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1. Introduction. In a recent paper, Hotelling [1] has discussed the basic
principles of the theory of the design of efficient experiments for estimating the
true unknown weights of p given objects by means of a specified number N of
weighings, p < N in case the scale is free from bias and p < N — 1if it has a
bias the unknown value of which has to be estimated from the same data. He
has emphasized the importance of these designs in other kinds of measurements
besides weighing of objects and has called attention to the need for further
mathematical research for obtaining a ‘“‘comprehensive general solution.” Such
a solution has now been obtained in case the number of weighings N is at our
choice. Some other general designs have also been given in this paper for
specified values of N and p.

2. Estimation of unknown weights and efficiency of a design. Using
Hotelling’s notation, we may write

yd
¢y E(ys) = El Tiab:
where { = 1, 2, --- p, on the assumption that there is either zero bias in the
scale or the bias is known a priori, and @« = 1,2, --- N. E(y.) is the expecta-

tion of the ath weighing. For a biassed scale, we may take ¢ = 0, 1, 2, --- p.
The efficient estimate of each of the b;’s has been derived by Hotelling by the
method of least squares. It is of interest to obtain these estimates by the use
of the theory of linear estimation as developed by Bose [2] and Rao [3].

Assuming that, ¥, 42, - -+ yv are N stochastic variates forming a multi-
variate normal system with the variance and covariance matrix given by
) u = [uil,

it follows from Rao’s generalization of Markoff’s theorem that the best unbiassed
estimates of the D7’s are given by the solutions of the normal equations

3) X'U'XB"= X'U'Y,
where B = [bibs --- b,) and ¥ = [yye - - - yn), and B’ and Y’ denote as usual
the transpose of the row vectors B and Y, i.e. column vectors.

In the present case, the assumption is that all the N stochastic variates are
uncorrelated and have a common variance ¢°, so that

(4) U™ = ! I.
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Hence the normal equations in (3) reduce to

%) X'XB' = X'Y",

which are exactly the same as the normal equations given by Hotelling, since
(6) X'X = [ai]]

where a;; = S(Ziak ;o)

Let C = [c;;] denote the reciprocal of the matrix X’X, so that V(b:) = cio®
and cov (b:b;) = cijo°. Then the mean variance of the p unknowns for a design
is given by

o
s N ) ICn‘

p

If the main object of the experiment is to estimate the unknowns with the
least variance, the most efficient design (for a specified value of N) would be
the one for which the minimum minimorum of ¢°/N is attained for all the p

@)

U

=9

P
. . . . 2 v g v
unknowns so that the mean variance in this case ix ¢°/N. The factor, N Z cii/D,

1=l
on the right-hand side of (7), therefore, measures the increase in variance result-
ing from the adoption of any design other than the most efficient design. Its
reciprocal, N i o0 AV appropriately be defined as the efficiency of a given
yr] 11

design for providing estimates of the p unknowns. This quantity will now be
utilized for judging the relative precision of the general designs discussed in the
subsequent paragraphs.

3. Design for N = 2", p < 2™ (zero bias) or p < 2" — 1 (non-zero bias).
By utilizing the properties of a 2-sided m-fold completely orthogonalized Hyper-
Graeco-Latin hyper-cube of the first order introduced by the author [4], it is
casy to see that for N = 27, p < 2™ (when there is zero bias) or p < 2" — 1
(when there is bias), m heing any positive integer, a completely orthogonalized
design can be constructed with each unknown weight estimated with the mini-
mum variance ¢'/N. As remarked by Hotelling in the case of N = 4, p = 4
(for zero bias) or p =3 (if there is bias), the matrix X'X for this design i a
scalar matrix of order p X p if there is zerd bias, or of order (p + 1) X (p + 1)
if there is bias, each of the diagonal elements being N. The reciprocal matrix
is also a scalar matrix in which each of the diagonal elements ix 1/¥ so that the
estimates of all the unknowns are mutually orthogonal.

