A MATRIX PRESENTATION OF LEAST SQUARES AND CORRE-
LATION THEORY WITH MATRIX JUSTIFICATION OF
IMPROVED METHODS OF SOLUTION

By PauL S. DwYER
University of Michigan

1. Introduction and summary. It is the aim of this paper to exhibit, by using
elementary matrix theory, the basic concepts of least squares and correlation
theory, the solution of the normal equations, and the presentation and justifica-
tion of recently developed and newly proposed techniques into a single, com-
pact, and short presentation. We shall be mainly concerned with the following
topics:

a. Basic least squares theory including derivation of normal equations, the
theoretical solution of these equations (regression coefficients), the standard
errors of these solutions, and the standard error of estimate.

b. The more specific theory (correlation theory) resulting from applying the
general least squares results to the standardized distributions.

¢. A matrix presentation of the Doolittle solution.

d. A simple matrix justification of methods, previously presented, for getting
least squares and multiple correlation constants from the entries of an abbre-
viated Doolittle solution.

e. A presentation of a more general theory which the matrix presentation
reveals.

f. The outline of a “square root’”’ method as an alternative to theDoolittle
method.

The reader should be familiar with elementary matrix theory such as that out-
lined on pages 1-57 of Aitken’s book [1].

No previous knowledge of the Doolittle technique is demanded although a
familiarity with the notation and contents of two earlier papers [2], [3] is advised,
particularly for those who are interested in the computational aspects.

The presentation here is theoretical and is not concerned with such compu-
tational topics as the number of decimal places required, etc. With reference
to the number of places, the reader is referred to the recent paper of Professor
Hotelling [4].

2. Notation. Let [z;;] with1 <4 < Nand 1 < j < n be the n by N matrix
of observed variates of n “predicting variables’ for N individuals with ¢ indicat-
ing the individual and j the variable. Let [y:] be the one by N column matrix
of the observed variates of the “predicted” variable. Let the matrices of devia-
tions from the variable means be indicated by [z;;] = X and [y;] = Y. Then by
the least squares hypothesis we are to find numbers by.... , ba...., =+, byn....
such that

e; = Yi — (:c.-lb,,l.... + x.'zbyz.... + -+ .’U.',.bm‘....),
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shall have a minimum variation (standard deviation). We then denote the
byi.... by the one by n column matrix B and the e; by the one by N column ma-
trix £ and have

(1) E =Y — XB,
as the basic matrix equation.

It may be noted further that the fitted values of y; are given by the one by N
matrix product XB = Y. Using this notation (1) appears as

Y E=Y-1Y.

3. Basic least squares theory.

a. Sum of squares of residuals. The condition for minimum variation in this
situation (variates measured from means) is equivalent to the condition for

minimum sum of squares of residuals. In matrix notation this sum of the
squares of the residuals can be written

2 E'EwithE =Y — XB=Y — Y, and E’ the transpose of E.

b. The normal equations. Differentiating (2) with respect to B’ we find the
necessary condition to be

3) X'E = 0.

This matrix equation gives the normal equations in implicit form. More ex-
plicitly by (1) we have X’(Y — XB) = 0 so

@) X'XB = X'Y.

The reader should immediately recognize that (4).is the matrix equivalent of
the usual statement of the normal equations where deviations from the means
are used. It should be noted also that (3) and (4) can be written in the form

(5) X'Y = X’Y from whence at once Y'Y = Y'Y.

c. Solution of normal equations. The theoretical solution of (4) is accom-
plished at once and results in

(6) B = (X'’X)7'X'Y = (X'X)"'X'Y.
d. Standard deviation of residuals. The standard deviation of residuals is
V' E'E/N.
In order to evaluate this we note that
) YE=BXE=0, andY'Y=1Y"Y,
Thus

8 E'E = (Y —-Y)E =YE =Y(Y - XB) =YY — Y'XB,
and
9) YXB=YY=YY=YY.
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Since Y'Y = =y, we have

Y'XB
'R — 2 —-
(10) E'E = Zy (1 = ),
so that, dividing by N and taking the square root
Y'XB
(11) 8¢=Sy,‘/1—~—2-§2—-.

If the relation between the estimated standard deviations in the population is
desired then divide each side of (10) by the number of degrees of freedom and get

Y'XB
(12) Ua=0y,‘/1-'—2—y‘z—.

