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1. Introduction. There are many cases in testing whether two samples are
from the same population in which no assumption about the distribution func-
tion of the population can be made except that it is continuous. A. Wald and
J. Wolfowitz, [1], have developed a method of testing the hypothesis that two
samples come from the same population based on certain kinds of runs of the
elements from each sample in the combined ordered sample. W. J. Dixon, [2],
has introduced a criterion for testing the same hypothesis based on the number
of elements of the second sample falling between each successive pair of ordered
values in the first sample.

The problem considered here is that of devising a simple method of testing
the hypothesis that two samples come from the same population, based on
medians and quartiles, given only that the distribution function of the popula-
tion is continuous. The simplest method may be described briefly as follows.
We observe the number of elements, m; , in the second sample whose values are
lower than the median of the first sample. Since the distribution of m;, is inde-
pendent of the population distribution, we are able to compute significance
points from the distribution of m;. These points may then be used for testing
the hypothesis at a given significance level. This will be referred to as the case
of two intervals.

This method may be easily extended to the case of any number of intervals.
In this note we shall consider the extension to four intervals by using the median
and the two quartiles of the first sample to establish four intervals into which
the elements of the second sample may fall. Then, if the second sample is of
size 4m, it will be shown that, under the hypothesis that the two samples come
from the same population, 1 of the second sample, or m elements will be expected
to fall in each interval. Let the number in the second sample which actually
fall in each interval be m;, ms, ms, and my respectively. The test function
here proposed is,

(my — m)’ 4+ (my — m)’ 4 (ms — m)" + (m4 — m)"
Im? !

(1) C =

where 9m” is a constant, which forces C to lie on the interval 0 to 1. If the m, ,
(Z = 1, 2, 3, 4), have values quite different from their expected value m, it is
apparent that C will be large. Therefore the greater the value of C the more
doubtful is the hypothesis that the two samples come from the same population.
Significance values of C will be computed for several sample sizes. The ques-
tion of whether C is the “best”” four-interval criterion for testing the hypothesis
that two samples come from the same continuous distribution is an open one
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which would depend for its answer on an extensive power function analysis.
We shall not go into this analysis, however, but shall use C on intuitive grounds.
This case will be referred to as the case of four intervals. The extension of the
method of the case of four intervals to any number of intervals presents no new
difficulties in derivation, however we shall confine our attention to the cases of
two and four intervals.

2. The case of two intervals. Suppose f(z) is a continuous distribution func-
tion with probability element f(z) dr. Let us draw a sample of size 2n 4 1 from
a population having this probability element. Let the elements in the sample
be z1, X2, - - -, Tany1 ordered from least to greatest. The median of this sample
will be 2,1 . Now consider a second sample of size 2m, and let m, be the num-
ber of observations, whose values are less than z,,;. We call my = 2m — m,
the number of elements in the second sample greater than ., .

Zn+1
Letp = [ f(x) dz be the probability of an observation having a value less

than z,,;. Then the probability of an element having a value greater than
Zny1is (1 — p). Thus we have the relation f(z,.1) dz,+1 = dp. The probability
law of the median, z,,, given by the multinomial law" is

2 nt ., n

nlllin!
The conditional probability law of m, , given z,.,, is then

om)! - m
(2m) p™(1 — p)™ ™.

ml'(2m - ml)!
From this it follows that the joint probability law of x,., and m, is the product
of (2) and (3) or

2 Pr(Znp) =

3) P,(m, | Tpp1) =

(2n + 1) ! (2m)' n+my n+2m—m
(1 — ! dp.
nin!m!(2m — m,)! P P) P
We may integrate (4) with respect to p from 0 to 1 as a-Beta Function, leaving
the distribution function of m, independent of the population probability ele-
ment f(z) dr. We get for the distribution of m, ,

@ P(m1 , Tpy1) =

1 The multinomial law may be stated briefly as follows:
If a trial results in one and only one of the mutually exclusive events E, , E: , --- , Ei ,
the probability P that in a total of n trials, n, will result in E; , n;in E; , --- , ¢ in E} ,

k
(Z n = n) , i8 given by
1

”l n n n
-,—,———,m‘pz'---m"
n: Ngl **° Ng!

k
where p1, P2,* , Di, (Z i = 1) , are the probabilities of a single trial resulting in
an

E, ,E,, .- , E; respectively.
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@2n + D1(2m)!(n + m)!(n + 2m — my)!
nin!lm!(2m — m)!(2n 4+ 1 + 2m)!

