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1. Introduction. The problem of random walk (along a straight line) in the
presence of absorbing barriers can be stated as follows:

A particle, starting at the origin, moves in such a way that its displacements
in consecutive time intervals, each of duration At, can be represented by inde-
pendent random variables

Xl,Xz’Xa’...

Moreover, if at some time the total (cumulative) displacement becomes >p
(p > 0) or < — ¢ (g > 0) the particle gets absorbed. The problem is to deter-
mine the probability that ‘“the length of life’” of the particle is greater than a
given number ¢£. This problem also admits an interpretation in terms of a game
of chance in which the player quits when he loses more than ¢ or wins more than
p. An interesting paper on this type of problem by A. Wald' appeared recently
in the Annals. Wald assumes that the X’s are identically distributed and that
their mean and standard deviation are different from 0. He is then mostly
interested in the limiting case when both the mean and the standard deviation
become small. The object of this paper is to propose a different method of
attack which in some cases leads to an answer in closed form. The method we
use has been employed repeatedly in statistical mechanics in the study of the
so called order-disorder problem. It is due, I believe, to E. W. Montroll’. As
far as the author knows this method was never used in connection with the
classical probability theory and this seems to furnish an additional reason for
publishing this paper. ‘

2. The simplest discrete case. We assume that each X is capable of assuming
the values 1 and —1 each with probability 3, and for simplicity sake we let
At = 1. Note that, unlike in Wald’s case, the mean of X is 0. Denote by N
the random variable which represents the ‘length of life” of the particle and
let (m an integer)

} m=1 or m=—1,

8(m) = 0 otherwise.

1 A. Wald “On cumulative sums of random variables,”” Annals of Math. Stat., Vol. 15

(1944), pp. 283-296.
2 Since this was written Professor Wald informed the author that he can easily avoid the

condition that the mean should be zero.
3 See for instance E. W. Montroll, ‘‘Statistical Mechanics of nearest neighbor systems,”

Jour. of Chem. Physics, Vol. 9 (1941), pp. 706-721.
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Clearly we have (throughout this section we assume that both p and ¢ are
integers)
Prob. {N >n} =Prob. {—¢< X; <p,—¢< X1+ X, <p,---, —¢
<Xi+ -+ Xy £ pb = 28(m)d(ma) - - - 3(ma),
where the summation is extended over all integers m;, m,, - -+ m, for which

—q<m<p, —q<m+m<p -, —qg<m+m+---+m, <p.

Letting
li=Q+m1+°”+mir (j=1)2)”’)n))
we see that
ptq
(1) Prob{(N>np= 2 8-k —b) i — b
Let us now consider the (p + ¢ + 1) by (p + ¢ + 1) matrix
0000
3 0200
2 A=(@¢—-k))=10 3 0 3 0

It is easily seen that the sum in (1) is equal to the sum of the elements in the
(¢ + 1)-st column (or row) of the matrix A". Thus
Prob. {N > n} = sum of the elements of the (¢ + 1)-st column of 4".
Denote by A1, Az, - -+ Apte+1 the eigenvalues of the matrix A and let

(€] (5
1,

@i, 237, -+, BGien)

be the normalized eigenvector of A belonging to the eigenvalue A;. It can be
shown by elementary means* that
nj
= €08 —————
p+aqgt+2

¢ Matrices of type (2) have been introduced and studied in various connections. In a
paper by R. P. Boas and the present author recently accepted by the Duke Mathematical
Journal references to several authors are given. In order to find the eigenvalues and the
eigenvectors of (2) it suffices to know that

A;

(=]

......

.....

..............

where m is the order of the matrix p; and ps roots of the equation p? — p + a* = 0.



and

3 _ V2 . wjk
YT Vetare ptat?

Denoting by R the orthogonal matrix

1)
o e Tyt
T 2} Tptg+1
(p+q+1) (p+q+1) (p+g+l)
"M z" M *tt Tptgtl

and by R’ the transposed of B we have (since the eigenvalues of A are simple)
by a well known theorem

0 Aptett
It thus follows by an easy computation that the sum of the elements of the
(g + 1)-st column (row) of A" is

pie+l pig+t th D ptetl o ptg+l @
3 n 3 n
% waah = 5 vath (X o).
Ju=

Tem]l je=1 el
We have
ptq+l a p+g+t .
55 2@ V2 . wjr
2 = X sin ——~
el Vopt+g+2 =t pt+ae+2

0, i J even,

= V2 xj ,
Vitare s rora 09

and therefore®

Prob. (M > n}
2 &= . x . w@+] xj
TrF ez A ez 112 Fa T

where the star on the summation sign indicates that only odd j’s are taken under
account.

The method just illustrated is quite general but in more complicated cases
the job of finding the eigenvalues and eigenvectors becomes formidable.

