is symmetric or
not. If it is symmetrie, the same is true of each of the other matrices appearing
in the calculation, so that it is necessary to write only about half the elements.

An illustration using a symmetric matrix has been given by M. D. Bingham
[3]. In the illustration below the matrix is not symmetric and has complex
double roots and non-linear elementary divisors, so that evaluation of the roots
by iterative methods, though possible, would be very slow and laborious, as
shown by Aitken [2]. This is indeed the same example used by Aitken in this
discussion. But it should be noted that the associated latent vectors, which
are determined along with the roots in the iterative processes, require the
solution of sets of p — 1 linear equations if the roots are found directly by solving
the characteristic equation.

15 11 6 -9 —15
1 3 9 -3 - 8
Let A= 7 6 6 -3 —11
7 7 5 -3 —11
17 12 5 ~10 —16
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Then

—40 — 9105 — 9 —40

—76 —43 32 44 23
A* =] —55 —22 62 20 —10
—61 —25 65 20 — 7

—40 — 9 110 —14 —40

—1342 —978

944 522

A= (4% =| — 358 —333

— 175 —243

—1312 —963

From the diagonals of these matrices,

81 5, S2 —41,
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—617 —380 64 499 256
—260 —189 —316 355 280

, A'=| —443 —279 —106 415 259 |,
—464 —300 —136 439 292
—617 —385 69 199 256

—2063 2444 2006

—1982 — 10 503

—2435 1307 1334 | = AA® (check).

—2645 1247 1355

—2978 2444 1991

§ = =217, s = —17.

Calculating the sum of the diagonal elements only of A° (on a machine, without

listing them separately) from 4A* and also, as a check, from A*4® we find S5

3185. Newton’s formulae then give
€ = 5, € = 33, 63 = 51, €y = 135, €5 = —225,
the last value being that of the determinant of A. We readily find from (11.1),
—207 64 —124 111 171
1 —315 30 195 —180 270
= - 595 | —315 30 — 30 15 270
1 —225 75 — 75 0 225
—414 53 52 — 3 342

So far, all results by this method are exact, but the division by 225 introduces
recurring decimals and therefore a limited validity for the form

9200 —.2844 5511 —.4933 — .7600

1.4000 —.1333 —.8667 .8000 —1.2000

A7V =1 14000 —.1333 1333 —.2000 —1.2000
1.0000 -—.3333 .3333 0 —1.0000

1.8400 —.2356 —.2311 0133 —1.5200

The characteristic equation
FO) = X — 5\ + 33\° — 51\ + 135\ + 225 = 0
may in this case be solved readily, since
FO) = 4+ DO — 3\ + 15)%
III. Latent Roors AND VECTORS

12. Direct and iterative methods. If the latent roots but not the latent
vectors of a matrix are desived, as for example in a preliminary study of vibra-
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tions in machinery being designed, where the important question is whether any
root has a positive real part, it is only necessary to find the characteristic equation
and to work with it by the methods of the theory of equations. The coefficients
in the characteristic equation are the sums of the r-rowed principal minors
(r=1,2,---,p), and are expeditiously found directly from this definition for
matrices of four or fewer rows. For large matrices, however, the calculation of
so many large overlapping determinants is wasteful of effort, since many vir-
tually equivalent calculations must be done repeatedly. Indeed, calculation by
determinants in a great many situations, including the solution of linear equa-
tions, is open to this objection. The methods of §11 yield the characteristic
function in a manner which, for large matrices, appears to be the best available,
excepting perhaps the new method of Samuelson [25a].

When, as is commonly the case, the latent vectors are desired, a straight-
forward calculation directly from the definitions would require not only setting
up and solving the characteristic equation, but also the solution, in the case of
each root, of the set of linear equations in p unknowns whose matrix is obtained
from the characteristic matrix by substituting the particular root for A. It is
this solution of linear equations that aggravates greatly the computational
labor when direct methods are used.