As a particular case of this general design, we may take NV = 16, p = 16 {for
zero bias) or p = 15 (if there is bias), the completely orthogonalized design for
which is represented by the matrix
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8 X =
{1 11 1 1 1 1 1 1 1 1
-1-1-1 1 1 1~-1--1-1 1-1
-1 1 1-1-1 1-1-1 1-1-1
l1-1-1-1-1 1 1 1-1-1 1
1-1 1-1 1 -1-1 1-1-1-1
-1 1 -1-1 1t-1 1-1 1-1 1
-1-1 1 1 -1-1 1-1-1 1 1
-1 1 -1-1-1 1 1 1-1
-1 1 -1-1 1-1-1 -1 -1
1 1 -1-1-1 1 1-1 1
-1-1 1 -1-1 1-1 1 1
-1 1t -1 1-1 1-1 1-1 1-1 1 1-1
-1 -1-1 1-1 -1 L1 1
l1-1-1-1 1 1-1-1 1 1 1-1 1-1
-1-1-1-1-1-1 1 1 1 1 1 1-1-1
-1-1-1 1 1 1 1 1 1-1-1-1-1 1
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for which X’X is a scalar matrix of order 16 X 16, each diagonal element being
16. Again, a completely orthogonalized design for N = 16, p < 16 (for zero
bias) or p < 15 (if there is bias) is represented by a matrix X obtained from the
matrix in (8) by omitting any 16 — p of its columns if there is zero bias, or
16 — p — 1 of its columns if there is bias. In the matrix X, permutation of
rows and columns is permissible and each such matrix represents a completely
orthogonalized design.

For the design given by Hotelling' for N = 4, p = 3 (zero bias), the efficiency
is 35 per cent. The completely orthogonalized design for which the efficiency
is 100 per cent is represented by the matrix

11 1)

.1 -1

) Y=11 -1 1
E——

4. First design for N = 2" + 1, p < 2" (zero bias) or p < 2" — 1 (non-zero
bias). For N = 2" 4 1, p < 2" (zero bias) or p < 2™ — 1 (if there is bias),
m being any positive integer, probably the most efficient design available seems
to be that represented by the matrix X obtained from the corresponding matrix

! The allusions here and at the end of the next section are to designs on p. 305 of the
Hotelling paper [1], a passage concerned with designs subject to the restriction that the
entries on the matrix be 0’s and +1’s only, as is necessary in many types of measurement.
The more efficient designs given above, whose matrices involve —1’s also, can be used only
in such cases as that of weighing in a balance, where the objects under investigation can be
put, some in one pan and some in the other. Such situations are considered in a different
part of Hotelling’s paper.
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X for the general design of Section 3 above by adding a row 1, 1, --- 1 to it.
The matrix X’X for this design then comes out as

N 1 1---1

1 N 1---1
(10) XX=|[1 1 N--- 1},
1 1 1.--N

which is a symmetrical matrix of order p X p if there is zero bias, or of order
(@ + 1) X (p + 1) if there is bias. The variance of each unknown for this

design is

a® .
1) N P 1 for zero bias,
N4+p—2
or
02
if there is bias.
(12) N—__P
N+p-1
Thus the efficiency of this design is
(13) 1-— _p=1 for zero bias
NN +p -2 ’
or
(14) 1-— NO—V-—_F?LFB if there is bias.

The loss of efficiency resulting from the adoption of this design is, therefore,
p—1
NN +p—2)

As a particular case of this, for N = 5, p = 2 (zero bias), probably the most
efficient design available is specified by

for zero bias or Wq_ﬂp_—l) if there is bias.

(15)

P
Il
el N e

1

1

1f.
-1
-1

2

The variance of each unknown in this case is % and the efficiency of the design

is 96 per cent. For the design given by Hotelling for this case, the variance of

each unknown is 4; and the efficiency is 35 per cent. It would thus appear
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that, as judged by the criterion of efficiency as defined here, the design repre-
sented by the matrix in (15) is more efficient than Hotelling’s design.

