ON THE CONSTRUCTION OF SETS OF ORTHOGONAL LATIN SQUARES'

By H. B. MaNN
Columbia University

1. Introduction.

An m-sided Latin square is an arrangement of m symbols into a square in such
a way that no row and no column contains any symbol twice. Two Latin
squares are called orthogonal if, when one is superimposed upon the other, every
pair of symbols occurs only once. For instance the squares

A B C a B

B C A Y a

C A B B
are orthogonal. The resulting square is

Aa BB Cvy
By Ca AB
(of] Ay Ba.

R ™=

A pair of orthogonal Latin squares is called a Graeco-Latin square. A method
has not yet been found by which all possible sets of mutually orthogonal squares
can be constructed. However, methods are available for constructing certain
special sets, and although we cannot obtain all possible sets with these methods
they yield a great variety of designs.

To understand these methods we shall have to use certain fundamental con-
cepts of the theory of numbers. In the following we shall deal therefore only
with integers and all symbols used will denote only integers.

Let a, b, m denote certain integers. We say

a = b (m),

(in words a is congruent to b modulo m) if @ — b is divisible by m.

Such congruences can be treated like equations. For instance: If a = b (m),
thena &= ¢ = b &+ ¢ (m), ac = bc (m). The proofs of these statements are
obvious from the definition of @ = b (m).

Ifa = b (m), and ¢ = d (m), then ac = bd (m), and a £ ¢ = b £ d (m).

ProorF: According to our definition we have

a—b=nxm a=>b+4+Nm

c—d=)\2m c=d+)\2m

1 An expository paper presented, at the invitation of the program committee, on Sep-
tember 12, 1943 at the Sixth Summer Meeting of the Institute, at the New Jersey College
for Women, Rutgers University, New Brunswick, N. J.
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402 H. B. MANN

ac = bd + mb + Md + AMdom) anda = ¢c = b £ d + m(\; — N;). Hence
ac — bd and (@ &= ¢) — (b & d) are divisible by m.

We have to be more careful with the division of congruences but we shall
prove the following rule.

If a is prime to m and ab = ac (m) then b = ¢ (m).

Proor: a(b — ¢) = Am, by hypothesis. The left side of this equation is
divisible by m. Since a is prime to m, b — ¢ must be divisible by m.

This rule means that we may cancel as in an ordinary equation as long as the
cancelled factor is prime to the modulus.

Every number is congruent to one of the numbers 0, 1,2, - -+ ;m — 1, because
if @ is any number we can find a number b such that 0 < a — bm = j < m.

We shall now add, subtract and multiply mod m. That means we add, sub-
tract and multiply in the ordinary way but shall always replace every number
by its smallest positive remainder. Thus for instance

24+4=1(5)
2-4 =3 (5).

i

2. Complete sets of m-sided orthogonal Latin squares, where m is prime.
Now let p be a prime number. We write down the following design

O 1 « o p-—]_

J 1+ R p—1+4+7

2j 142 ce e p=142 =L; 0<j<p-1
-1 1+pP-1j7 -+ -p—14+(—-1)

where all expressions are to be taken mod p, that is we replace every number in
this square by its smallest remainder mod p. We shall show that L;is a Latin
square. Here the rows and columns are numbered from 0 to p — 1. Assume
that the kth row (0 < k£ < p — 1) contains a number twice. Then we would
have

a+ki=0b+ kj(p) with @ £ b (m).

But from this we obtain a = b (p), which is a contradiction. Now assume that
a column contains a number twice. Then we would have

a+kji=a-+kjp), with k # k' (m)
but from this we have
kj = k'j (p),
and since j is prime to p
k =k (p),

which is again a contradiction.
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We can obtain p — 1 such Latin squares corresponding to the p — 1 values
which j can take.

We shall show that L; is orthogonal to L; if 2 & j. If this were not true we
would have the same pair of numbers occurring in two different boxes of the
square which results from the superimposition of L; on L;. Let mn be such a
pair and assume that it occurs in the ath row and gth column and the yth row
and 6th column of the resulting square. Then m would occur in L; in the ath
row and Sth column and in the yth row and éth column. Hence we would have

(M) ' B+ aj=m=35+j(p),
and similarly
@i B+ ai=mn=15+vi(p).