An ingenious method has been used by R. A. Fisher [11, pp. 299 ff.]. Starting
with a four-rowed determinant whose elements are linear functions of an un-
known 6, Fisher calculates the value of the determinant for selected values of 6,
and then by interpolation using divided differences finds the largest value of 8
making the determinant zero. The point of the divided difference method
is that it avoids the direct calculation of the determinant for more than a few
values of 6, replacing it essentially by calculation of the fourth-degree poly-
nomial in @ from its differences and using the fact that the fourth divided dif-
ferences are constant. The linear equations are then solved in a direct manner.
If applied to large matrices this would be very laborious, but it compares fa-
vorably with calculation directly from definitions in the manner suggested by
reading books on algebra and solid analytic geometry. But even:with large
matrices Fisher’s method may perhaps be the best in certain cases, e.g. if all
that is desired is the root of median absolute value and if this root is real, or if
it is desired to find a few real roots that are close together, with numerous others
greater and another numerous group less than these. This is because the itera-
tive methods give the real roots in the order of their absolute values, beginning
with the greatest, but with the possibility of obtaining them in the opposite
order by first inverting the matrix. The Mallock electrical device [22] may be
used to calculate determinants, and thus to apply this method.

If A and B are p-rowed matrices and B is non-singular, the determinantal
equation |4 — AB| = 0 is equivalent to |AB™ — A| = 0 and also
to | B4 — | = 0. The column vectors X; satisfying (4 — AB)X = 0 also
satisfy (B™'A — A)X = 0 and the row vectors V; satisfying V(4 — \;B) = 0
also satisfy Vi(AB™ — \) = 0. If A and B are symmetric, V; = X:. Thus
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any problem of this type is reducible to that of finding latent roots and vectors,
upon calculating B~ by any method and multiplying in either order by A.

The fundamental iterative method for finding latent roots and vectors of 4
begins with an arbitrary matrix X, of a single column. This column vector
is premultiplied by A to obtain a new column vector X;. If, as is possible
though unlikely, the elements of X; are proportional to those of X, , they con-
stitute one of the latent vectors of 4, and the factor of proportionality is the
corresponding root, for then X, and X; are solutions of the matrix equation
(4 —N)X = 0. Itshould be observed that the latent vector is determined only
to within an arbitrary scalar factor of proportionality, though we may some-
times find it convenient to normalize the vector by choosing the factor in such
a way that the sum of the squares of the elements, which equals the square of
the norm, is unity.

If X, is not proportional to X, , the operation may be repeated by calculating
X, = AX,, then X; = AX,, and so on. If these vectors are then normalized,
or if they are divided by, say, their respective first elements, then the other
elements will (in the cases of greatest practical importance) gradually approach
stable values which will determine one of the latent vectors, while the suc-
cessive factors of proportionality will approach the corresponding root. The
convergence of this process is however apt to be rather slow. Fortunately
there are several known ways of accelerating it.

Matrix-squaring is the first of these methods of accelerating convergence
[17, 19]. It is clear that X, = A‘X,. Consequently one application of the
iterative process with A* is equivalent to f iterations with A. It is relatively
easy to square A, and then by repeated squarings to form A*, 4%, A", etc. The
economical limit of this process is determined partly by the necessity of re-
taining more and more digits in the successively higher powers, but up to a
point not yet determined exactly it presents very great advantages. For pro-
ceeding to the determination of latent roots of other than the maximum absolute
value, with their associated vectors, this method lends itself to further short-
cuts [17, 2], which seem to give it an advantage over an older method [13].

Another method of accelerating convergence, introduced by A. C. Aitken,
and referred to by him as the §~method, uses the ratio ¢(f) of an element of
X 41 to the corresponding element of X, in the function

ot + ot — 1) — [s@®))
ot + 1) — 26(t) + ot — 1)’

which converges rapidly toward the root A; of greatest absolute value. If a
constant ¢ is subtracted from all three of the quantities ¢(f + 1), ¢(f) and ¢(t — 1)
before computing the foregoing function the result is unchanged. This fact
reduces greatly the computational labor, since the decimal places of A; already

determined are common to all three.
If A is symmetric and we form the scalar products of X, = A ‘X, with itself
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and with X,;; we have
XiX, = XoA**X,, XinX:= Xod*"'X,.

