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1. Introduction. Given a frequency distribution D: [X;, F] ¢ =
1,2, 3, ---, n), we shall call the expression

n

M. (D, X;) = 3, (X; — X;)'Fs
the rth total moment of D about the origin X ;. We shall consider the weighted
sum

S).nr = ZjoMf (D, X,)

where W ; denotes the weight corresponding to the particular origin X ;, and the
summation is over a field ¢. In particular, if ¢ is the set of all values assumed
in D by the variate X;, and if W; = F;, we shall call the quantity the rth com-
plete total moment of D. If, on the contrary, W, is the frequency F; of the value
X in a second frequency distribution D’: [X i, Fi] and ¢' is the set of all values
assumed by the variate X; in D’ , M, will be called the rth aggregate moment
of Dand D’. A modification of this procedure leads to what we shall call the
moment of transvariation of D and D’.

The consideration of complete moments draws attention to certain previously
known measures of variability which are independent of the origin selected,
and also provides simple methods of computation which are useful for data
given in the form of a frequency distribution. The investigation of aggregate
moments and moments of transvariation gives rise to certain measures of general
similarity between two distributions, as well as measures of the amount of over-

lapping.

2. Sliding and complete moments of a frequency distribution.
2.1. We shall give the name sliding total moments of order r to the successive
values, for particular values of j, of the expression

@11) M, (X) = Fy 3 (X — X' Fi

1The Portuguese original of this paper was written in Brazil, in August 1943. Its transla-
tion into English was entirely revised by Dr. T. Greville, Bureau of the Census, who pro-
posed also many simplifications in the deriyation of formulae. For his painstaking labor
and interest I wish to express my very sincere appreciation. I also wish to thank Dr.
W. Edwards Deming for reading the manuseript and making several valuable suggestions.
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The expression for the complete total moment, written out in full, is

(2.12) m, = ,sz M, (X)) = Z::l ’Z:: (X: — X))" F:Fy).

It is readily seen that the complete moment is independent of the choice of
origin.
2.2. If r = 0, we have
Mo(Xj) = F,' E F,'.

t=1
The complete total moment of order zero will therefore be
(2.21) Mo =2 F; >, Fi = M
j=1 i=1
where M, stands for the total moment of order zero about the origin of the X’,
that is,
M, = Nw.

23. If r = 1, we shall have
M, (X;) = T; Z‘ [(X: — X;) Fil.

Using M, to denote the total moment of order one about the origin of the X,
we obtain

M, (X;) = F; 21) X;F; — X;F;Zl: Fi=F;M, — X;F; M,.
Making j vary from 1 to n and summing, we have

M= 2 F;My — >, X;F; M,
(2.31) i=1 =1
= M0M1 - MlMo = 0.

This result is due to the fact that we took the deviations X; — X ; with their
proper signs. We may, however, calculate the value which the complete moment
of first order would have if using ahsolute values. Thus, the sliding total
moment thus modified becomes

i—1 n
| My(X;) | = F [2_3 X; = XOF: + 3 (X: = X,-)F..]
which may be put in the form

n

-1 n -1
@32) |MuX)|= F;X; [; P 3 F..] _ 7 [z; FiXi— 3 F;X;].

i=7 t=j
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Summing with respect to j and employing the substitutions

=1

n
ZF‘-:Mo—ZF.'

t=j te=1

(2.33)

i—1

S FXi=M, - S_,:F;Xs

Tomj

gives for the complete total moment

n -1 n =1
(2.34) || = 2 2‘1 [ijj Z} F,-] -2 [F, Z: Iv’,-X.-] .

7=1
The quotient

_ |2
(2.35) my T
of the complete total moment of order one by the complete total moment of order
zero we shall call the complete unit moment of order one, or simply the complete
moment of order one, when no confusion would result.

The complete unit moment is a measure of variability, identical with that
already considered by Andrae and Helmert, respectively in 1869 and in 1876,
and which C. Gini, in 1912, called mean difference with repetition.?

The numerator of m, is easily computed if we observe that the upper limit j — 1
of the F; summation, for example, means that each product X ;F; must be multi-
plied by the cumulative frequency corresponding to the class immediately pre-
ceding. We only have to shift the cumulative frequencies column by one class
in the proper direction; the second term is similarly dealt with.

2.4. The second order sliding total moment is
]‘Iz(X,) = F,’Z [(X,, - Xj)zF,'] = Fj]”z - 2F,'X,'M1 + F,X,zﬂlo
1=1

where M, is the total moment of order two. Summing with respect to j gives
the complete total moment of order two

(2.41) Ny = El My(X,) = 2(M, M, — M?).
=
The complete unit moment of order two is therefore
2
(2.42) 0 e
= 2°

2Arup CzuBER, Wahrscheinlichkeitsrechnung, Vol. 2, (1932), p. 316. C. Gini, Varia-
bilita e Mutabilita, Cagliari, 1912,
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where »’ stands for a unit moment about the origin of the X, namely

s _ IX'F
r EF ?

me is also a measure of variability, independent of the choice of origin. It is
equal to the square of Gauss’s ‘“Priizisionsmass’’, and to the double of Fisher’s
variance; like m, it was defined by Andrae and Helmert, and was called by Gini
the mean square difference with repetition.