Alternative formulas to (11) and (12) are obtained by replacing Y’XB by its
equivalent expressions in (9).

e. Formulas for multiple correlation coefficient. 1t is to be noted that the
numerical quantity Y’XB/Zy’ plays an important role in measuring the ratio
o./o, . It is customary to use this quantity as the definition of the square of
the multiple correlation coefficient so we have

a3 _YXB _BX'XB_YXX'X)'X'Y _YY _oa
R Ty zy? Zy o

f. Formulas for correlation coeflicient. When n = 1, X'X = 22°, V'X =
X'Y = ZXY, B = b and (13) gives

bZxy za? ( a:) Sxy a
14 7',=,‘/ =} —_— =)= ——F_ = "=,
(14) ) Ty Zy? o) NEIZpzp oy
Many of the above developments can be duplicated, without formal use of ma-
trix theory, by judicious use of symbolism and substitution. See for example
the presentations of Kirkham (5], Bacon (6], and Guttman [7].

g. Errors of regression coefficients. If B, is an approximation to B such that
B, + AB = B then (6) can be written

By + AB = (X'X)”'X'Y

and
(15) AB = (X'X)7'X'(Y — XB).

This formula can be used in finding corrections AB necessary to change any
proposed trial solution, By, into a correct solution. It could also be used in
extending the accuracy of a solution after an approximation had been secured
to a specific number of places. It has greater utility however in another problem.
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We suppose that the predicting variables, the z’s, contain no errors but that
there are errors in the observed values of y. Let the hypothetical observed
values of y be indicated by Y and the recorded observed values of y by Y.
Let the values of By be the regression coefficients obtained by using the recorded
observed values Yo,. Thus AB = 0 when Y is replaced by Y, in (15). Now
let Y — XB,, the “true” residual errors of the recorded observed values, be
indicated by E. Then (15) becomes

(16) AB = (X'X)"'X'E.

Sampling theory can be applied to (16) to obtain a formula for the standard
error of the regression coefficient. It is assumed that the ‘“true’ residual errors
are independent with a common standard deviation o.. The values of AB are
then linear functions of these errors. It follows that

a7 s = oas = X’X)X'X(X'X) " = (X’X) %02 .

The standard errors of the regression coefficients are thus formed by multi-
plying o. by the square roots of the diagonal terms of the inverse of X’'X.

4. Standard variates. Use of correlation matrix. Many of the formulas of
section 3 are simplified with the use of some type of standardization. In par-
ticular it is possible to reduce the matrix X’X to the matrix R of correlation
coefficients by replacing = by ¢./N where t. = z/s. If y is similarly replaced
and B by B, then X’Y = R,, and Y’X = R,,, Y'Y = 3y* = 1 and selected
formulas from section 3 become

(18) RB =R,
(19) B =R'R,
(20) r:.zl...z,. = R;yB = B'RB = R;WR—XRW .

Classical multiple correlation formulas, determinantal and otherwise, are
“covered” by the matrix formulas (20).

5. Matrix presentation of a Doolittle solution. Least squares and correlation
constants can also be obtained from the entries of a Doolittle solution. We first
outline a matrix description of the Doolittle solution of the equation AX = G
with A = [a;;] symmetrie and of order n.

Let S; be a (» by n) matrix with the first row composed of the elements a,;
and all other elements 0. Let T, be a similar matrix with first row elements
bi; = a1;/an and all other elements 0. Then A — S$17) = A; = [a:;4] is a sym-
metric (n by n) matrix with all elements of the first row and the first column 0.

Next let S; be a (» by n) matrix with second row elements az;1 = az; — anb;
and all other elements 0. Let T, be a (n by #) matrix with second row elements
bej1 = @zj1/ama and all other elements 0. Then it follows that the matrix
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Ay — 8:T; = [a:j1] is a symmetric (» by .n) matrix with the elements of the
first 2 columns and the first 2 rows all 0.

This process is continued through successive steps, an additional row and
column being made identically 0 at each step, through =n steps. At the end of n
steps we have the result.

(21) A~ S;TI - S;Tz _ S,,;Tn = 0.

This development, when applied to each side of the matrix equation, provides
the basis for an equation solving technique which Aitken has called the ‘“method
of pivotal condensation” (8) but which the author feels is more adequately
characterized as the ‘“method of single division” (9). The Abbreviated Doolittle
method can be obtained as an abbreviation of this method. It is not neces-
sary to compute all the elements of the successive matrices 4,4, - - -, ete. but
only the non-zero elements of the S;, Ty, S., T. - - - etc. matrices.

Consider the so called triangular matrix S = S; 4+ S; + S; + --- + S, with
its rows composed of the non-zero rows of the S;. Consider also the matrix
T=T,4T.+ - ---+ T,. Then

(22) 8T = SiTh + 83T: + -+ + SuTa
since S;T; = 0 when ¢ > j.

It follows that (21) can be written

(23) A-8T=0.

