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1. Summary. Consider a sequence {z;} of independent chance vectors in k
dimensions with identical distributions, and a sequence of mutually exclusive
events S;, S;, - -+, such that S; depends only on the first ¢ vectors and ZP(S;)
= 1. Let ¢; be a real or complex function of the first ¢ vectorsin the sequence
satisfying conditions: (1) E(p:) = 0 and (2) E(p;| X1, -+, Xi) = ¢: forj > 1.
Let ¢ = p;and n = 7 when S; occurs. A general theorem is proved which gives
the conditions ¢; must satisfy such that E¢ = 0. This theorem generalizes
some of the important results, obtained by Wald for £ = 1. A method is also
given for obtaining the distribution of ¢ and n in the problem of the “random
walk” in k dimensions for the case in which the components of the vector take
on a finite number of integral values.

2. A basic theorem.

2.1 Let {X;}. = {(Xw, X2, -+ -, X1:)} be a sequence of independent k-djmen-
sional chance variables with_identical distributions. Let S;, S:, Sz, :--, be
mutually exclusive events such that (1) S; depends only on X;, X;, ---, X;,
and (2) ZP(8:) = 1. Let ¢i(X1, Xz, - -+, X;) be a sequence of real or complex
variables satisfying the following two conditions:

Condition 1: E(p;) = O for all <.

Condition 2: E(p;| X1, X2, -+, X:) = @ifor all j > 7, where E(p; | X1, X,,
-«-, X;) stands for the expected value of ¢; under the condition that X,, X,,
-+-, X, are held constant.! Define ¢; = p and n = ¢ when the event S; occurs.
We shall assume that E(n) is finite.

A problem of central importance in sequential theory may be formulated as
follows: What conditions must ¢; satisfy so that E(p) exists and equals zero?
We shall prove the following:

TaEOREM 2.1. If there exists a function f(x1, 22, +-+, 7x) 2 0 such that (a)

E[f(X))] is finite and (b) |¢i| < dz:l f(X3) when n > 4, then E(p) exists and

equals zero.
Before proceeding to the proof, we consider two consequences of this theorem.

I. Assume that E(X.) = a,. Let os = 2, (X,; — a). It is easily
=1
verified that ¢; satisfies conditions 1 and 2. We set f(x1, 22, <+, 2x) = | 2,

1 Chance variables ¢; satisfying condition 2 have been extensively studied by P. Levy
1] and J. L. Doob [2].
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INDEPENDENT CHANCE VECTORS 311

— a,|. Then Theorem 2.1 is applicable and we get Ep = 0. Now ¢ = W, —
na, where W, = > X,;. Hence we have

=1

(2.11) EW,) = a,E(n).
The relationship (2.11) has been proved for £k = 1 by Wald [3] and subse-
quently under somewhat more generalized conditions, by one of the authors [4].
k
II. Lett,t, - - -, & be any real or complex numbers for which BT g
is finite and |a@| > 1. We assume that there exists a positive constant M
such that

Z Xn’

=1

(2.12) <Mr=12---,k

when n > m. Let
—i Doy Zhay trXri -1

(2.13) pi=a 'é€
s0 that
2.14) p=a T ]

where W, is defined as above. It is easy to show that o; satisfies conditions
1and 2. Now, in view of (2.12), when n > 1

TrXeg

. Er | Sk rex, A
@215) || < |a| e Frm T IgEm T 1 < 1 4 RS

“Zf-t Irel

where 7; is the real part of {;and R = e is a fixed positive constant.

Then, letting

L4 Tedy
(2.16) f(xl’ ZTo, -, xk) =14+ Rez_r-x X
we may apply Theorem 2.1 and obtain
2.17) B(ae®-1""") = 1

which is a generalization of the Fundamental Identity proved by Wald [5]
for the case k = 1.

ProoF oF THEOREM 2.1. Assume ¢; is real. Define chance variables N
inductively as follows: Ny = 0. Assuming Ny, - -+, N, defined, define Ny =
N,,, + ”(XN,.,+1 y Xym+2 y .,), Also let Nym = Nm bt Nm_l and Ym = f(X”m—l'H)
+ -+ + f(Xw,). It can be shown by induction that N, is defined for all m
with probability one, and that {n.}, {y=} are sequences of independent chance
variables with identical distributions. Clearly n, = n.