From (5) a simple recursion relation between P.(m;) and P,(m; + 1) may be
determined from which the probabilities of various values of m may be rapidly
computed. For large samples it can be shown that under certain regularity
conditions, the ratio, [m; — E(m1)]/om, may be approximated by the normal distri-
bution® with zero mean and unit variance. The derivation is similar to that of
the four-interval case, which is taken up in greater detail. It will be found by
the use of (4) that the expected value of m; is m, and the variance of m, is m +

m@m — D(n +2) _ m®. Using this information, values of m, for various

(%) Py(m) =

2n + 3
TABLE 1
The Case of Two Intervals
Lower and upper .01 and .05 percentage points for the distribution of my
Sample sizes Critical values of m;
First1 Second Lower Upper
nt o ™11 M1(.05) M1(.05) ™ (.01)
11 10 1 9
41 40 10 12 28 30
101 100 34 38 62 66
101 200 72 80 120 128
201 200 7 84 116 123
201 400 160 181 219 240
401 400 167 177 223 233
401 800 353 367 433 447
1001 1000 448 463 537 552

significance levels may be computed. The .01 and .05 percentage points of m,
for several sample sizes are given in Table I. The values for sample sizes of 10
and 40 are computed directly from the probability law, while the larger samples
have limits computed by the normal approximation. Thus for two samples of
size 101 and 100, respectively, a value of m; less than 38 would be significant
at the .05 level. Similarly, at the upper .05 level, the hypothesis would be
rejected if a value of m; were obtained which was greater than 62. The necessity
for the upper limits could easily be eliminated by testing with respect to the
smaller of m; and m, . However, for completeness, the upper percentage points

? This statement may be proved by showing that as m, n — « such that m/n = constant,
the limit of the moment generating function for the ratio is identical with the moment
generating function of the normal distribution with zero mean and unit variance.
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are included to show the range of values of m; in which the hypothesis that the
two samples come from the same population may be accepted.

3. The case of four intervals. If we let the first sample of size 4n 4 3 be
designated by (z;, x2, - -+ Tanis), assumed drawn from a population with prob-
ability element f(x) dr and ordered from least to greatest, then the range of
may be divided into four intervals by Zay1, Zeni2, and Zsn4s. The probability
element of Tni1, Toniz, Tangs IS

(L s ([ s 194 ([0

f(@ni1) Qi1 f(X2nt2) dTonyaf(Tangs) ATsnys -

TABLE II
The Case of Four Intervals
95 and .99 percentage points for the distribution of C
Sample sizes

First Second Clss Cn

4n + 3 4m n m
15 12 3 3 .446 .582
63 60 15 | 15 .113 .161
103 100 25 25 .072 .102

Let

In+1

f@dz=pi, [ i@de=m, [ @iz =m, [ f@dz=p.

Zan+ Z3n+3

The probability element of p , p2, ps, and p4 is

(6) Pr(Tignany) =

Now let us consider the second sample, (1, T3, - - - Tim), Of size 4m. Let the
number of observations falling in each of the preassigned intervals be m;, (¢ =
1,2, 3,4), where my = 4m — m; — my — mz. The conditional probability of
the m; , given the values of x;, 41 is also determined by the multinomial law.

(4m)' my, mg_mg, my
mllmglmalmdpl Pz Pa P
The joint distribution of the p; and the m; is then

(4% + 3)! (4m)! n-l—m;pn-fm,
) mdmalmglmd O

) P,(m; | Zitnyn) =

-n+mg
3

8)  PTinsny , mi) = p3 ™™ dpy dpa dps .
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To obtain the distribution of the m; alone, the p; will be integrated out by the
Dirichlet Integral’ formula, giving a distribution which is clearly independent
of the population distribution function f(x).

(4n + 3)! (4m)! (n + m1)! (n 4+ ma2)! (n + m3)! (0 + m)'
) Pr(m) = ’ (nD)*my!me! mg!my!(dm + 4n + 3)! 4

To find the expected value of the m;, the probability law of m; will first be
derived. The probability function for the value of x,, is

(4n + 3)!
1Tn!(3n + 2)!

Then we have the conditional probability

10 Pi(@r) = pr(l — p)*™* dp, .

!
(4’”&). my (1 . pl)bn—ml

(11) Py(my | Zap1) = mal(dm — mp)!

and

(4n + 3)!(4m)! (]
n!(3n + 2)!my! (4m —m)'p

To obtain the expected value of m;, the joint distribution of m, and p, is
multiplied by m; , summed on m; from 0 to 4m , and integrated on p, from 0 to 1.

E(my) = (4"« + 3)! f pr(l — 3n+2

n!(3n + 2)!
[Z m _(4m—)' M - )4"'~'n1:| dp: .

0 m!(dm — my)!

3n+2+4m—m, dpl

D)

(12)  Pr(Zn4r,m) =

(13)

This interchange of the order of integration and summation is clearly valid.
The quantity in brackets will be recognized as the first moment of the binomial
distribution, (p, + ¢)*” where ¢ = 1 — p,. Therefore we have

(14) E(m,) = ./; 4mp, f(p1) dp, = 4mE (p,).