If we subtract the second congruence from the first we obtain
a(j — 1) =G —1) (),
butj < pandi < pandj = ¢. Hencej — 7 5 0 (p) and we may therefore
divide by (j — ). This gives
a=1v(p).
Substituting this in (Z) we obtain
B =4 (p).

Hence the two boxes must be the same. We have therefore the following

theorem:
THEOREM 1: If p is a prime number and

0 1 p—1
i 1+j -+ p—l+4j
L;= . . .

@—-1j 1+@-1j - - -p—=14+@®—-1j
then Ly, Ly, - -+, Ly_1 s a set of p — 1 orthogonal Latin squares.

As an application we can write down a set of 4 orthogonal Latin squares of
side 5

L1 Lz ' Ls L4
01234 01234 01234 01234
12340 23401 34012 40123
23401 40123 12340 34012
34012 12340 40123 23401
40123 34012 23401 12340

A further simplification can be achieved if we know a primitive root mod p.
A primitive root is a remainder ¢ mod p such that every other remainder except 0
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is equal to a power of @ mod p. For example, 3'is a primitive root mod 7, for
3=1(),3 =3(7),3 =2(7),3 =6(7),3 = 4(7), 3° = 5(7).

For any number ¢ we must have ¢ = 1 (p). We will prove this equation
for primitive roots only, since we do not need the general case. Let a be a primi-
tive root and assume that

a® ' =b=a(p), withg <p — 1.
Then we would have
a? 0 =q? =1 (p), withp’ < p — 1.
Hence we can obtain at most p — 2 different remainders a’a’, - -+ , a® ™ and a
would not be a primitive root.
We now form
0. 1o p—1
N a0+1- 1+a0+z. .. .p_1+a0+f
Li= o™ 1+ a'™** e ep—=14d*Y . (G=01,---,p—2)
ap.-.2+i 1 + .ap-—2+i : : : p — 1 ._i_ ap—2+i

Exactly as in the case of the L; of Theorem 1 it can be shown that L; is orthog-
onal to L;if ¢ # j. For k < p — 1 the k-th row of L; equals the (k — 1)st
row of L;,; and since a®* = 1 (p) the last row of L, equals the first row of L; .
Hence L;,, is obtained from L; by a cyclical permutation of the (p — 1) last
rows. It is then only necessary to construct the first square. The others can
be obtained by a cyclic permutation of the (p — 1) last rows. We shall exem-
plify this by constructing a set of 6 seven-sided orthogonal squares.

Ll L2 L3
0123456 0123456 0123456
1234560 3456012 2345601
3456012 2345601 6012345
2345601 6012345 4560123
6012345 4560123 5601234
4560123 5601234 1234560
5601234 1234560 3456012

L4 L5 LG
0123456 0123456 0123456
6012345 4560123 5601234
4560123 5601234 1234560
5601234 1234560 3456012
1234560 345601 2 2345601
3456012 2345601 6012345
2345601 6012345 4560123
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In the theory of numbers it is shown that a primitive root exists for every
prime number. If p is not too large a primitive root can easily be found by trial
and error. We give a list of primitive roots for all primes under 30:

Prime number Primitive root
3

5

7

11

13

17

19

23

29

In computing the first row of the first square it is not necessary to actually com-
pute all powers of the primitive root. We can take advantage of the fact that a
congruence may be multiplied by a number. Thus, for instance, for the first
row of the 11-sided square we have 2° =1 (11) 2'=2(11) 2°=4(11) 2=
8(11) 2*=5 (1) 2°= 25 =10 (11) but 10 = —1 (11), hence we have
without further computation 2° = -2 =9 (11) 2" = —4=7(11) 2* =
-8 =3 (1) 2 = -5 = 6 (11).

BN G WNNWNDN

3. Complete sets of m-sided orthogonal Latin squares, where m is the power
of a prime.

We have seen that we can always construct m — 1 orthogonal Latin squares
if m is a prime number. We shall show how to construct m — 1 orthogonal
Latin squares if m is the power of a prime. However, if we need only a Graeco-
Latin square of side m and if m is odd, then we can use the following theorem:

THEOREM 2: If m is odd, then the squares

0 1 m—1
1 141 m—1+4+1
2 142 - e o m—=142

L,

m—114m—-1 . -m—-14m-=1

0 1 m—1
2 142 m—1+42
2.2 1422 R m— 14 2.2
L, = . . .. .