The Strong Law of Large Numbers asserts that if 21, 2;, - - - are independent
ataAt o+ zm _

m

chance variables with identical distribution, then lim

¢ with probability one if and only if Ez, exists and equals c.
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It follows that, with probability one

(2.18) hmf(Xl) + m +f(XM) = E[f(Xl)]
and
2.19) fim 2 F 0 P g Vo _ Bm).

Since b2 b ¥ kot Umig g guiequence of [X0 - £ S(Ke)
we have with probability one,

(2.20) lim ”‘_JFN—*‘&' = E[f(Xy)]
8o that
(2.21) "l.l-To ?HT”” = E[f(X)]IE@n).

Consequently, E(y;) exists and equals Ef(X))E(n). Since |¢| < 1, E(p)
exists. Also using conditions (2) and (b) which were imposed on ¢; we have

fswn--e-s;‘odp ='g'/;;wdp - 12:;'/;: del
(2.22) =‘—./;>‘¢.'dp|= »Z‘_/;iwdp'

SZ[ I¢e|dp.<_2f y1dp
I>% 985 .d>8 985

which a-pproaches zero as ¢ — . This completes the proof.
If ¢; is a complex valued function, Theorem 2.1 still holds. For writing

¢; = gj + ih;then Condition 2 becomes E(g, + th, | X1, -+, X;) = g; + th;
when p > j. Hence

(2.23) E(gy | X1, -+, X)) = g;

and

(2.24) E(hy | X1, +++, X)) = h;

when p > j. Since |g;| < |¢;| and | ;| < | ¢s] and ¢; satisfies condition
(b) we may apply Theorem 2.1 and get

(2.25) Eg = EM) =0.
Hence Ep = 0.
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3. Applications to the problem of the random walk in & dimensions®

3.1. A theorem concerning decision points. Let {X;} = {(Xu, -+, Xw)}
be a sequence of k-dimensional chance veciors with identical distributions. We
assume that X; (j = 1, 2, -+, k), take on a finite number of integral values
ranging from —r; to m; inclusive, where r; and m; are positive integers. We
remark that any distribution can be approximated to any degree of accuracy
by the distribution of a variate whose values are integral multiples of a constant
d, which can be taken as the unit of measurement.

Let Puu,...us be the probability that X; = (ui, 4z, -+-, ws). We define

Wp = 2 Xp; and set U; = (Wyi, Was, ., Wii). Then {U;} represents

im1
a sequence of points with integral coordinates in a k-dimensional space S; =
{(;1, ¥2, -, yx}. Let R be an arbitrary bounded region in S,. We shall
assume, without loss of generality, that the origin is an interior point of R.
We now define a random variable n as the smallest subscript ¢ of the sequence
{U;} for which W is either a boundary point or an exterior point of . We set
U, =W = (W, Wy, -+, Wi) and designate W as a decision point of R.
Clearly, the number of decision points is finite.

The random variables n and W can be interpreted as follows: Consider a
point @ which at the time { = 0 is at the origin. At successive intervals of
time ¢ = 1, 2, - - -, the point @ moves with integral components in Sy the direc-
tion and distance of the motion being determined by chance. The point comes
to rest as soon as, but not before it either reaches the boundary of R or falls
outside of R. Let U, be the co-ordinates of the point Q at time {. Then n
represents the length of time it takes @ to come to rest, and W represents a
possible resting point.?

‘We shall be concerned with the problem of finding the probability distribution
of n and W. These will obviously depend on the shape of the region E. In
what follows we shall restrict ourselves to the class of regions R which have
the property that the intersection of any line parallel to the axes with R is an
open interval. In view of the fact that W has integral coordinates, we can with-
out any loss of generality, replace this class of regions by an equivalent class
which are bounded by simple polygonal closed surfaces whose vertices have
integral coordinates and whose sides are parallel to the planes y; = 0. In the
subsequent discussion we assume that the regions R are of this type.

Let

(3.10) Lu.b. [y

(V1.2 Vi) €R

* What follows is a generalization of a method previously employed by one of the authors
[6] for the case k = 1.

3 That Q will reach a resting point eventually can be asserted with probability one.
See A. Wald [5], Lemma 1.
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and

(3.11) —b; = g.l.b- (v, v2, -+, ys) € R]
[y

then a; and b; are positive integers.