2.6. If r = 3 we have for the sliding moments,
My(X;) = F; g‘l (X: — X;)°F:
= F;M; — 8F,X;M; + 3F;X; M, — F; X} M, .
Summation over j gives
(2.51) M = ;1‘1 My(X;) = MoM; — 3M1M; + 3M. M, — MM, =

a result which is easily shown to hold for any complete moment of odd order.
We may calculate the value of the complete moment of order three using absolute
values of the deviations X; — X ;by a process similar to that previously described
for the calculation of | 9% |. This gives

n i—1 n i—1

| | = 2[23 FiXj 2 Fi — 33 FiX] 3, FiX;

=1 i=1 = i

(2.52) i i
+3Z;FX Z)FX2 EF,ZFX;]

=1 t==1

2.6. The sliding moments of order four are
M(X;) = F;M, — 4F ;X ;M3 + 6F ;X;M, — 4F XIM, + F;XiM,
Summing with respect to j and simplifying, we have
(2.61) My = MMy — 4M1M5 + 6M; — AM:M, + MM,
= 2(MoM: — 4M:M; + 3M3).

Dividing both sides by I in order to obtain the complete moment on a unit
basis, we have

M MM M. , , ,
my = 2[31—: M:M:+ 3(M’)]= 2 (vs — 4vivs + 302).

But, if » indicates a moment about the mean

’ ’ 7 2 7 /4
ve = vy — 4vivg + Bvyve — 3y,



78 MILTON DA SILVA RODRIGUES

By substitution, therefore’
my = 2(vs + 3vs — 6vi’vs F+ 31
(2.62) = 20w + 3(v; — w1l
= 2(vs + 343).
This complete moment gives rise to a measure of kurtosis independent of the
choice of origin
my Vs 3

k = mg = E;g 5,
In case of mesokurtosis this reduces to 3, since for the normal curve »*/»; = 3;
leptokurtosis and platikurtosis occur for the same ranges as in the case of Pear-

son’s measure S .

3. Aggregate moments of two frequency distributions.

3.1. Given two frequency distributions, D:[X;, Fi](t = 1,2, 3, --- , »n) and
D:[X;,FlG=1,238,---,p) and a fixed point X; belonging to the second
distribution, we shall call the expression

3.11) M.DD, X;) = F; Zl (X: — X;)'F;

the rth aggregate sliding total moment of the first distribution about the element
X; of the second. Summation over j gives
p n
(3.12) M = 2 25 Fi(Xi — X)) Fa.
1=1 i=1
We shall call “IR, the aggregate complete total moment or, simply, the aggregate

total moment of D about D’. It is clear that this is a symmetric function of the
two distributions, except for a change of sign in the case of odd moments.

32. If r = 0, we have

(3.21) My(D, X}) = F; 3, F;
=1
P n
(3.22) ‘%=ZH2ﬂ=mm.
=1 f=

3.3. Ifr = 1, we have
(3.31) M\(D, X;) = FiM, — F;X; M,
(3.32) ‘W = MiMy — My M.
We shall call the quotient

(3.33) ‘my = cg:
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the aggregate unit moment of order r (or the aggregate moment coefficient),
or simply the aggregate moment of order r whenever the simpler name will not
cause confusion.

It is obvious that the aggregate moments are measures of general similarity,
as to form and position, between D and D’. This similarity will be an identity
in case the two distributions coincide perfectly; on the other hand, it is clear that
there is no limit to the degree of non-similarity which may be encountered. We
shall take unity to represent the maximum and zero the minimum of similarity,
and thus define a provisional similarity index

14
(3.34) 8 =T
m
But
; MM, — MyM;
m = ———————
M\M,

where A and A’ stand for the arithmetic means of D and D’, respectively. Now
it will be seen thatif A = A’, S = «. This result is due‘to the fact that in the
calculation of m; and m; we took the absolute values of the deviations X; — X ; s
while in the calculation of °m; we retained the algebraic signs. In order to make
the two terms of the fraction in (3.34) comparable, we can either: 1) calculate
‘m also using absolute values; or 2) take only the positive or only the negative
part of both numerator and denominator of S. In any case, 4 = A’is a neces-
sary condition for the maximum of S.