2(m.—1) 1+2(;n—-1) :::m—1+.2(m—1)

are orthogonal.
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The proof is similar to the proof of Theorem 1. We have to use the fact that
2 is prime to m.

We shall now prove the following statement: For every remainder a # 0(p)
there exists another remainder a~" such thata-a™* = 1(p).

Proor: We form the sequence a, a’, ---,a”, ---. Since there is only a finite

number of remainders, there must exist 2 values 7 and j such that
o' = a'(p)
Let7 > j. Then since a is prime to p we may divide by a’. Puttingi — j = d,
we obtain
a = d' = 1(p).

Hence we may take a™* = & and our statement is proved. Thus we see that
the system of remainders mod p with respect to addition as well as with respect
to multiplication if 0 is excluded satisfies the following postulates:

(1) For every pair of elements A, B there is defined a product A - B within the
system such.that for any 3 elements A, B and C

A-(B-C) = (A-B)-C (associative law)

The ‘“multiplication” may be any sort of composition. For example, either
addition or multiplication of remainder classes.
(2) There exists a unit element 1 such that

Al1=1-4 = A.
(3) For every A in the system there exists an element A™" such that
AA7 =474 = 1.

The unit element will be 0 if we consider the remainder classes with addition
as composition. It will be 1 if multiplication is the composition. The inverse
of a is —a for the additive system, a™* for the multiplicative system.

A system satisfying (1), (2) and (3) is called a group. The property 4-B =
B A is usually not postulated. If a group fulfills this condition, then it is called
a commutative group or an Abelian group. A group can be defined by its gen-
erating elements. For example, let G be generated by the elements P,  with
the relations P> = 1, Q* = 1 and PQ = Q’P. We then obtain the elements of G
as 1, P,Q, PQ, PQ’, @*. The rules for the multiplication can be written down in
the form of a table:

P Q PQ PQ @’
1 PQ Q Q@ P

1
P
Q PQ’ Q P PQ 1
PQ Q* PQ 1 Q P
PQ’ Q P Q 1 PQ
Q PQ 1 PQ* P Q
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By inspection one can see that taking the elements of our group as symbols
the multiplication table forms a Latin square. For instance, if we identify P
with 2, Q with 3, etc. we obtain from the table above

5

=N Ot W

4
3
2
1
6
5

S O W N -
B W oot =N
NN~ WD

W NS

We shall prove that this is generally true. Let the group G consist of the

elements A;, -+, A,.. We write down the multiplication table of the group:
A, A, + A,
A, A4y - - - A,
Am A,,,Az D AmAm

Suppose this is not a Latin square. Then an element will occur twice in at least
one row or at least one column, that is, we should have either

A,‘Ai=AjAk, fors # k
or AjA; = A4, for j # k.

Multiplying the first equation by A" on the left, we obtain A; = A;. Hence
¢ = k. Similarly in the second case j = k, contrary to our assumption.

Two groups G and @ are called isomorphic if we can map @ into G in such a
way that the mapping is not disturbed by multiplication. Thatis, if A is mapped
on A and B on Band if AB = C and AB = C, then C must be mapped on C.
Such a mapping is called an isomorphism. If G@ = G then the mapping is called
an automorphism. For instance, if we consider the remainder system mod m
with addition as composition and j is any remainder, then the mapping @ = ja
is an automorphism. For if

a+ b= c(m)
then aj + bj = ¢j(m)
Some automorphisms establish a 1-to-1 correspondence between the elements

of G. For instance, in the above example if j is prime to m the correspondence
is bi-unique (that is only one element is mapped on any element of &) because if

aj = bj(m),
and j is prime to m then

a = b(m).
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If 7 is not prime to m, the mapping would not be unique although it would still
be an automorphism. From now on we shall consider only automorphisms
which establish a 1-to-1 correspondence between the elements of G.

Let S be such an automorphism and denote by A® the element into which 4
is mapped under the automorphism S. We put (4%)° = 4%, (45")% = A%, ete.
Wealso put A%° = A. We shall prove the following theorem:

Let S be an automorphism such that S, S°, ---, 8% map no element into itself
except the element 1. Then the Latin squares
1 A - - - An

AS A4, - - - ASA,
L= - . o .

AY ASA, - - - ASA.
are orthogonal.