§ Professor Feller has called the author’s attention to the fact that similar problems and
formulas can be found in Chapter III of W. Burnside’s Theory of Probability (Cambridge,
1928). He also pointed out that the problem could be treated by means of Markoff chains.
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Professor G. E. Uhlenbeck has pointed out that our formula implies a known
result from the theory of Brownian motion.

Consider a free Brownian particle which at ¢ = 0 is at z = x(xe > 0). R.
Fiirth® has shown that the probability that between ¢ and ¢ + dt the particle
will be either at £ = Oorat x = d (0 < x < d) for the first time, is given by the
formula

dt 4%22 f:,) (2m + 1)eT PN EMID® iy (2m + 1)rz _‘;l 1) ”xo,
where D is the “coefficient of diffusion.”

If we treat the one-dimensional Brownian motion as a random walk with steps
+ Az, each move lasting At, the probability that a particle starting from x, will
not have reached 0 or d in the time interval (0, {) can be calculated by means
of our formula.

We must only put ¢ = xy/Ax, p = (d — x)/Ax, n = t/At and assume that as
both Az and At approach O the ratio (Az)?/2At approaches the “coefficient of
diffusion’’ D.

An elementary computation shows that in this limit the Prob. {N > t/At}
approaches

4 5 1 jxtitpiane W%

Ti=1 ] d
and that the differential of this expression (with a minus sign) gives exactly
Fiirth’s expression.

3. General theory in the continuous case. We now assume that the distribu-
tion function of X possesses a continuous and even density function p(x). We
have

Prob. {N > n} = f fp(xl) <oe p(xn) day - -+ dZa,
b

where the region of integration  is defined by the inequalities
—¢g<m<p, —gfim+xlp-, —gSnt--+z=Dp
Introducing the new variables
yi=qg+m+ - +z;, (G=12---,n)
we see that the Jacobian of the transformation is 1 and

Prob. {N > n}
(3) ptq p+q
= [ [ e — et — w0 - b — o) dy - .

Consider the symmetric integral equation

@ [ o6 - 050 a =216

8 Ann. d. Phys. 53 (1917) p. 177.
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and note that if K.(s, t) denotes the n-th iterated kernel of this integral equation,
the right side of (3) is equal to

Pte
j; K.(q, t) dt.
Thus
ptg
Prob. {N > n} = [o Ka(q, t) dt.
From the general theory of integral equations we know that
Kas 1) = ZNSOf0, @ 22),

where Ay, Az, --- are eigenvalues and f(t), fa(t), - - - normalized eigenfunctions

of the integral equation (4).
Since p was assumed to be continuous it follows that the eigenfunctions are

continuous and
[ p+q
Prob. (N > n} = 35 N fi0 fo 710 dt.

This formula is very general and provides, in a sense, a complete solution of the
problem in the continuous and symmetric case. Unfortunately the usefulness
of this formula is limited by the difficulties encountered in solving integral

equations of the type (4).
In fact, the integral equation

\71‘% f., e () dt = Mf(s),

to which one is led by considering the normally distributed X’s, appears to be
very difficult to solve. .

4. A particular case. If we assume
o(z) = %e—m
we are led to the integral equation

%) /; ™ e ) dt = 20f(s),

which is quite easy to solve.
In fact, rewriting (5) in the form

ptq ptq
6) e’ l eft) dt + ¢ l e f(t) dt = 2\f(s)

7 I have recently encountered the integral equation (5) in solving an entirely different
problem. A complete discussion can be found in a restricted N.D.R.C. Report 14-305.
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and differentiating twice with respect to s we obtain the differential equation
6s) + (% - 1) 1) = o.

Substituting the general solution of this equation in (6) we find in an entirely
elementary fashion that

1
METE
10 = sin y;t 4+ y; cos y;t
’ V1i+ip+ o0+ )’
where y; is the jth (positive) root of the transcendental equation
’ 2
@ tan ( + Y =~

We have
pt+q . 1 .
_£ (sin y;t + y; cos y;t) dt = ” {1 — cos (p + @)y; + y;sin (p + @y}

and it is easily seen that (7) implies

2
0 ifcos(@+ qy; = i_,_g;;

1 — cos (p + @Q)y; + y;sin (p + Q)y; = 1 yi
2 if j= ——

if cos (p + Qy; g

Finally,

= 1 sin y;¢ + y; cos y;q
Prob. {N > n} =22/ e 3 ,
V> = 22 T 0+ 36 + 00 + )
where the dash on the summation sign indicates that only those j’s are taken
under account for which

__1-y
cos (» + Q)y; et
We omit here the discussion of various limiting cases inasmueh as our main
purpose was to obtain exact formulas.
There are indications that some of the limiting cases are related to singular
integral equations with continuous spectra. We may return to this subject
at a later date.




