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Introduction. The inversion of a matrix is a computational problem of wide
application. This is a further study of an efficient iterative method of matrix
inversion described by Harold Hotelling [1], with an examination of the prob-
ability of convergence in relation to the accuracy of the initial approximation.
The lines of investigation were suggested both by his article and by helpful
comments made during the course of the research.

The inverse of a matrix can be obtained to any desired degree of accuracy by
using a variation of the Doolittle method, and starting with a sufficient number
of accurate decimal places in the matrix being inverted. This procedure be-
comes inefficient if the order of the matrix is large, or if the desired degree of
accuracy is very great. In either case the efficiency can be greatly increased
by first obtaining an approximation to a small number of decimal places and then
applying a method of iteration until the desired accuracy is achieved.

1. Iterative methods. Hotelling’s method of iteration is as follows. Let A
be the ‘matrix to be inverted and let C, be the approximation to the inverse.
Calculate in turn C;, C;, - -+ where,

(1.1) Cunia = Cu(2 — ACR).
This sequence of matrices will converge to the inverse of A if the roots of
(1.2) D =1- ACO )

are all less than unity in absolute value.

The iterative method (1.1) will be generalized to yield a class of iterative
methods, one element of which will be shown to be more efficient, in certain cases,
than method (1.1). The generalized iterative method is,

(183) Cmpr = Cuf{l + (1 — AC,) + (1 — ACH) + -+ + (1 — ACK)* '}

For every k, the condition for convergence is that the roots of the matrix (1.2)

all be less than unity in absolute value.
A method of comparing the efficiency of these different iterative methods

arises from the following considerations. Since

(1.4) Co = A7 (ACv),

which is equivalent to

(1.5) Co = A7'(1 — D),
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it follows that
(1.6) A7 = Co(1 — D).
When the roots of D are all less than unity in absolute value, (1.6) has the
infinite expansion,
(1.7 A7 =C(1+D+ D'+ D+ ---).

The general iterative process (1.3) generates the infinite series in the following
manner,
(18) A+ D+ D+ -+ DHA 4 D + .- + D)

‘@ 4 D 4 oo 4 DDy L

Each parentheses corresponds to one iteration. Hence £™ terms are generated
by m iterations. In order to achieve the accuracy of n terms in (1.7), m =
log, n/log, k iterations are required. Each iteration involves £ matrix multi-

plications, so that km = k log. n/log. k is the total number of matrix multiplica-

tions necessary to achieve this degree of accuracy.
The integer for which this is a minimum is three. Therefore the “most effi-

cient’’ method of iteration is,
(1.10) Cmir = Cuf{l + (1 — AC) + (1 — ACW)*}.

If the desired degree of accuracy can be achieved by one application of (1.1),
or by two applications of (1.1) but not by one application of (1.10), then (1.1)

is preferable.

2. The condition for convergence. The sequence,

(2.1) Cy, C;, Cs,
obtained from (1.3) will converge to the inverse of A if the roots of
(2.2) D=1- AC,,

are all less than unity in absolute value. The following assumptions determine
the nature of D.

We assume that the expected value of each element of the first approximation
C, is equal to the corresponding element of the exact inverse of A. The actual
values of the elements of Co will deviate from their expected values. We will
consider two important cases. If the deviations are entirely due to the fact that
the elements of C, are only accurate to a limited number of decimal places, say
k, then the deviations may be regarded as distributed with constant density over
a range of length 107, It will be assumed that the deviations of the elements
of C, from their expected values are independent. While this case arises in
practice, we will first treat a closely related case, which lends itself to exact
treatment more readily. We assume that the deviations of the elements of C,
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are normally distributed about their expected values, with variance u = 10~*/12.
The variance p is the same as that which arises if the probability density is uni-
form with range 107%.

The elements of E, the matrix of deviations,

2.3) E=A"—0,,-

are independently and normally distributed. Combining (2.2) and (2.3) we
obtain

(2.4) D=1-ACy= A(A™ — Co) = AE.

Let p be the order of the matrix A. Each element of D will be a linear com-
bination of p independently and normally distributed variables, and therefore
will itself be normally distributed. A sufficient condition for all the roots of D
to be less than unity in absolute value, and hence for the process of iteration to
converge, is for the sum of the squares of the elements of D to be less than unity
in absolute value. We will use the following notation

(2.5) d;;: the element of D in the 7th row and jth column,

Nb =22 di;.
Y 7

A procedure suggested by this relationship is to determine the probability
distribution of N , so that probability statements concerning the absolute value
of the roots of D can be made. Because the elements of D are not all inde-
pendent, no multiple of N can be expected to have the xtp2 distribution.!

The distribution of N is shown to be closely related to the chi-square distribu-
tion in the next section, and on the basis of this relationship, lower bounds to
the probability of convergence of the iterative process are developed in section 4.
In section 5 the exact distribution of the norm is obtained for a general class of
cases. The final section is concerned with the validity of applying the results
of this study to a practical situation, where the deviations of the elements of Cy
~ from their expected values are uniformly, rather than normally, distributed.