=A-A

34. We shall employ the first method suggested above, although we shall
return to the second in the third part of the paper. Aslong as D and D’ do not
overlap, all the X; — X deviations have the same sign and this is the same as
that of the difference A — A’. If, however, there is some overlapping this will
not be the case, some deviations having different signs from that of A — A’.
This brings us to Gini’s concept of “transvariation”. He applies this term to
any deviation X; — X; which does not have the same sign as X — X', these
symbols denoting averages of any previously specified type; and he calls the
magnitude of the deviation its ‘“‘intensity”.

In computing the complete moment of the first order using absolute values,
in order to simplify the algebra we shall assume the same origin for X and X’
and therefore drop the stroke from the X, but not of course from the F.
If certain values of X occur in one distribution and not in the other, we can
merely consider the frequency as zero in the second distribution. In this way
the two distributions can be regarded as extending over the same total range.
If X, and X,. denote the extreme values, the sliding total moment is

i—1 m
| Mu(D, X))| = F; [2:3 X; = X)F: + 3 (X — X,-)F;]

fum]

i—1 m i—=1 m
- Fix, (SR -5 ) - B (G Rx - ERx).

(=] =7
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Summing with respect to j and at the same time employing the substitutions
(2.33) or their transposed form, we obtain the following alternative expressions
for the complete aggregate moment:

(B41) |P| = M\ Mg — MoM] + 25_3[1? X,ZF]- 2E[F EF X.]

Jm=1

(3.42) |D| = MoM; — M\ M — 22) [F X,.z; F;]+ 2Z[F L F:X ]
t=j

Note the similarity of the first of these forms to formula (2.34) which is in fact

a particular case of formula (3.41). Alternatively, we may obtain from formula

(3.42) the particular case

03t || =23 (F,. > F.-X,-) —23 (F,x )> n)
1= S ) =7
which is equivalent to (2.34).

If the two distributions do not overlap, | “D4 | does not differ numerically
from ‘M. Let us consider the case in which there is actual overlapping, the
range of non-zero frequencies extending from X; to X, for D and from X, to
X, for D’. Then formula (3.42) becomes, upon merely dropping all vanishing
terms

| My | = MoMy — MM,

(8.43) —2%[FX;EF]+2'% [F ZFX]

j=n+1 $=n+ j=n fa=j

On the other hand, formula (3.41) reduces, under the same circumstances, to a
much less simple expression, which upon making the substitutions (2.33) and
simplifying reduces to

i-1
| D | = MoMi — MM + 2 Z [Ff-X; P> F»']

j=n+ i=n

(3.44) -2 'ip [F§ %F.- X;]

j=n+1 =]
n+p ’ n+p
—2EFXfEF+2Z:‘ZF¢X;.
j=n+ t=n+ j=n+1 i=n+1

This result may be arrived at somewhat more easily by merely making the sub-
stitutions (2.33) directly in formula (3.43)._ It may be neted that formula
(3.44) at once reduces to the form (2.34) if the two distributions are identical,
since the additional terms all cancel. It is, however a less satisfactory result
than formula (3.43) because of the larger number of terms it contains. In order
to obtain a formula which resembles (2.34) more closely, we may reverse the
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order of summation in formula (3.43). Observing that the terms for j = i
collectively vanish, we see that

|| = MoM; — MM,
3.45) ntp = ntp, i1
( -2 2 [F; 2 F;Xi]+2 2 [F.'X.' )| F;]

f=ntl jmn t=n+1 j=n+1

It will be seen that the simple method of numerical computation described in
section 2.8 is immediately applicable to all the formulas (3.41) to (3.45). Di-
viding any of these expressions by ‘D gives | “m; |. For example, if formula
(3.43) is used, we have

(346) |'m|=A4"-4

2 ntp , . nEp nip [ nip
- s (o E v - B[m E rx]}

Substituting this value in equation (3.34), we have

’

mymg

(3.47) S = Toma
a quantity which we shall call the “mean coefficient of similarity.”

We now observe that S, is a general measure of similarity whose magnitude
is affected by differences in either form or position. It may, however, be de-
sirable to eliminate the position element, in order to isolate the form aspect.
To do this it will suffice to relate the value which | “m, | would have for A = 4’,
to the product mym; . This value of | “my | is, in fact, its minimum; denoting
it by ‘w1 we obtain the index

’
(3.48) & = 7
M1
which we shall call the mean similarity ratio.

It is clear that all the above mentioned indices measure overlapping as well
as similarity. Overlapping between two distributions will be greatest when
their similarity is greatest, or when | ‘m; |is a minimum. In order to bring
out more clearly the overlapping aspect we may follow Gini’s procedure of con-
trasting the actual value of a measure with its maximum value. As already
pointed out, if the form of the two distributions is held constant, but their rela-
tive position is varied, the degree of overlapping, as measured by the mean simi-
larity ratio, is greatest when the arithmetic means coincide. This method of
procedure is embodied in the index
[t}

Q

which we shall call the “intensity of transvariation or overlapping.” To calcu-
late “u; we may, for example, merely add the. difference A’ — A = ¢ to the X
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values, in order to move D along the X-axis a distance of ¢, and then proceed to
calculate | “m, | in the usual manner from the adjusted X values.

