CONFIDENCE LIMITS FOR THE FRACTION OF A NORMAL
POPULATION WHICH LIES BETWEEN TWO GIVEN LIMITS'
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Summary. Let x and ¢® be the unknown mean and variance, respectively,
of a normally distributed population on which N independent observations

Z1, +*+, Ty have been made. Let Lyand Ly, Ly < Ly, and o, 0 < o < 1, be
given constants. We define the following symbols:

@ v =W [ e {- 10,
(b) i = N 'Zux;
(@ £ = O — 172 — 2

(d) xi_a as that number for which P{x* < xj_a} = 1 — « where x> has N — 1
degrees of freedom.

(e) 'w=\/N—-1xl_

(Lg—z)/w
0 D= [ ep{- v

(L1—%) /w

It is proved that, under restrictions stated precisely below, and before the
observations are made, the probability that D < v differs from « by a number
which can be made arbitrarily small by making N sufficiently large. Thus an
approximate (large sample) lower confidence limit for v is obtained. Similar
methods can be applied to obtain upper and two-sided confidence limits.

A problem raised by the present paper (but not attacked here) is to investi-
gate the rapidity of approach to a of P{D < y}. It would perhaps be useful
to obtain a series for the latter in powers of N *; the first term of such an ex-
pansion is obtained here.

1 Formula (5.1) of the present paper was given without proof by the author in July,
1945, in solution of a problem put to him by Dr. M. A. Girshick. At the time, both were
members of the Statistical Research Group, formed in the Division of War Research of
Columbia University under contract with the National Defense Research Committee of
the Office of Scientific Research and Development. The validation of formula (5.1) in
all rigor as it is given in the present paper was constructed by the author after he was no
longer a member of the Statistical Research Group.

In January, 1945, Professor A. Wald, then a consultant to the Statistical Research
Group, and the present author jointly submitted to the Group an unpublished memorandum
(#410) entitled ‘“ Acceptance Regions Which Involve the Normal Distribution and Large
Sample Sizes.” While this memorandum dealt with a different problem, its ideas were
logically antecedent to formula (5.1). The present author wishes to express his indebted-
ness to this memorandum and to his colleague Professor Wald.
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1. The problem. Let x and ¢° be the unknown mean and variance, respec-
tively, of a normally distributed population on which the N independent ob-
servations x;, Z2, - - -, Z» have been made. Let L, and L, be given constants
with Ly < Ly. We then have that

1 [ 1(y—wY
= e 3 (5 e
is the fraction of the normal population which lies between L, and L,. The
problem considered in this paper is to construct a lower confidence limit for the
unknown v, when N is large. An upper confidence limit or two-sided confidence
limits may be constructed in a manner very similar to that described in the
present paper. Since the construction of a lower limit is the problem which
occurs most often in practice the discussion will be centered on it.

A lower (confidence) limit on v with confidence coefficient « is a function
D(xy, ---, zy) of the observations x;, ---, zx with the property that, before
the observations are made, the probability is « that D(z1, -+, zy) < ¥. In
any specific application it is unknown whether this last inequality holds, because
v is unknown. However, one who proceeds as if this inequality were true is
using a procedure which will give correct results 10029, of the time in the long run.

When either Ly = — « or Ly = + « the solution, by use of the non-central ¢
distribution, is well known. For a description of the procedure and necessary
tables the reader is referred to [1].

2. Acceptance regions. Let v, be any value of the parameter v. To vo
there correspond infinitely many couples (u, o) with the property that the
normal distributions characterized by these couples all have a fraction v, lying
between L; and L, ; we may write this symbolically by saying that the couples
(i, o) satisfy

(2.1) vk, 0) = 0.

The construction of confidence regions is equivalent to the construction, for
every vo, of an acceptance region R(y,) in the N-dimensional Euclidean space,
with the property that every normal distribution whose parameters p and o
satisfy (2.1) assigns to R(y,) the constant probability «. While this property
of similarity (cf. [2]) is sufficient for the construction of confidence regions,
additional properties of the acceptance regions R(y,) are needed in order that
the confidence region be an interval or that the upper confidence limit be always
one (i.e., that the confidence limits turn out to be a lower limit only), or to insure
other features deemed desirable.