We now prove the following:

Lemma 3.1. For the given sequence of chance vectors {X;} and the given
region R, the number of possible decision points Ny is given by

k k
@12  Ne=IlG+b+r+m—1)—Il@+0-1.
1= Jm

Proor: We shall first prove this theorem for a rectangular region B = R;
where R, is defined by —b; < y; < @;, (¢ = 1,2, ---, k) and then generalize
the proof to any region of the class specified.

Let R. be a closed rectangular region defined by —(b; + s — 1) < y;: <
(@i +mi —1). Then R, > R,. Let S = R; — R;. It is clear that every
integral point of S is a possible decision point. Moreover, no point exterior
to R, is a possible decision point. For assume, for example, that there exists
a point W = (Wy, W, -+, Wi) which is an exterior point of B,. Then at
least one of its coordinates, say W ;, has the property that W; > a; + m; — 1
or W; < —(bj+ r; — 1). Butsince —(b; — 1) < Wjua < a; — 1, it must
follow that X ;, took on a value greater than m; or less than —r; which is con-
trall;y to assumption. Now the total number of integral points contained in R,

is [ (a; + b; + 7; +.m,- — 1) and the total number of integral points in R,
=1

k
which by assumption are not decision points, is [ (a; + b; — 1). Hence
=1

the Lemma, is proved if R is a rectangular region.

Now, let R be any polygonal region of the type specified and let R; be the
corresponding rectangular region. Consider two randomly . moving points @
and @, each having coordinates W, at time {. Let the decision points for Q
be defined in terms of R and the decision points of @, in terms of B, . We shall
prove that the number of decision points for @ and @; are the same.

By assumption, every line parallel to the axes intersects B'in an open interval.
Moreover By 2 R. Hence the sum of the areas of the segments which compose
the boundary of R must equal the area of the boundary of R,. The same must
be true for the total number of integral points on the boundaries of the two
regions. Thus, the theorem is true forr; = m; =1, =1,2, ---, k). We
assume that the theorem is true for r; = r; and m; = m; and prove that it must
hold for m, = my + 1 for a fixed but arbitrary . Now it is obvious that if
the range of X,; is increased by unity in the positive direction, the point @
can move an extra unit in the positive direction parallel to the y, axes. Thus,
the total number of additional decision points that @ gains by the unit increase
in the range of X,; is identical with the total number that @, gains. This
proves the theorem.
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It is clear that the smallest rectangular region which includes all the decision
points of Wis R,. We now prove the following:

Taeorem 3.1. For any polygonal region R of the class previously specified,
and for any random sequence {X;} in which X; takes on a finite number of integral
values, the number of pomts in the rectangular region Ry which are not decision points

1s always equal toH (a; + bj — 1) where a; + b; are the dimensions of the

rectangular region Rl
Proor: This Theorem follows from Lemma 3.1 and the fact that the total
k
number of integral points in Rz is [ (aj + b; + r; + m; — 1).
J=1

3.2. The distribution of W. Let ¢(t1, -- -, t) be the joint generating function
of Xui, (u=1,2, .-+, k),and o(t,, ---, &) the joint generating function of
W;(G=12 ---,k). Then

m1 mk .
3.21) Yty oy ) = 2, cor D Pupog tite- tit
Us=—71] Up=—TF
ay+mi—1 ag+mk—1
(3.22) oty - t) = 2 D Eoperoog 131 - - i3

v1=—(b1+r1—1) vg=—(b+rr—1)

where &,,... ) is the probability that W = (v1, ---, vx). In terms of the gen-
erating function ¢ the Fundamental Identity (3.17) states that

(3.23) EfT' 0y, -, )" =1

for all t;, ---, & for which | (&, -+, tx) | = 1. Hence, it follows that for
tr, -+, e for which y(tr, -~ -, &) = 1, @(tr, -+, &) = 1. Let

(3.24) Flt, oo ) = 6 -t Wty 0, t) —1]

and

(3.25) gl , -+ ) = BT B o, - 1) 1.

Then f(t;, -, &) is a polynomial of degree r; + m;in ¢; and g(ty, -+, &) is

a polynomial of degree (a; + b; + r; + m; — 2) in t;.