3.6. If,in (3.11), r = 2, we have
M,(D, X;) = FZZ; (Xs — X)'F;

= F;M, — 2X;F; M, + X*Fi M,.

Summing for j then gives

(3.51) My = MoMy — 2M1 M, + MM, .
If we define the second aggregate unit moment as
oy = T
2 cgyeo
then
. M ’ ’
(3.52) M, MM, M,

=+ "+ (4 — A,
where the o and the A stand for the standard deviations and the arithmetic
means of the respective distributions. Now we define the “mean square co-
efficient of similarity” as the value of
4
Sz — me My

- 2
cmz

(3.53)
4c* "
T et (A - AN

It is obvious that a minimum value of S; requires that A = A’ as a necessary
condition for the maximum degree of overlapping. Maximum similarity re-
quires, in addition, ¢ = ¢/, in which case S; = 1.

For a measure of similarity which is independent of difference in position be-
tween the two distributions, we define.

!’
(3.54) & = 270,

K2

where ‘ug is the minimum value of “m, for all positions of the two distributions,
without changing their form. This is obtained by merely taking

(3.55) ‘up = o* + o’

For a measure of overlapping we can follow Gini in contrasting the actual
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value of “m, with its minimum °u; , since the maximum of overlapping corresponds
to the minimum value of ‘m,. We thus se.

(3.56) Ty = P o o' + o

' *Tm St o+ (A - A)

a measure which we shall call the “density of overlapping”. Its maximum
value is unity.

It may be remarked that all the indices proposed in this paragraph are easier
to calculate than those of paragraph 3.4. The individual terms are all functions
of only one of the two distributions; yet the resulting indices are independent of
the origin chosen, and therefore free from any criticism based on doubt as to the
representativeness of the arithmetic mean, in cases of marked skewness.

4. Positive and negative moments, and moments of transvariation.
4.1. The aggregate sliding total moment of two frequency distributions D
and D’ may be expressed.in the form
j—1

(41) MAD,X) =Fi L (X — X)Fe+ F; 3 (X — X)'Fs

when both distributions have been artificially extended, if necessary, to cover
the same total range, as previously described in section 3.4. We shall char-
acterize the second term in the right member of (4.11) as the positive sliding
moment, and the absolute value of the first term as the negative sliding moment.
We shall denote these moments by *M,(D, X ;) and "M,(D, X;). The complete
moments obtained by summing these separate terms over the range of values of
j we shall call the positive and negative aggregate complete moments. Thus
the positive complete moment is

(.12) m =[5 5 & -xrF]
j=1 =7+
and the negative complete moment is

m -1

(4.13) M, = ; [F;- ): (X; — X F;].
That one of these two partial moments which is obtained from differences X; —
X ; having the opposite sense to that of the difference X — X’ will be called the
moment of transvariation of the two distributions and will be denoted by the
symbol "¢,. Here, as in section 3.4, X and X’ denote averages of any pre-
viously selected type. For example, if the arithmetic means are the averages
selected, and if A — A’ is positive, then the negative aggregate moment is the
moment of transvariation, and vice-versa.

In the trivial case in which the two distributions are identical, the positive
and negative complete moments are equal, and both reduce to merely one half
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the aggregate complete moment (computed by the use of absolute values in the
case of moments of odd order).
The unit moment of transvariation will be defined as

(4.14) my =

4.2, It is evident that the moments of transvariation can be considered as
measures of overlapping. Any such moment equals zero when there is no over-
lapping and becomes greatest when the two distributions coincide. Taking unity
to represent the maximum and zero the minimum of overlapping, we may choose
as a general measure of overlapping,

S - 5

e[ Lomg| [ [0 |

It will be seen that this quantity always equals zero when there is no overlapping,
and equals unity when there is complete overlapping: that is when the two dis-
tributions are identical.

(4.21) T,

5. Need for further developments. All of the measures apove described
were defined for the case of finite sets of magnitudes, expressed as frequency
distributions D and D’. Now these sets of magnitudes may be thought of as
samples drawn out of their corresponding universes. The consideration of these
universes woild lead to more general representations under the form of frequency
functions, and the above measures would be expressed as definite integrals rather
than summations. This draws attention to the need for tests of significance of
the magnitude of all the above measures, especially those of overlapping, in
order to allow for sampling fluctuation. Obviously, when the frequency func-
tions are of the asymptotic type some amount of overlapping will always exist.