It is easy to construct acceptance regions which will fulfill the condition of
similarity. As an example, consider the case N = 3 for convenience. Let by,
bs , Us be a number triple such that by + bs + b = 0. Let R(vo), for any given
70,0 < 7o < 1, consist of all the points x1 , ; , x; which are such that the absolute
value of the angle ¢(—= < ¢ < =) between the vector (b1, bz, bs) and the vector
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(xy — &, 2 — %, 13 — %) does not lie between mayo and 7 + ma(yo — 1). (We
N

define, in general, Z z; = NZ. The points (21, x2, x3) for which z; = 2, = x3
1

may be disregarded, since their probability is zero when the distribution is con-
tinuous.) One readily verifies that the probability of R(y,) for any v, is «,
no matter what u and o are, and hence this is true in particular for the pairs
which satisfy (2.1).

The above method of constructing acceptance regions yields confidence regions
which, while they cover the unknown v with confidence coefficient «, are not
very meaningful otherwise. The fact that.the probability of E(yo) is « whether
or not (i, o) satisfies (2.1) is already indicative of their lack of discrimination.
Since Z and s (where s is defined by

N
ns* = 2 (i — &)°
1

and n = N — 1) are sufficient estimates of u and ¢, which in turn determine v,
it is clear that desirable confidence regions should be functions only of & and s.
Consequently our first task must be to construct the acceptance regions R(vo)
in the Z, s plane. In the present paper we construct in the Z, s plane regions
R(yo) which have the property that their probability, under any normal dis-
tribution whose parameters satisfy (2.1), differs from the prescribed « by a quan-
tity which is bounded in absolute value for all o, in such a way that the bound
approaches zero as N increases. Thus when the sample number is sizeable we
can obtain confidence regions for ¥ which correspond to a confidence coefficient
which differs little from «. Finally, the acceptance regions R(yo) which we
shall construct will be such that the confidence region will be always an interval,
and the upper limit will always be 1, i.e., we will construct a lower confidence
limit for v.

3. Construction of regions R(y,) in the Z, s plane. First we describe two
assumptions which we shall make. It is believed that these are reasonable
from the practical standpoint and are satisfied in most actual investigations
where the present problem arises. Mathematically their purpose is to enable
us to secure a uniform bound on the difference between o and the probability
of R(vo) (for all vo) under all couples (i, ¢) which satisfy (2.1).

AssuMpTION 1: There exists a positive d such that

Li+d<up<L—d

In most practical cases where the present problem will occur v will be larger
than 1. If the latter is the case and p were very near either L, or Ly, then o
would have to be very small. In that case other methods would have to be
used in the solution of the practical problem. The present paper deals with
the situation, unfortunately only too common in practice, where ¢ is not too
small. Assumption 1 puts a lower bound on ¢ for any given value vo. (The
bound is a function of v,).
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AssumpTiON 2: The standard deviation o 18 less than a posttive number C.

In most practical problems such an upper bound can reasonably be set.
Naturally, the larger d and the smaller C the more a priori information is at
our disposal, the closer are our approximations and the narrower our limits.
The effect of Assumptions 1 and 2 is to place a lower limit G on v where

G = 'Y(Ll + d, C) = 'Y(L2 - d; C)
Let vy be any positive number such that G < vy < 1. For an Z such that
Ly < & < Ly, let r(z, 7o) be the positive number such that
v(Z, 7(Z, v0)) = 70 -
We define xi_. to be that number for which
P(X* < Xi—a) = 1 — @,

where x* has n degrees of-freedom and P is the probability of the relation in
parentheses. The number Xi—« may be found in tables of the x’-distribution
iffthe value of a is one of those in common use. Finally define

2
@(Z, v0) = (&, v0) A/ ==
n

The acceptance regions R(y,), @ < 7o < 1, which we shall employ, are defined
as follows for any vo, G < v < 1:

Li<z< L,

8 2 ﬂo(jy 'YO)'