Proor: Assume that L; is not orthogonal to L;. Let L,; be the resulting
square if L; is superimposed on L;. Then for some k and ! and some r and s
we should have the same pair of elements in the kth row and Ith column and
in the rth row and sth column. That is, we should have

) Af'A, = A%A,

) AYA, = A7A,.

By taking the inverse elements it follows from (2) that
3) ATATS = 47477

Multiplying (1) and (3) we obtain

ATATY = ATATY.
Multiplying by A7%' to the left, and by AY to the right, we obtain

ATVAY = 47747
Since 8* and S’ are automorphisms we have

(A7'40)°% = (47'40)".
Assuming 7 > j, then
[(A:lAk)si]'s‘-i - (A:lAk)si.
Because of i < ¢q,j < g we have?— j < ¢q. By assumption therefore 877 can
can leave only 1 fixed. Therefore
(474" = 1.
Hence AT'Ar =1
A, = A;.
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But then also
A; = A,.

Therefore r = k and I = s. Hence the two compartments of L;; cannot be
different and our statement is proved.

We see therefore that we can construct a set of ¢ + 1 orthogonal Latin squares
if we can find a group G and an automorphism S of @ such that

S, S ... , 8¢
maps no element into itself except the unit element. If ¢ = m — % and we write
1 Ay A5 ... AF

Af ASA, - - - . ASAT
L- Do
i e
then the (¢ — 1)st row of L.y, equals the k-th row of L; and all squares may be
obtained from L, by a cyclical permutation of the rows.

We shall now consider commutative groups of prime power order p" defined
by the relations

Plp=P{="°=P,’;=1, P.'P,'=P,‘P.‘.
The elements of this group G have the form
Pit... P €,°°c,6,=0,1,+--,p—1,

We call P, - -+ P, a basis of . We can easily change the basis. For instance
if Py, ---, P, is a basis then also P,, P\P,, ---, PP, is a basis. For every
expression we have

P:l e Pi.“ _ P;l—""'-"'(Ple)" cee (P;P,.)",

since G is commutative. Such a,change in' the basis defines an automorphism of
G at the same time. For let P;, ---, P, be the new basis. We can map

Py ... Py
into Pl... Plee.

On the other hand an automorphism is determined if we know on what elements
the basis elements are mapped.

It can be shown that every such group admits an automorphism S such that
S, 8%, --+, 877 leaves no element fixed except 1. Hence we can always con-
struct a set of p” — 1 orthogonal squares of side p" if p is a prime. We shall
give these automorphisms explicitly for the groups of order 8, 9, 16, 25 and 27.

As an example let us construct 7 orthogonal 8 sided squares. We shall use
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the group G generated by P, @, R where P=Q =R =1
morphism S where

We then have P° = Q, P = R, P = PQ, P =
Q'R = PQR, P* = P'QR' = QRPQ = PR, P" =

P'=qQ

lowing multiplication table:

H. B. MANN

QL =EF

R* = PQ,.

Pst = QR, P35 =
PR = QPQ = P.

We use the auto-

If we write the elements in the order 1, P, P*, P*, -+, P** we obtain the fol-

1 P Q R PQ QR PQR PR

P 1 PQ PR Q PQR QR R

Q PQ 1 QR P R PR PQR

R PR QR 1 PQR Q PQ P

PQ Q P PQR 1 PR R QR

QR PQR R Q PR 1 P PQ

PQR QR PR PQ R P 1 Q

PR R PQR P QR PQ Q 1

The other squares are then obtained by a cyclical permutation of the rows of

this square.

We now write 2 instead of P, 3 instead of @, etc. and obtain:

Lo

and so forth.

For the group of order 5, zenerated by P, @ with the relations P =@ =

O3S Otk W=~

O =3 W 0o Ot = N
N OO DN LW
N UTLW I = O 00 W
00— TN W

Sy
=2
N
oo

L,

TN - 00 W
W - Nt S
= WOt N

1

the automorphism P° = @, Q° = PQ has the property that S, S% .-, 8" maps

no element into itself.

For the group of order 16 we have 4 basis elements

P,Q, R, Twith P’ = @' = R’ = T* = 1 and Scanbe givenby P° = @, @' = R,

R'=T,T" = PT.

