ON THE POWER FUNCTIONS OF THE E:-TEST AND THE T2-TEST
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National University of Peking
1. The general linear hypothesis. Every linear hypothesis about a p-variate
normal population or several such populations having common variances and

covariances is reducible to the following canonical form [4]: The sample distri-
bution, when nothing whatever has been discarded from the whole sample, being
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where the 7;, and the a;; are unknown, the hypothesis to be tested is
H: 7 =0 EG=1,---,p;r=1,:--,m,1n <m.

It isclear thatthey; ( = 1, ---, p; » = my+1, ---, m) can have no use.
Also, the only useful quantities supplied by the set z;, are the statistics

by = Z ZisZjs s
1-1
because the remaining quantities may be regarded as a set of angles which are
independent of y;, and the b;; and which has a known distribution free from any
unknown parameter in (1), [2]. After discarding the irrelevant y’s and the angles
there results the reduced sample distribution
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Hereafter the indices 7, j and r shall have the following ranges:
,jJ=1---,p r=1--,m,
and the convention that repetition of an index indicates summation will be
adopted. Writing

Gij = Yil)ir,  Cij = @ij + bij,
we obtain the distribution of the y; and the ¢;; :
K I oij I $(n1+n) I Cij — at’il $(n—p—1)

exp (—3aijci; + aiinis — 3aiman;)ldy de.
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In the remaining two sections of this paper we deal exclusively with the
special cases p = 1 and n; = 1. According as p = 1 or n; = 1 we shall drop
the indices 7 and j or the index r.

The case p = 1. When p = 1, (2) reduces to

Ka*(nl+n)(c - yryr)h exp (—zac + aym, — 3anm,) dll dy.

Putting y, = c*, we obtain

(3) Ko*™mtmmim=1q _ g e Lexp (—iac + actzn, — Yan,) delldz.
The hypothesis H is now
H: 93 =0 r = 1,---,m).

If w is any critical region for the rejection of H’, denote by w(c) the cross
section of w for every fixed ¢. Then the power function of w is
ﬁw(n, a) = Bw(”l: Tty Mgy a)
4) = Kiritm ganenr fw Amtm—1 P dCf a- xrxr)in—l eaciz,—'rrn de.
0 w(c)

It is known [3] that, in order to have
) Bu(0, @) = e

for all «, it is necessary and sufficient that
6) f (1 — oz)" M dz = Ae,
w (¢)

where A is a constant.
The E’-test is the test based on the critical region

Wo: T, = C_*yryr = E? > const.

The author has proved [3] that of all the critical regions which satisfy (5) and
whose power function is a function of an,n, alone, the region wy is the uniformly
most powerful one. This result is generalized by Wald [7], who proved that, of
all the regions satisfying (5); the surface integral

Yol N) = [ fuln, @) d4

is maximum when w is w,. The author gives here another proof of Wald’s
theorem which is easier as it dispenses with the somewhat intricate Lemma 1
of Wald. From (4) we have

00
Yu(a, N) = Ka“"‘”)l Jrtm Tt gt g

. f {1 - :c,x,)’"_‘ll dx f exp (—ian,n. + ac’z, 7)) dA.
w(e)

Npnr=N\
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By means of a rotation in the space of (n1, -+, 7.,) we can obtain

] exp (—}an.n, + ad z.n,) dA
L

= f N exp (—4af, & + ac*(x, x,)*g‘l) d4 = f: ax o™ (cz, z,)¥,
k=0

rfr

where a: depends only on «, k and \. Hence
@ vule,N) = Zb"f. A f (zrz) (1 — z,2,)" I dz,
k=0 w(e)

where b;, depends only on k, « and X\. Since w(c) satisfies (6), it follows from a
lemma of Neyman and Pearson [5] that

f (z.2)(1 — z,2) " M dx
w(e)

is maximum, for all ¢ and %k, when w(c) is the region x,x. > const., i.e. when w
i8 itself the region z,z, > const. This proves Wald’s theorem.

Still another optimum property of the E’-test may be established on using
the volume integral instead of the surface integral. This is stated in the follow-
ing theorem. ‘

THEOREM 1. Let S be any linear set and let

vl = [ Buln, I .
nrneed

Of all the regions satisfying (5), the region wy has the mazimum ¢.(a, S).