An efficient way of building up these matrices S and 7' in practice and in making
the corresponding transformations on the right side of the equation is the
Abbreviated Doolittle method. It is apparent from (23) that the Doolittle
method is directed, in part at least, toward the factorization of the symmetric
matrix 4 into two triangular matrices.

It should be noted that these triangular matrices are related by the matrix
formula

(24) S = DT,

where D is the diagonal matrix with diagonal elements a1, a1, @12, -,
Qnn-123--.n—1 -

Operations performed on the left of the matrix equations AX = @ are also
performed on the right side so that the Doolittle technique results in the estab-
lishment of the auxiliary matrix equations. .

(25) SX = SA™'G.
(26) TX = TA™'G.

A simple outline (n = 3) of the form of the Abbreviated Doolittle method is
presented for the purpose of identifying these matrices. A is symmetric and G
is the column matrix [a:].
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6. Least squares and multiple correlation constants from the Doolittle solu-
tion. The inverse of A is needed for many formulas. We set up a technique
for solving AY = I simultaneously with AX = G.” This is indicated sym-
bolically by

A | G I

S lSA"G' S47.

7| 747G | TA™
It follows at once that
(27) (SA™Y(TA™) = A7'S'TA™ = A7'4A™ = 47

This matrix multiplication is easily and readily accomplished when the matrices
are in the Doolittle form.

Similarly
(28) (SA™HY(TAT'G) = A7'G = X, the matrix of solutions of AX = G and
(29) (SAT'G)(TAT'G) = G'A™'G.

It is interesting to note further that (SA™')’ and T are inverse triangular
matrices since

(30) (SA™YT = A7'S'T = 1.

S’ and TA™" have a similar relationship.
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In the case of least squares theory A = X'X, G = X'Y, X = B so that the
formulas (27)(28)(29) become

Bl) (8A7)'(TA™) = 47" = X'X)™.

(32) (SA™)(TAT'G) = X = B.

(33) (847'G)(TA7'G) = ¢’A™'G = Y'X(X'X)"'X'Y
=YXB=BXXB=YY.

If the normal equations are reduced to standard form A = R, X = B,G =R,
and we have

(34) (SA™HY(TA™) = A™' = R,
(835) (SA™H)(TA™'G) = X = B.
(36) (SAT'})'(TA™'G) = G¢'A™'G = RL,R'R., = R,,B = B'RB = Tozyezy -

The reader is referred to an earlier paper [3, 457] for an illustration of these tech-
niques.

It should be noted that the solution is a cumulative one in the sense that solu-
tions involving n predicting variables are obtained from solutions involving
n — 1 predicting variables by the addition of paired products. Thisis a highly
desirable feature as it makes possible direct analyses showing the effect of an
added predicting variable.

7. A more general theory—solution of matrix equations by factorization.
Examination of the results of section 5 leads one at once to a consideration of a
more general theory. The key formula in this development is A — S'T = 0
and all subsequent formulas stem from this. Hence if A can be factored into
any matrices, S’ and T, not necessarily triangular, the results of section 6 follow.

From a practical standpoint it is desired that the factorization process yield,
simultaneously, the values S, T, SA™'G; TA™'G; SA™ and TA™ as the Doolittle
method does. But, formally, these can be computed if S and T are known.

8. A “square root” method. A most interesting and practical special case
of the above method is that in which the triangular matrices S and T are equal.
It appears that a technique based on this property would have some advantages
over the Doolittle method since the double rows of the Doolittle solution could
be replaced by single rows, while the formulas of sections 5 and 6 are just as
applicable. Now such a technique is easily devised. From (23) and (24) we
see that

37 A - 8D7'S =0,

where D is a diagonal matrix.
We replace D18 by a new S, (D_’S)’ by a new S’ and have

(38) 4 - 88=0.



LEAST SQUARES AND CORRELATION 89

The technique of solution is similar to that of the Doolittle except that the
entries ;... are aij..../A/a;;.... . These values s;;.... are thus geometric means
of the values a;j.... and b;;.... .

A simple machine technique is available for computing these entries. In
some respects the solution is superior to the Doolittle solution. It is hardly
pertinent to the subject matter of this paper to present a detailed discussion of
the merits of this method, with the numerical illustrations. This will be done
in a later paper.

After arriving at this method by the steps described above, it seemed surpris-
ing that such a simple and compact method has not been discovered by some
previous worker. Although matrix factorization is not a new subject, I have
not found evidence that it has been utilized so directly in the problem of solving
matrix equations. The nearest approach I have discovered is the paper by
Banachiewicz [10], in which a “square root” method is used in factoring 4.
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