We shall assume that f(t;, - - -, &) is an irreducible polynomial. Then, since
g(t, - -+, &) vanishes for all values of ¢, , - - -, & for which f(#, , - - -, &) vanishes,
it follows' that f is a factor of g. That is

ay+b1—1 Gk+bk-1

(326) g, -+, t) =fltr, -+, &) E 2. Cupgtit - ¥

81=0 85=0

where the C,,.....,, are unknown. Equating coefficients on both sides of
(3.26) we get

4 See, for example, Bécher (7], Theorem 7, Chapter 16.
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V1

vk
fvl—bl—r1+l---o.—b.—fg+l = Z-:O. b Zo (Pul—rl-nu.—rg - 614,-1',) Cq—rl---v.—r. +
U] U fp

(3.27) ,
H Sy Jobjtri—1
J=1

where 8;; is the Kronecker delta. But by Theorem 3.1, []% (a; + b; — 1)
of the &,,...,, in ¢(t, ---, &) are zero since they correspond to values of W
which are non-decision points. Hence J[% (a; + b; — 1) terms in (3.27)
are zero with the exception of the term &, .4r,—1...ty+r,—1 (corresponding to the
non-decision point (0, 0)) which is —1. Hence, we have the required number
of equations to solve for the unknown C’s and consequently for the £’s provided
the determinant of the coefficients is different from zero.

As an illustration, let R = R;, then the C’s are obtained by solving the set
of linear equations

01 ok k k
(3-28) Z b z (II 60,-1'; - Pul—rl---ug-—u) 0'1—'1""h-ﬂ = 'I-la'f‘bﬁ"’—l

U0 Um0 \ jm=l
where v; takes on all integral values from r;to a; + b; + r; — 2 inclusive.

3.3. The distribution of n. For any random variable U, let E,,...,,U stand
for the expected value of U under the restriction that W = (v, vz, +--, ).
Let ¢1 (&, + -+, tx ; 7) be the joint generating function of W,, Wy, -+, Wy,
and n. Then -

(3.31) oty oo b3 7) = Doee e D Eupe g B3t i By T
%) T U

Let

(3.32) 'pl(tl, "’,tb; 7) = T'I'(tly b, "'7tk) -1

where (it ,-- - -, &) is.the joint generating function of X;;, - - -, X; and is given
by (3.21) and let

(3.33) Yoltr, -, t57) =@t -, 37 — 1.

Then, if we fix 7 so that | 7 | < 1, we see by (3.23) that for all vﬂues ofty, -+, &
for which ¢, vanishes, ¢, also vanishes. Let

(3.34) filte, <= to;r) =t oo (0, -y ;7
and
(3.35) Bty ooy tsr) = 87 T g, et ).

Then for  fixed, f is a polynomial of degree r; 4+ m;in ¢;and f is a polynomial
of degree a; + b; + r; + m; — 2 in t;. Since f; vanishes for all values of
t, -+, & for which f; vanishes then if f; is irreducible, f; will be a factor of f; .
That is f; can then be written as
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a1+b1—-2  aptdr—2
(3.36) faltr, -, t;7) =filt, ~+  t;7) Zl ces "El oye v oo 1o oo 3%
V= =

The rest of the argument is identical with that employed in section 3.3. The
unknowns in the present case, however, are &,,...0,Eo,...057". 'When &,...0,By,...0pTn
is expanded in a power series in 7, the coefficient of +™ is the probability that
W = (n, ---, v) in exactly m steps. We shall, therefore, examine the validity
of the expansion of the above function in the neighborhood of » = 0.

Let us first consider the rectangular region R = R;. In this case the d’s
are obtained from the equations

91 vk k k
(3.37) z e Z (Hauir, - 7P, ul—rln-u.—rg)dvl—r;-'-vr-u = ’I-Iav;.brh'j—lp

U=l gl \ jeml
(U]’-“ri, ri+1,.--, a,-+b,-+r;—2),

50 that %,,...0.F0,...,7" Will be given as a ratio of two polynomials in 7 the
denominator of which will be the determinant of the coefficients of (3.37).
But this determinant equals unity when r = 0. Hence the validity of the
expansion is established for a rectangular region.

If R is not a rectangle, the value of the determinant of the equations in d
will still be unity. This follows from the fact that the number of non-decision
points in R, is precisely the same as the number of non-decision points con-
tained in R, , hence by rearranging of the equations they an be made to assume
the form (3.37).
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