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A NOTE ON THE BEHRENS-FISHER PROBLEM

By HENRY SCHEFFE

Syracuse University

A commonly occurring problem of statistical inference is the comparison of
the means of two normal universes when the ratio of their variances is unknown.
Let (#1, - -+, ) be a random sample from one normal population with mean «
and variance g, and (y1, -, ¥s), & random sample from another with mean 3
and variance ». The problem is then that of making statistical inferences
about the difference & of the means, § = o« — 8, when the ratio p/v is unknown.
Convenient tests and confidence intervals are available if one can find a linear
form L and a quadratic form. @ in the vector (1, -+, Tm, Y1, *** , Yn) With
coefficients independent of the unknown parameters a, [3, K, v, such that for some
positive integer k, the quotient
(1) (L - 8/@/k)}
has the ¢-distribution with k& degrees of freedom. For this it is sufficient that the
following conditions be satisfied for all values of the parameters: (¢) L and Q are
independently distributed, (i5)' E(L) = 8, (¢1) Q/o" has the x’-distribution with k
degrees of freedom, where ¢” s the variance of L.

In a recent paper [1] the author investigated the Behrens-Fisher problem as de-
limited by the above three conditions,” and among other results arrived at a simple
solution. This solution however does not have the property that the quotient
(1) is symmetric, whereby in this note we shall mean the following: A function
of the samples and parameters will be called symmetric if it is invariant under
permutations of the 2’s among themselves and of the y’s among themselves.
Let us therefore formulate condition (iv): the quotient (1) s symmetric. Since
() would be extremely desirable, both for practical and. theoretical reasons,
and since the author has received several inquiries‘on this matter, it is considered
worth while to outline a proof that conditions (¢7) and (427) imply that (iv) cannot
be satisfied, in other words, there exists no ‘“symmetric solution” of the Behrens-
Fisher problem within the framework we have imposed. Perhaps this is a
simple example of a larger class of problems in which an approach, natural in the
light of past developments, forces us to an asymmetric solution.

Suppose () is satisfied. By substituting special values for the vector (zi,

“  Zm, Y1, " ,Ys) and then making permutations allowed by (i) we find
that L and @ must be of the form
2 L=c;Zx.-+czZyj,
3 1
B Q@=c2zitc _; wixi + s 2 Y+ o ; yiys + e 20wy,
3 iy’ i A1 ¥

1 E(f) denotes the expected value of f.
2 Although these conditions appear simpler than those in [1] they may be shown equiva-

lent.
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where all ¢’s are independent of parameters, and the range of indices ¢, 7’ is
from 1 to m, the range of 7, 5’ from 1 to n.
Condition (%) requires that

4 E(L) = a—8.

But from (2),

(5) E(L) = eyma + cnp.

Since (4) and (5) must be satisfied identically in e, 8, it follows that ¢, = 1/m,
¢ = —1/n, and thus the variance of L is

(6) o = p/m+ v/n.

Because of condition (4i7) we must have E(Q/ o) = k, and combining this with
(6), we have

7 E@Q) = k(p/m + v/n).
However, from (3),
®)  E@Q) = emu+ o) + a(m’ — m)a’ + en(v + 6°)
+ cs(n® — n)B* + cmnaB.

Equating (7) and (8) gives us an identity in «, 8, 4, » from which we can determine
the ¢’s, and after putting these back in (3) we find that the result may be written

9 Q = K[S./(m’ — m) + S,/(n* — n)],
where
S: = .Z (xi - 5)2’ Z t/m’
S, = 27: (y; — 5)2; ]Z y:/n

The last step of the proof consists of showing that @ defined by (9) violates
(¢35). Write uy = S./p, w2 = Sy/v. Then u; and u; have independent x-
distributions. Now (9) states that u = Q/d” is of the form u = au + @,
where a1 and a, are constants.  Let ¢(t), ¢1(£), $:(¢) be the respective characteristic
functions of u, u; , uz. Then ¢(t) = ¢1(art)de(aat) because u; and u, are statisti-
cally independent. Since the characteristic function of a x*-variable with r
-degrees of freedom is (1 — 2it) ™" it is evident that  has a x’-distribution if and
only if a; = a; = 1. From (9),

a/ay = [u/(m" — m)l/lv/(n* — n)],

and thus a necessary condition (it is also sufficient) for @/ o® to have a x’-dis-
tribution is

(10) w/v = (m' —m)/(n’ — n).
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But (iii) states that Q/¢” has a x’-distribution for all parameter values. This
contradiction completes the proof.

We remark in closing that we have at hand a counter example of practical
interest to the statement found in several statistics texts that if z is a normal
variable with zero mean and v is an independent unbiased quadratic estimate of
the variance of 2, then z/v! has a t-distribution. The counter example consists of
taking z = £ — § — 8 and v = Q/k defined by (9). It may be shown that z/v*
does not have a ¢-distribution except in the trivial case (10).
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ON MULTIPLE MATCHING WITH ONE VARIABLE DECK
T. N. E. GrREVILLE
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The problem of card matching has been considered by a number of writers.
A complete bibliography has been given by Battin [1], who also published the
most general treatment of the subject to date, dealing with the simultaneous
matching of any number of decks of arbitrary composition. He considers,
however, only the case in which the order of every deck is variable, all possible
permutations being equally likely. Some interest attaches to the case in which
all the decks but one have fixed orders in relation to one another, especially in
connection with radio experiments in telepathy, where a large number of subjects
simultaneously attempt to call the same target.

The simplest case is that in which the target for each trial is chosen at random,
independently of the other trials. If the target-is to be selected from s possi-
bilities, and if p; denotes the probability that the 7th possibility will be chosen
as the target, while m; denotes the number of subjects who call the sth possibility,
then the mean value of h, the number of correct calls is, of course,

(¢h) My = Zl pimg ,

and the variance is

(2 Vi = Zpimg - M;.
f==]

Evidently, the mean number of hits for a succession of trials is the sum of the
means for the individual trials, and the variance is the sum of the variances.
A slightly more difficult problem is presented when the target series is a true
“deck’: that is, when its composition is determined in advance, only the order
being left to chance. Let n denote the number of trials and n;(z = 1,2, -+, s)