For the group of order 25 we have two basis elements P, @ with P=@ =1
and the automorphism is given by P’ = @, Q° = PQ.
The group of order 27 is generated by P, @, R and the defining relations are
P’ = Q° = R* = 1. The automorphism is given by P* = @, Q° = R, R’ = P*Q.
We have now shown

THEOREM 3: Let m =

p" and let G be the commutative group generated by Py,

..+, P, which satisfy the relations Pf = P§ = --- = P, = 1. Let S be an
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automorphism such that P** = Pif0 < i < m — 2, P % 1. Then the Latin
squares

1 P P .. P
p‘:+. p:‘.p e p"_p"""

L= P p''p Coe e PP G=0,1,--0 ,m — 2),
P,m‘—z-f-i P,m—.zi—iP .. : .. .‘ P,m—l'l"iP,m—z

are orthogonal. L; is obtained from Li-, by a cyclical permutation of its last m — 1
rows.

4. Remarks on the largest number of m-sided orthogonal Latin squares, for
arbitrary m.

The general problem can be formulated as follows: Given a number m, what
is the greatest number of orthogonal m-sided squares.

It is clear that this number cannot be larger than m — 1. For we can by
renaming the numbers of the squares always transform them without changing
their orthogonality in such a way that the first row is 1, 2, -- - m. Hence the
pairs 1 1,2 2, ---, mm, occur for any two squares in the first row of the re-
sulting square. Hence the numbers in the first column and second row of the
squares must be different from 1 and different from each other. But we have
only the numbers 2, - - - , m at our disposal and these are only m — 1 numbers.

We have shown that if m is the power of a prime m — 1 orthogonal squares
can always be constructed by the use of groups. Hence our problem is solved if
m is the power of a prime. Very little is known about numbers which are not
prime powers. Tarry (Compte Rendu, 1900) has shown that no 6 sided Graeco-
Latin square exists. It is conjectured but not yet proved that no Graeco-Latin
square of side 4n + 2 exists. We shall, however, show the following: If.m =
pit - - - pi» where p; is a prime number (p; = p;for ¢ # j) and if r = minimum
p:* — 1 then r orthogonal Latin squares can be constructed from commutative
groups of order m.

We take the group G of order m generated by e; elements of order p;, e; ele-
ment of order p;, - - -, e, elements of order p,. We determine the automorph-
isms T'; of the subgroup generated by the elements of order p; such that 7';,
T, .-, T? %2 leave no element of order p; fixed. We define then an auto-
morphism T'; of G generated by changing the basis elements of order p; in the
same way as they are changed by T and leaving the other basis elements fixed.
Then

T = Tsz s Tn
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is an automorphism whose first r — 1 powers leave no element fixed. Hence the

r Latin squares

1 Ay - - - Am
7OATA, - - - AT

. . « o o

A A4y - - - ATA
are orthogonal.

TABLE I
1P Q PQIPR QR* PQR* PR* QR PQR: PR¢‘ QR* PQR PR! QR‘ PQR* | R R* R¢ R?
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2 1 4 317 10 15 20 13 6 19 16 9 18 7 12 5 14 11 8
3 4 1 21318 11 16 17 14 7 20 5 10 19 8 9 6 15 12
4 3 2 1 914 19 12 5 18 15 8 17 6 11 20 13 10 7 16

16 18 2 13 20 14 3 9 12 6
6 5 19 3 14 17 7 4 10 13

517 13 9 1816 3 19 10 12 1 7 6 20 4 15 14 8 2 11
6 10 18 14 16 19 5 4 20 11 13 1 8 717 2 1215 9 3
715 11 19 3 5 20 6 2 17 12 14 1 9 8 18 4 13 16 10
8 2 16 12 19 4 6 17 7 3 18 13 15 1 10 9 11 2 14 5
913 17 5 10 20 2 7 18 8 419 14 16 1 11 6 12 3 15
10 6 14 18 12 11 17 3 8 19 9 2 20 15 5 1 16 7 13 4
119 7 15 1 13 12 18 4 9 20 10 3 17 16 6 2 5 8 14
12 16 20 8 7 1 14 13 19 2 10 17 11 4 18 5 15 3 6 9
3 9 517 6 8 1 15 14 20 3 11 18 12 2 19 10 16 4 7
14 18 10 6 20 7 9 116 15 17 4 12 19 13 3 8 11 5 2