4. Proof that P{R(y¢)} ~ a This section will be devoted to a proof of the
following:

TaEOREM. Let R(y,) be as defined in Section 3 for G <+vo < 1. Let the assump-
tions 1 and 2 of Section 3 be fulfilled. Then the absolute value of the difference
between o and the probability of R(yo) under any couple (u, o) which satisfies (2.1)
18 less than any arbitrarily small positive € when N s sufficiently large, i.e., when
N s sufficiently large,

| P{R(v0)} — a| <'e

uniformly for all (u, o) which satisfy (2.1) with @ < vyo < 1, and which fulfill
Assumptions 1 and 2.
81‘(.'2, 'YO)
oz
Proor: We have

_ 1 L _1(y—z\\
Y=/ 2xr(E, v0) f L, exP{ 2 (r(i, 70))}dy

- 7 f " p {1 2}d
\/21" (Ly—z)/r P 2y- v-

LemMma 1. exists in the open interval Ly < & < Ly .
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Differentigting with respect to T we obtain, since r > 0,

"‘”’(1+R_ = ‘T”2(1+T )

with
R = L, — T = Li— %
r r
Hence
or ¢ — T
(4.1) Er A (Re—nilz ZTeT2)

Since R > 0 and T < 0 within the open interval Ly < & < L, , it follows that

a emsts in the entire open interval.
LemMmA 2. In the open interval Ly < & < L,

OP {s > ¢(&, 7o)}

oxr

exists.

Proor: We have, with & a suitable constant,

P=kE Ve P dy =k v e dy.
Vrele (r(2:70)/0)X1=a

Hence
(4.2) 0P _ —hxie 1 (Tra0a)" o (=7 Xie

) oz ¢ Oz T xp 202 :

LemMa 3. Let § be any arbitrarily small positive number. The function I % [
of T andyotsbounded for [ + 6§ < £ < L. — §,G < v < 1.
Proor: From (4.1) we have

ar
a9z

e 1 -1 T r r
< Rem — Tgrh S MaX- (R’T) = fmax. <L2 — 3% — L) <5

Therefore from (4.2) we have that

—R2/2 + e —T12/2

g—g I is less than a constant multiplied by

n 2 2
Z) exp< T xl"") and is thereforée bounded.
g 202

Proor or THE THEOREM: From Lemma 3 and the Theorem of the Mean it
follows that, in the closed interval

the function P{s > (&, vo)} is uniformly continuous in Z uniformly for all

(u, o) which satisfy (2.1) with G < vo < 1. Hence for every positive ¢, there
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exists a positive 7 < g such that |l; — L] < 1,

d o
L+3<un<L, -4,

implies
| P{s > o(li, vo)} — P{s > o(lb, v} | < &.
For fixed arbitrary e, > 0 we have, when N is sufficiently large,
P{lz—p|<n}>1-e,
from Assdmption 2 and the stochastic convergence of Z. Now
P{s > o(p, 10)} = e.

Hence, when N is sufficiently large,

|P{R(v)} — a| < a(l — &) + & < a + e.
Since €; and e are arbitrarily small, this proves the desired result.

6. Construction of large sample confidence regions. The acceptance regions
R(vo) whose size never differs from « by more than a uniform bound which
approaches zero as N increases, readily yield a lower confidence limit for y
(within the approximation involved). The confidence region consists of all the
vo for which R(yo) contains the observed &, s. Our acceptance regions R(y,)
areso constructed that, if v; < v, , R(y1) is entirely contained within B(y;). Hence
the confidence region is an interval, one end of which is always unity, as was
desired. The rule for constructing the lower confidence limit D is, therefore,
as follows:

a) fE<LiorZ > L;,then D = (@
b) if [, < & < L,, then
1 (Lo—Z%)/w .
(5.1) = \_/é;wf exp {—3y'} dy

(L1—2)/w
where

w=+N—-1- £ .
Xl—a

(The value of D may be found in a table of the normal distribution. It is easy
to see that s = ¢(Z, D), i.e., D is the smallest value of v, for which Z, s will still
lie in R(yo)). ‘

If the statement D < v is made in a large number of cases, where the assump-
tions are fulfilled and the sample size is large, the proportion of correct statements
will be close to a.
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