For, by the same computation which leads to (7), we easily obtain

‘Pw(a, S) = Z ckf ci(ﬂrf-n)—le—}dc dcf (x'xr)k(l - x'xr)ln—ln dz,
0 w(c)

k=0

where ¢; depends only on k, @ and S. Hence the result follows.
This theorem also contains my previous result as a consequence. For, writing

ﬁw(n) a) = f(aﬂr'ﬂr)y ﬁwo("” a) = fo(aﬂrﬂr)7

we have
’-;” 1

0< _/;"w (fﬂ(aﬂrﬂr) - f(aﬂrﬂr))n dﬂ = I‘(%nl) ];thl—l(fo(at) —f(at)) dt.

Since S is arbitrary, we must have f(af) < fo(at).
The case ny = 1. When n; = 1, (2) and H become respectively

K| ai """ | eij — yay; [
exp (—3aici; + aiyin; — 3aimn;)Idy de,
H': 9, =0 C=1,---,p.
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There is a unique real matrix

T=1| cooeeeeenns (t:: > 0; zeros above the principal diagonal)
bp tip - - lpp

such that [c;;] = TT'[2]. Introducing the new variables z;, - - - , z, by means
of the transformation

9) W, o s ysl = [, -0, 2T
with the Jacobian | T | = | ¢;;|! we obtain the distribution
f@, OMdzrde = K | aij [ [ e ("7 (1 — zag)l—>D
-exp (—deuci; + aifrarn; — faimin;)Il dz de
(k=1,---,p; ti=0 when k> ).

(10)

If w is any region, we write
Bu(n, a) = ﬁw(ﬂly Tty Mpy Qui,y, Qizy tc aw) = ./;f(.’t, o1l dzx dc,

so that B,(n, a) is the power function if w serves as a critical region for rejecting
H". We have, symbolically,

w =D X w(c),
where D is the set of points (c;;) for which [¢;,] is positive definite and w(c) is

the cross section of w for fixed ¢;;. Then

Bulny @) = K| agg N4 gbesinns [ |, o sy g
D
. f (1 — =z x‘)i(»-p—l) e ITN T o
w(e)

It is known [6] that, in order to have
(11) Bu(0, @) = ¢

for all a;;, it is necessary and sufficient that

(1 — z;2) " PP dx = Be,
w(c)
(12)
where B = (1 — 2z )" P10 dy,
ziz;<1

The T*-test is the test based on the critical region
we: xx; = cyy; = T/(1 + T > const.,, or T® > const.,
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where ¢ is the general element of [c;;]™ and T” is, except for a constant factor,
Ho . ling’s generalization of ‘“Student’s” ratio.

1 order to establish an optimum property of T* analogous to that of E® given
in Theorem 1, we define, for any linear set S and any region R in the sample
space,

= [  Baln, N dn da.
agninjes
¥ ,(5' does not necessarily have a finite value, and it is this fact which renders
the following theorem less satisfactory than Theorem 1.

THEOREM 2. Let p, be the smallest latent root of [ci;] and let E be any subset
of D in which p, is at least equal to a fixed positive constant. Of all the critical
regions w which satisfy (11), the region w, has the maximum Y, x(S).

It order to prove this theorem we need the following two lemmas.

LumMa 1. If ¢ is a positive constant, the integral

I = f l Cij I—(p-H) I de
Pp2c

Las o finite value.
Proor. Let py, -, pp be the latent roots of [c;;] in the descending orde:
of inagnitude. From a known theorem [1] we get

I=0 (pr -+ pp) "™ I<I (ps — p) dp
Hi

c<Pp <p1 < i
00 3 p i+
Scf'“f(nﬁhbhr“@r
c c 1=

Hence I is finite.
1y iMA 2.

(i 2, %5(3) = g gkf Iciil_(pﬂ)n de f( ) (1 - x‘x‘)i(n—p—l)(xix‘)kn dz
E w(c

ains ywr(S) 18 finite, where g depends only on k and S.
’rooF. Let A be the set of points (a;;) for which [a;,] is positive definite.
By 18), we have

wE A
where ’
J = f exp (—Faijnin; + aijyin)IL dn.
aqinin;es

‘Tl e is a real non-singular matrix G = [g;;] such that [a;;] = GG'. Using the
transformation

[ﬂla”‘;ﬂp]G= [{17""{?]7
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whose Jacobian is | G | = | a:; |}, we have

7= layl™ [

This is reducible by means of a rotation to

J=|ayl™? f . exp (—3ri 7 + (oujys gl dr

TET{E

,exp (=358 + giSey) dg.