5

1

15 7 19 11 4 17 8 10 1
5

16 12 8 20 15 2 18 9 11

—

5 10 8 3 7 18 2 1 19
3 16 11 9 4 2 19 17 1
6 4 °5 12 10 1 17 20 18
9 7 2 6 13 19 1 18 17

17 5 9 13 14 12 4 11 6 16 2
1814 6 10 8 15 13 2 12 7 5
19 11 15 7 2 9 16 14 3 13 8
20 8 12 16 11 3 10 5 15 4 14

We shall exemplify this by constructing 3 orthogonal squares of side 20.
We use the group G generated by P, @, R with the defining relations: P* =
Q* = 1; R®* = 1. The automorphisms are given by: PT+ = Q, ¢F1 = PQ,
R™1 = R, PT: = P,Q7: = Q, R"» = R. Hence T = T\T,is given by: P* = @,
Q" = TQ,R" = R*. Therefore we have: P* = Q, P™ = PQ, P™ = P’Q" = P,
(PR)” = QR’, (PR)" = PQR', (PR)" = PR, (PR)" = QR, (PR)" = PQR’,
(PR)" = PR', (PR)" = QR’, (PR)™ = PQR, (PR)™ = PR’ (PR)™ = QR',
(PR)™" = PQR’, (PR)™ = PR,R" = R}, R™ = R', R™ = R, R™ = R.

We need only construct one key square if we write down the elements in the
way in which they are written above. Then we have only to mark the end of
each cycle. Thus in our present case we have:

1| P, Q, PQ | PR, QR*, PQR', PR’, QR, PQR’, PR', QR’, PQR, PR’, QR',
PQR' | R, R’ R', E* |
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The vertical lines mark the cycles in which the elements are permuted by the
automorphisms. We then write down the key square in Table 1.
key square we can easily obtain a set of 3 orthogonal squares by permuting the

17,18
19
18,19
20
19,20
17
20,17
18

rows within the cycles indicated.
first half of the square in Table II.
One might hope that with other groups more than r

- N
O LR

CTS

17,10
10,15
15,20
20,13
13,6
6,19
16
19,16
16,9

9,18

8,5
14

B o»
— o oy

4,4
4
,2

1
1

w

3
3
2

8,17
6
17,6
11
6,11
20
11,20
9
20,9
14
13,10
7
10,7
16
7,16
13
16,13
10

TABLE II
55 6,6
5 6
17,13 10,18
9 14
13,9 18,14
17 10
9,17 14,10
13 18
18,16 16,19
3 5
16,3 19,5
19 4
3,19 5,4
10 20
19,10 4,20
12 11
10,12 20,11
1 13
12,1 11,13
7 1
1,7 13,1
6 8
7,6 1,8
20 7
6,20 8,7
4 17
2,4 7,17
15 2
4,15 17,2
18 16
15,18 2,16
16 19
14,8 12,15
2 9
8,2 15,9
11 3
2,11 9,3
14 12
11,14 3,12
8 15

7,7

7
15,11

19
11,19

17
2,17
12
17,12
14
12,14
1
14,1
9
1,9
8
9,8
18
8,18
3
18,3
5
4,13
16
13,16
10
16,10
4
10,4
13

8,8
8
20,16
12
16,12
20
12,20
16
19,4
6
4,6
17
6,17

9,19
4
11,2
14

2,14
5
14,5
11

5,11
2

9,9
9
13,17
5
17,5
13
5,13
17
10,20
2
20,2
7
2,7
18
7,18

16,1
1
1,11
10
11,10
20
6,12
3
12,3
15
3,15
6
15,6
12

From this

10,10
10
6,14
18
14,18
6

18,6
14
12,11
17
11,17

3
17,3
8
3,8
19
8,19
9
19,9
2
9,2
20
2,20
15
20,15
5
15,5
1
5,1
12
1,12
11
16,7
13
7,13
4
13,4
16
4,16
7

Because of space difficulties we give only the

= minimum p%* — 1
orthogonal squares might be obtained. It has been shown however that using
any group and its automorphisms at most r orthogonal squares can be obtained.



414 H. B. MANN

A more general method based on groups is given in a recent paper (H. B.
Mann, “The construction of sets of orthogonal Latin squares,’’ Annals of Math.
Stat., Vol. 13 (1942)). It can be shown that also with this more general method
no 4n + 2 sided Graeco-Latin square can be constructed.
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