6. Second design for N = 2™ 4 1, p < 2" (zero bias) or p < 2™ — 1 (non-
zero bias). Another interesting design for these values of N and p is that
represented by the matrix X obtained by adding a row 1, 0, - -- 0 to the cor-
responding matrix X for the general design in Section 3 above. The matrix X’X
for this design is then the diagonal matrix

N 0 0
(16) yy=|0 Vot 0
0 0 --N —1

of order p X p (for zero bias) or (p 4+ 1) X (p + 1) (for non-zero bias). As
the reciprocal of this matrix is also a diagonal matrix, the estimates of all the
unknowns are mutually orthogonal. The efficiency of this design is

N —=1)p . ias
17) Np =1 for zero bias,
or
(18) N—]Gl for non-zero bias.

By comparing the efficiency of the first design given in (13) and (14) with that
of the second design in (17) and (18) respectively, it would appear that the
efficiency of the first design is always higher than that of the second design for
non-zero bias, and is also higher in the case of zero bias for p > 1, but equal for

p =1

6. First design for N = 2™ 4 r, p < 2" (for zero bias) or p < 2" — 1 (for
non-zero bias). For N = 2" 4 r, p < 2" (for zero bias) or p < 2" — 1 (for
non-zero bias), m being any positive integer and r any positive integer < 2",
a highly efficient design is represented by the matrix X obtained from the
corresponding matrix X for the general design in Section 3 above by adding s

rows 1, 1, --- 1 to it. The matrix X’X for these designs then comes out as
(N VA B
r N r ---7p

(19) XX=\|r r N---7¢

..............
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which is of order p X p for zero bias, or of order (p + 1) X (p + 1) for non-zero
bias. The variance of each unknown determined by this experiment is

02 .
(20) N — _ﬂ’_:_l)_i__ for zero bias,
N+ (-2
or
0'2 . . .
(21) N — ___?L'i__ if there is bias.
N+ (- Dr
Hence the efficiency of this design is
_ -1 .
(22) 1 NIV + & —2)7) for zero bias,
or
2
(23) 1 ad if there is bias.

T NIV + (@ — Drl
The loss of efficiency as a result of adopting this design is, therefore,
(p — Dr for zero bias, o P
r zero bias, or
NIN + (p — 2)] N[N + (p — D]

if there is bias.

7. Second design for N = 2™ + r, p < 2" (for zero bias) or p < 2" — 1 (for
non-zero bias). Another design for these values of N and p is that represented
by the matrix X obtained from the corresponding matrix X for the general
design in Section 3 above by adding to it r rows 1,0, 0, - - - 0. The matrix X'X
for this design is then given by

N 0 0 0

0 N—r 0 - 0
(24) X¥X=0 0 N-=-7r--- 0 |,

0 0 0 N —r

which is of order p X p if there is zero bias, or of order (p + 1) X (p + 1) if
there is bias. Here also the estimates of all the unknowns are mutually orthog-
onal. The efficiency of the design comes out to be

(25) W = rip if there is zero bias,
Np —r

or

(26) N—r if there is bias.

N
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By comparing the efficiency of the first design of this type given in (22) and
(23) with that of the present design given in (25) and (26) respectively, it would
appear that in case of zero bias, the efficiency of the first design is higher than
that of the second design for p > 1, but equal for p = 1; and in case of non-
zero bias, the efficiency of the first design is always higher than that of the
second.

8. Comprehensive general design when N is at our choice. When N is at
our choice, we can always obtain a completely orthogonalized design by taking
N equal to a sufficiently large power of 2. For p = 2™, m being any positive
integer, a completely orthogonalized design for N = 2™, when there is zero
bias, has been given in Section 3 above. If, however, there is a bias, a com-
pletely orthogonalized design can be constructed for N = 2™*', When p =
2™ 4 u, where u is a positive integer < 2™, a completely orthogonalized design
is available for N = 2™*!, whether the bias is zero or not.

For N = 2™, this is the most efficient design, with 100 per cent efficiency,
but as N is given higher powers of 2 than 2™, the variance of the estimate of
each unknown decreases. When N = 2', where I > m + 1, the variance of

1
each unknown is g1 of that for N = 2™",
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