i€

(14) -
= Jaij |7 Y dalesjyi ),
k=0

where

= f g iris 1 [w...[” 2k —drerg _ @n)¥
d = @W ririeS e T dr < (2’0)1 o ” € dn d-r,, 1

and d; depends only on k and S. Hence

[ Vel eHeiosi J Wdao = 3 e I,
A k=0

where
15) = [ L™ Gyt et 1 da
Now
@
Ik - Et-"f(t) ‘_oa
where

&) = f‘,la.-; [in g HCH DN T do = Ky | ey — 2yey; |7

=K I Cij t—!(n-i—ﬁ-l)(l - 2tc“ i y‘)—l(nhﬂ-l)
Hence
(16) I = ex] cij [T ey )F,

where

Klzfr(’Lizz’—""—{ + k)

n+p+1
(P F 2 )

e =
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Hence

@
vux(S) = K ,;0 drex L N Les |H™ 0 ey — ey P yay,)* T dy de

2 g f s |7 11 de f A = 22 7P (g 2,)* 1T de,
k=0 B w(c)

where gr = Kdre; depends only on k and S.
Now

f @ = 2) Tz e < 11 dz,

zizg <1
f Icu‘j I—(pH)H de < f Ic‘i |—i(p+i) I de
B P’2¢>o

is finite by Lemma 1. Hence

. . p(ﬁ_gi_l + k)
Vus(S) < const. ) dre; = const. 3
= (k)

k=0

and 80 ¢,£(8) is finite. This proves Lemma 2.

Proof of Theorem 2. Since Y, £(S) is expressible as (13) and is always finite,
it follows from (12) and the Neyman-Pearson Lemma that ¢, £(S) is maximum
when w i8 wy . This proves Theorem 2.

Simaika [6] proved that of all the critical regions w which satisfy the conditions

(a) B0, @) = € for all «;;,
() Buln, a) = flasjninj),
we i the uniformly most powerful one. Strangely enough, this result cannot
be deduced as a consequence from our Theorem 2.

The difficulty in dealing with the integral ¢,,(S) is that it is not always finite.
In order to have a finite integral let us consider the following:

Tu(6, 8) = f 4% gy(n, @) T dy da,

agingn;es
where [0;;] is a positive definite matrix. As an immediate consequence of
Simaika’s theorem we have

17) Lu(8, 8) < Twy(6, S)

for any region w satisfying (a) and (b). Now the question arises whether
(17) remains true if the condition (b) on w is removed. The following theorem
answers this question in the negative.

THEOREM 3. Let [0:] be a positive definite matriz, [p:;] = [ci; + 0] and
M, -+, A, be the roots of the equation | ci; — N8i;| = 0. There is a function
g = g\, - -+, \p) such that the region

wes iy = g, e, Ay)

sutisfies (a) and has the maximum T',(0, S).
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ProoF. From (10) and (14) we obtain

r.6,S) = K ; d fw leii — yoyi M7V L dy de
' ./; iy [ (aujysy)t e 504024 I da,
Comparing the inner integral with (15) and using (16) we get
Iy, S) = ; gr fw Lesi + 05 77 ey — ey P77 (o9 5)* Tdy de

(18) = 2o [ Lo 07 [y 7 M de

\ f (1 — 2z (yyy2i2)* 1 de,
| w(c)

where y;:x; is the result of applying the transformation (9) on p;zy.y;. We
shall show that, for every fixed set of ¢;;, a unique number g = g(A\1, -+, \p)
exists such that the region p;;yy; = vixx; > g satisfies (12), i.e.

(19) f a - xixi)‘("_p—‘l) Il dz = Be.
Tii®i%; 20

Since [y;;] = T'[ci; + 0:]'T, the latent roots of [y:,] are \;/(1 + N) @ =1,
-, p). Hence by a rotation the equation (19) is reduced to

(20) 1-& Ei)*("—p—n I d¢ = Be.

j;)\.'/lﬂ\.')fefcza
As g increases from 0 onwards, the left member of (20) decreases steadily from
B to 0. Hence there is a unique ¢ = g(\;, - -+, A,;) which satisfies (20).

For this g(A1, -+, \,) the region w, satisfies (a). Hence, applying the
Neyman-Pearson Lemma on (18) we obtain the result.

From Theorem 3 we learn that there actually exist other exact tests for H”
which have some optimum property not possessed by T?, viz., the tests based
on the critical regions w; corresponding to various values of the 6;;. However,
the great difficulty in numerical computation prohibits their application and the
T*-test stands out as the only test which is both simple and good.
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