The ratio of these two scalars gives an estimate of A; which on the basis of the
ratios of consecutive elements in a given place in the trial vectors would not be
reached until a later stage of convergence, corresponding in fact to twice as
many iterations. Aitken has pointed out the great value of this procedure for
finding the root (but not the latent vector), and has extended the idea to asym-
metric matrices, where there is a complication because of the existence of two
latent vectors for each root, one determined by premultiplying by A, the other
by A’.

The comprehensive paper [2] of Aitken gives an extremely valuable account
of the whole problem and processes of finding the latent roots and vectors, in-
cluding a survey of the various cases arising when there are multiple roots,
complex roots, and non-linear elementary divisors. This paper should be studied
carefully by anyone with any substantial numerical problem of this kind.

A method using rotations of two variables at a time has been devised by T. L.
Kelley [21].

The remainder of this paper will be concerned with some results, believed
to be new, by which useful upper limits can be set for the errors of the results
yielded by iteration for latent roots and vectors of a symmetric matrix. To
find such limits of error for asymmetric matrices appears to be a much more
difficult and as yet unsolved problem.

13. Accuracy of iteration with symmetric matrices. If A is symmetric, as
it is in most statistical problems (though with some exceptions, as in [18]), the
roots are all real and the elementary divisors are linear. Moreover there exist
an orthogonal matrix H and a diagonal matrix

MO O
10 X O
A=10 0 %
such that
(13.1) A = HAH'.
Since H is orthogonal, HH’ = 1, and therefore
(13.2) A = H'AH, A' = HA'H'.

We may associate with the successive trial vectors X = AX .1 = A‘X, the
vectors Y; = H'X,; then X, = HY,. From these equations and the second
of (13.2) it is clear that

Yg = H’X; = H'A‘Xo = A‘H'Xo = A'Yo.



30 HAROLD HOTELLING

Hence, if the elements of Yo are y1, *++, ¥»,

Y’
Yehe
Y= .
Yohs'
Now let oz be the scalar product of X, and X, :

and let
ar _ Zyini*

(13.4) T o T DyIaE

If A has a negative root this fact will become evident after a certain stage in
the iteration used to obtain this root by an alternation of sign of the numbers
in any one position in consecutive trial vectors. However A*, which as pointed
out in §12 may well be calculated anyhow, has only positive roots, which are
the squares of the roots of 4, and has the same latent vectors as A. Hence we
shall have results of sufficient generality for real symmetric matrices if we as-
sume that all roots of the matrix with which we work are positive or zero, i.e.
that it is positive definite or semi-definite. Let us choose the notation so that

M2N2r 2020
Then if £ > 0,
ane = ZYi < M2y~ = Mare.
Hence, by (13.4),
(13.5) M > [ VR
It is known [23] that if @1, -+, ap, €1, -+, Cp are any positive numbers, the

function
(cxa'{ + -+ cpaﬁ,)”"
C1 + oo + cp

increases monotonically with k. Putting ¢; = Yy e = NFif A = 0, and
¢ = a; = 0if \; = 0, we find that the right-hand member of (13.5) decreases
monotonically as k increases. Hence the best of these lower bounds for A is
that corresponding to the least value of k that can be used, namely ¥ = 1.
Consequently the lower bound to be recommended for A, is given by

1

(13.6) M2 —.
Vit

From (13.4) it is easily seen that this lower bound approaches A\, when ¢ increases,
provided ¥ #= 0.
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An upper bound for A, is available from the fact that the sum of the {th powers
of the roots is the trace of A*. Since we assume all \; > 0 this gives

M < (tr A9V

That this upper limit converges to A, when ¢ increases is easily seen from (6.7)

upon consideration of log (ZA5)Y".
A lower limit alternative to that of (13.6) is also available from tr (4°), and
likewise converges to A; . Indeed, since A, is the greatest root, we have

M > (tr Af/p)Ye.