3. An equivalance. Let ¢;; be the element of E in the 7th row and the jth
column, and a;; be the element of A in the 7th row and the jth column. From
(2.4) and (2.5), we find that

dij = ZL: ik €5 -
Since the elements of E are independently and normally distributed with
variance u = 107*/12 it follows readily that
(3.2) Eleijern] = 6ad jup.

! The number in the parentheses will indicate the number of degrees of freedom of the
chi-square distribution.
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Making use of (3.1) and (3.2), we find that for two d:; in the same column,
(3.3) Eldijdiil = n ; Qit Ot

while for any two d;; in different columns,
(34) Eldidwm] = 0.

From (3.3) and (3.4) it follows that it is permissible to regard the elements of
the p columns of D as the coordinates of p independently selected points from a
multivariate normal universe with covariance matrix ¢ = pdA’. We will let
A=

The moment generating function of the sum of squares of the coordinates of
any point is

]
(3.5) lx_’—)‘_lz'tT*'
This can also be written as
3.6) 3 - 3 iy
1 — 201 8)°(1 — 2021)° -+ (1 — 20,1)
where o1, -+ - , 0, are the characteristic roots of o.

Since N is the sum of p independent expressions of this type, its moment
generating function is the pth power of (3.6),

1
3.7) (0 = 260" - (1 = 20,0
This expression is the moment generating function of
(3.8) a1 X0 + 0 x%pgz + oo 4 X

where the xi{p: are all independent.
Writing the roots as

(3'9) 0'0,60_]‘711"'70'0_]01)—1;

where oo is the largest root of o, and all k; > 0, it follows that N5 has the same

distribution as
p~—1

(3.10) 00 2 Ximi — Zl ki X (w0 -
1 j=
Therefore, making use of the reproductive power of x*, we obtain

p—1
P{N, < 1} = P{ao Z X < 1+ .z:lkf"%””
1 =
3.11) -
= P{aox%pz) <1+ 21 kiX%p)i}-
=
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By making special assumptions about the k;, close approximations to the
probability that N will be less than one, and hence that the process of iteration
will converge, can be obtained. Instead of following this procedure, it is more
desirable to have definite lower bounds for the probability that N, will be less
than one. This will lead to an overstatement in the number of decimal places
of accuracy necessary in the first approximation C, to assure convergence, but
it will practically eliminate the possibility of having to recalculate the first
approximation, and hence will lead to greater efficiency in the long run.

4. The derivation of the formula for determining the required degree of ac-
curacy. The inequality used in this section is derived in two steps from (3.10).
Since k; > 0( =1, .-+, p — 1) it follows immediately that

4.1) P{Np, < 1} > Plookipn < 1}.
In order to use this inequality, the upper bound for o
(4.2) oo < (tr o)t @

can be used. Fort = 1,

4.3) oo < tro = trudd’ = ptr AA’ = uN%.

Dr. Wald pointed out that using (4.2) for ¢ = 1 reduces the amount of informa-
tion retained in (4.1) to that which is contained in the inequality,

(4.4) N(D) < N(A)N(E).

A closer upper bound is feasible in any particular case, and can be introduced
at this point by letting ¢ = 2 ort = 3. The following formula will be developed
for the general case, making use of (4.3).

Substituting (4.3) in (4.1), we obtain

1
(4.5) P{Np < 1} > P{x"(’pn < m}
It is desirable to separate the effects of the order of the matrix A on con-

vergence, and the order of magnitude of the elements. Hence we introduce as a
measure of the average size of the a;; their root mean square m, so that

(4.6) m' =2 2 ay/p.
Hence
“4.7) Ny = pm.

The final form of the inequality is

2 12-10*
(4.8) HM<U<P@m<ﬁ£}.

p*m?
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First we will obtain an expression for the number of decimal places required
in the first approximation to make the probability of convergence at least .999.
Then the expression will be checked directly by means of (4.8) and tables of the
chi-square function.

For large values of p, v/ 5;‘;,—) is approximately normally distributed with
mean value v/2p? — 1 and unit variance [2], [5]. Applying this transformation
to the right hand side of (4.8), and noting that 3.1 standard deviations is slightly
greater than the deviation corresponding to .999, we obtain as the condition for,

(4.9) P{x(,,z) < lp:,?%} > 999
or

(4.10) P{zx“;,,z, <2 13)2;?%} > 999
that it is sufficient that

(4.11) 2‘;2;3% VIF—1> 31

This is equivalent to

_ 3.1
k > logw p + logwm + logm<\/ P -3+ \“7§>

— log 24 + log v/ 2.

Since the characteristic of a logarithm is insensitive to the argument, rounding
off will introduce a negligible error, and we finally obtain an upper limit to the
lower bound of %,

(4.13) k > logw m + logw » + logw (p + 3) — .55.