E(p,) and the higher moments of p; are found in the usual way by integrating
the distributions as Beta Functions. From this we see that the expected value
of m; is m. By repeating these operations on m. , m; , and m,, it can be seen
that E(m;) = m, which also validates the statement made in the introduction.

3 A discussion of the Dirichlet Integral may be found in Woods—Advanced Calculus, p.
167. It may be stated as follows for the problem in which we are interested

1 mla1(] — g — g — )™ _ r@rmrn)rr)
fff:c“y " l(1l—z—y—2)tdzdydz U mantn

where we integrate over the region bounded by z + y + z = 1, and the three coordinate
planes.
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We have previously presented the criterion (1).
The next problem is to find a distribution function to which the distribution
of C may be fitted. A reasonable choice appears to be the Pearson Type I curve.

— I‘(r+s) r—1 _ —1
= TorE © A9

The distribution of C is fitted by equating the first two moments of the two dis-
tributions and solving for the constants r and s of the Type I distribution. Using
the theorem that the mean value of the sum of variates is equal to the sum of
their mean values, we have

(15) J(x)

16)  B(C) = & [Bmd) + Elmd) + Emd) + E(nd) — 4],
Also the second moment may be written as

B(C) = gy [B(mt) + E(nd) + Eom) + E(ml) + 16m* + 2B(mim})

(17) + 2E(mim3) + 2E(mimi) + 2E(mim3) + 2E(m; m3)
+ 2E(m3m;) — 8m® {E(m]) + E(m3) + E(m3) + E(mi)}).

The expected value of m] is found in the same manner as E(m,) and here also it
can be shown that the E(m?) are all equal. The same procedure holds for
E(m)).

m@dm — 1)(n + 2)

n Tm(4m — 1)(n + 2) , 6m(dm — 1)(4m — 2)(n + 3)(n 4 2)
(18) E(m;) =m + y 4 {n + 6)(@n + 5)

m@m — 1)(4m — 2)(dm — 3)(n + ) (n + 3)(n + 2)
(4n + 7)(4n + 6)(4n + 5) )

By using the moment generating function of the trinomial. distribution, the
E(m*m?}) may also be found in a similar manner.

+

m(@m — 1)(n + 1) | 2m@4m — 1)(4m = 2)(n+ )(n + 2)
4n + 5 ‘ (4n + 6)(4n + 5)

+ m(dm — 1)(4m — 2)(dm — 3)(n + 2)(n + 1)(n + 2)
(4n + 7)(4n + 6)(4n + 5) )

E(mim]) =

(19)

As a result we have

_ 4 4(4m — 1)(n + 2)
(20) E(C)_Qr_n+ Om(in +5)
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Let E(C) = A to simplify later relations to be computed. Finally
s _ 4 7(4m — 1)(n +2) | 6(4m — 1)(4m — 2)(n + 3)(n + 2)
E(C)"sw[l‘" 4n+5 + " (4n + 6)(4n + 5)
4 Um = Dm — 2)(m — 3)(n + 4)(n + 3)(n + 2)
(4n + 7)(4n + 6)(4n + 5)

3(4m — 1)(n + 1) I 6(4m — 1)(4m — 2)(n + 1)(n + 2)
n + 5 (4n + 6)(4n + 5)
n 3(m — 1)(4m — 2)(4m — 3)(n + 2)’(n + 1) _
(4n + 7)(4n + 6)(4n + 5)
_ 8m’(dm — 1)(n + 2)].

+ 4m®

(21) +

8m?

4n + 5

To simplify later relations we let E(C*) = B.
The first two moments of the Type I distribution are easily found to be

=_T = _ mr+1)
(22) I‘l—r_i_s—'A K2 (T_'_—‘—s—_'_l)—B-

Solving these two simultaneous equations for r and s,
B—-A

(23) "T,_B °T
A

A number of percentage points for the Type I distribution have been computed

by Miss Catherine Thompson, [3]. Using these limits, the hypothesis may be

accepted or rejected as to whether or not the two samples come from the same

population.

Table II shows the .95 and .99 percentage points of C for three sample sizes.

T'T
A .

4. Summary. The problem considered here is that of devising a simple
method of testing the hypothesis that two samples are from identical populations
having continuous distribution functions. It may be summarized briefly as
follows. The first sample is used to establish any desired number of intervals
into which the observations of the second sample may fall. A test criterion is
proposed which is based on the deviations of the numbers of elements of the
second sample which fall in the intervals from the expected values of the respec-
tive numbers. Two cases are discussed, that of two intervals and that of four
intervals, making use of the median and quartiles in the first sample to deter-
mine the intervals. Tables of 19, and 5%, points for several sample sizes of
both cases are given.
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