We now seek limits of accuracy for the latent vector corresponding to A, and
estimated by X.. If we call this vector X, and define ¥ = H'X,
then lim Y7 = Y*, where Y* is the normalized form of Y. Y* has as its ith

element

. i\i

lim — %% |
o V/ZyE AT
If y1 # 0, and \; > N2 = A3, this limit is +1 if ¢ = 1, and is otherwise 0. We
take the value of Y to be

1
0 M

0

0
in this case. If \; is a multiple root, the limit of X} will depend on the initial
values y; .

A useful'measure of the closeness of approach of X, to X is the “correlation
t
coefficient” r, = X¥X; = Y¥Y; = _h s
\/zy;)\?'

which obviously approaches unity as ¢ increases if y = 0 and A, is a simple
root, or if Ay = Az = +++ = X, > A;41 and we arrange our definitions so that
n#0andy, = --- =y, = 0. Interms of the notation previously introduced,

t
ry = f}i‘l . The sum of the squares of the differences of corresponding elements
Qot
of the normalized vectors X* and X, ie. [N(X* — XI)P is 2(1 — r,), and
therefore approaches zero as r; approaches unity. We shall seek for r; a lower
limit approaching unity as ¢ increases.
Let us now put

2\2 3
= y‘2x‘21 = Y A . Then T? = Wy and Z Wiy = 1.
ZY;i A Got =

Wie
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Fork > 1,
are = ZYNFTE > N T A s AT SN - yEADD
= A o (War + o+ A+ Wp) = Aol — W) = A an(l — 7o)
_ Mo
Ot

. rf> 1 =1 —Vk,)\'{.

This unfortunately is not a very useful lower bound for r, , since it approaches
zero, not unity, as ¢ increases.
A more satisfactory result is obtained as follows. Let 7; = A;'. Then

P
vee = 2 wim: . For any value of ¢ we may consider a distribution of a variate
Fm1

taking the positive values n;, - - - , 5, with the positive weights, or probabilities,
w;:. The kth moment of this distribution about 0 is »,. In particular the
first moment is »,, , and is evidently at least equal to »; , which is the least of the
n¢. The standard deviation is ¢ = v/ ve; — vi,. Astincreases, », will ap-
proach #; and ¢ will approach zero. Hence, if \; > Az, a stage will eventually
be reached at which »,; < 5. Let

k=7n—'l'u
o

By the Tchebychef-Bienaymé inequality,
1
Wy + 00+ W < @’

and therefore

2
2 Voo — Vit
rm=wy>1-— )
(n2 — Vi)

provided ¢ is large enough so that »;; < %.. This lower bound approaches
unity, as desired, when ¢ increases.
If Ay = N2, - -+ = A > Mg, the same proof shows that

2
Vo — K1e

b
Nre1 — l'u)z'

provided »: < 7,41 . The left member is the correlation of X, with that one
of the k-parameter family of latent vectors corresponding to the multiple root
for which the correlation is a maximum.

In order to utilize these results we need a lower bound for 7., or for 7,4 .
In case \; # X this requires an upper bound for ;. Such an upper bound may
be found at the next stage through working with the reduced or ‘‘deflated”
matrix used in [17]. Thisis 4; = A — MXX’, where X is the normalized latent
vector corresponding to A; ; and A\; < tr (41).

Since we have arrived at a definite lower limit for r, which approaches unity

wl(.+)+ . +w’£+) >1 —
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as the iterative process proceeds, and since we have found for A\; upper and
lower bounds converging to it, a solution has been found for the troublesome
problem of the degree of accuracy in stopping at any stage of the iteration for
finding the greatest root and the associated latent vector. It would be possible
to go on to find from these results appropriate inequalities for 4, , and then by
repetition of the above arguments, for \; and the second latent vector; and then
likewise for the second reduced matrix A, and the further roots, vectors, and
reduced matrices in this cyclic order. These steps may well be taken by the
computer who has mastered the above argument in connection with a numerical
example.
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