In order to verify the accuracy of (4.13) for small values of p, certain values of
p, k and m are chosen and the probabilities associated with (4.8) determined [2].
The entries in brackets are the corresponding values of k determined from (4.13).

A typical example will illustrate the use of table on facing page. Let the matrix
A to be inverted be a fourth order correlation matrix. The mean magnitude m is
about 4 and p = 4. If the first approximation Cjis obtained to one place accuracy,
then the probability that the sequence C;, Cs, - -+ will converge to A™" will be
greater than .999. Using formula (4.13), we obtain k¥ = .53. Since one is the
first integer greater than .53, the table verifies the use of the formula.

Although the formula was developed on the assumption that p is large, every
value calculated is consistent with the table. This lends support to its use for
small values of p.

(4.12)
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The Probability of Convergence of the Iterative Process®

\\p ' 2 3 4 5
kN
-1 0+ 0+ 0+ 0+
m=3% 0 [.05].982 [.33].199 [.53]04+ [.70]0+
1 1— 1— 1— 1—
-1 0+ 0+ 0+ 0+
m = 2 0 [.85].051 [.93]04+ 0+ 0+
1 1— 1— [1.13].715 [1.30]0—
2 1— 1— 1— . 1—
0 0+ 0+ 0+ 0+
m = 10 1 [1.35].439 [1.63]0+ 1[.83]0+ 04
2 1— 1— 1— [2.00]1—

* 1 —" means greater than .999.

It has already been pointed out that k is not sensitive to rounding off of the
argument of the logarithm. Thus for p = 20 and m = 2, we can let logiom = .3,
logw p = 1.3, logw (p + 3) = 1.36 and obtain

k=.3-413+4 136 — .55 = 241,
from which it follows that three decimal place accuracy in C, will practically
insure convergence of the iterative process.
6. The mean, variance, and exact distribution. To obtain the moments of
2., the most convenient form to use is (3.8). Since the X(w: are independent
(5.1) E[Ng) = E[X oixtn] = p 22 0s.
ovt, = E[N3] — (EIN]Y’

p
=K [E 7i(xmi)” + 2 ; X%p)iX%p)iUiO'i] - (p 220
<3 b}

=1

=@2p+p) Dot + 20 D gioi — P D0 — 20" 2 o
B 1<] T <7

= 2p Z o‘% .

These can be expressed in terms of the elements of A and the variance of the
elements of E, since

2o =tr(s) = ptr (AA") = uN%,

(5.2)

5.3
3 2ot =tro® = 4 tr (44'44).
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The exact distribution of N3 can be obtained readily when p is even. In this
case the infinite integral,
1 [ D gy
2r Lo (1 — 22018)72 ... (1 — 220, 1)72’
can be evaluated by contour integration. The integral satisfies the conditions

given in Whittaker and Watson [3, sec. 622], if the semicircle of the contour is
taken on the lower half of the complex plane.

(5.4)

For the case p = 2, for example, there are simple poles, at ¢ = 2—&1' é—_—; .
1 2
The sum of the residues at these poles, multiplied by 7 yields the exact distribu-
tion:

2 2
(5.5) o1 e—ND/201 n o2 e—N{)/%z
2(0’1 - 0’2) 2(0’2 - 0'1) :

For even values of p greater than 2, the values of the residues can be obtained
by repeated differentiation.

6. Summary. We are now in a position to discuss the applicability of the
results of this paper to the problem which arises most frequently in practice.
The elements of the first approximation to the inverse will deviate from their
expected values only because the first approximation is carried to a limited
number of places, say k. In this case the deviations will be distributed with
constant density over a range of length 107. The elements of E, the matrix of

deviations,
6.1) E=A"—=(,

are now each independently distributed, but with uniform density, range 107*
and mean equal to zero. From (2.4)

6.2) D = AE,

we observe that each element of D will be a linear combination of p independently
and rectangularly distributed variables, each with mean zero and range 107*
The analysis of sections 3, 4, and 5 will be valid if d;; can be considered to be
normally distributed.

There is much experimental evidence and theoretical justification for assum-
ing that the elements of D are normally distributed. A suﬁiclent condition that
the d;; approach normality as p increases is that the sum of the a};in any row of
A be divergent as the order of the matrix approach infinity, while at the same
time every element be less than some constant value independent of the order
of the matrix [4].

The experimental and theoretical evidence supporting the approach of the
d:; to normality, the fact that the logarithms are insensitive to errors of approxi-
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mation in their arguments and the fact that the lower bounds to the probability
of convergence of the iterative process are used, all lend support to the formula

k > logio m + logw p + logw (p + 3) — .55.

for determining the number of places (k) necessary in the first approximation
(Cy) to the inverse of A, a matrix of order p whose elements have mean size m,
to make the probability at least .999 that the process of interation will yield a
sequence of matrices which will converge to the true inverse. The ultimate
justification of the use of this formula can only be by the results of its applica-
tion in practice.
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