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Summary. Upper and lower limits for the expected number » of observations
required by a sequential probability ratio test have been derived in a previous
publication [1]. The limits given there, however, are far apart and of little
practical value when the expected value of a single term z in the cumulative
sum computed at each stage of the sequential test is near zero. In this paper
upper and lower limits for the expected value of n are derived which will, in
general, be close to each other when the expected value of z is in the neighbor-
hood of zero. These limits are expressed in terms of limits for the expected
values of certain functions of the cumulative sum Z, at the termination of the
sequential test.

In section 7 a general method is given for determining limits for the expected
value of any function of Z, .

1. Introduction. Let x be a random variable and let f(x, 6) be the elementary
probability law of x involving an unknown parameter 6. Let H, denote the
hypothesis that & = 6,, and H; the hypothesis that § = 6,, where 6, and 6,
are given specified values. The sequential probability ratio test for testing Ho
against H,, as defined in [1], is given as follows: Put

J(i, 61)
f(z: , 60)
where z; denotes the ¢-th observation on . Two constants, a and b are chosen

where a > 0and b < 0. At each stage of the experiment, at the m-th trial for
each positive integral value m, the cumulative sum

(1.1) z; = log

(1.2) Zm=z1+...+zm

is computed. Experimentation is continued as long as b < Z,, < a. The first
time that Z,, does not lie between b and a, experimentation is terminated. The
hypothesis H, is accepted if Z,. = a, and H, is accepted if Z,, < b.

Let n denote the smallest value of m for which Z,, does not lie between b and a.
Then 7 is the number of observations required by the sequential test. The
expected value of n is a function of the true parameter value 6 and is denoted

Upper and lower limits for Ey(n) have been derived in section 4 of [1]. These
limits, however, are of little practical value when the expected value of
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(1.3) z = log

is in the neighborhood of zero, for they converge to + « and — o« respectively,
as the expected value of z approaches zero. It can be shown that the expected
value of z is negative when 6 = 6,, and positive when 6 = 6,.' Thus, if the
expected value of z is a continuous function of 6, there will be a value ¢’ between
6, and 6; such that the expected value of z is zero when 6 = ¢’. Hence, the
limits for Ey(n), as given in [1], are of no practical value when 6 is near ¢'.

The purpose of this paper is to derive upper and lower limits for Ey(n) which
will be, in general, close to each other when 6is in the neighborhood of ¢'. Thus,
it will generally be possible to obtain close limits for Eq(n) over the whole range
of 0, if the limits given here are used for values in a certain small interval con-
taining ¢’, and the limits given in [1] are used when 6 is outside this interval.

2. Notation. We shall use the following notations throughout the paper.
For any random variable u, the symbol Ej(u) will denote the expected value of
u when 0 is the true value of the parameter. The conditional expected value of
u, under the restriction that some relationship R is fulfilled will be denoted
by Ee¢(u | R). The symbol P(R | 6) will denote the probability that the rela-
tionship R holds when 6 is true.

The cumulative distribution function of z will be denoted by F(z, §) when 6
is the true value of the parameter. The moment generating function of z,
when 6 is true, will be denoted by (i, ), i.e.

@2.1) ot, 6) = f_ " ¢ dF Gz, 6).

3. Assumptions concerning the family of distribution functions F(z, 6). In
this section we shall formulate two assumptions concerning F(z, 6) which will
then be used to prove various lemmas and theorems. Since we are interested
in values of 6 near ¢, we shall restrict the domain of 6 to a finite closed interval
I containing ¢’ in its interior. It will be understood throughout the paper that
any statements concerning 0 refer to the domain I, even if this is not explicitly
stated.

AssumpTiON 1. The moment generating function o(i, 6) exists for any point
t n the complex plane and any value 6, and is a continuous function of 6.

AssumpTION 2. There eists a positive & such that P(e” > 1 + 6| 6) and P(e” < 1
— 8| 6) have positive lower bounds with respect to 6.

4. Proof that ¢(t, 0) is continuous in t and 0 jointly and that all moments of z
are continuous functions of 6. In this section we shall prove the following
theorem:

1 This follows easily from Lemma 1 in [1], p. 156.
2 The original proof of the author was somewhat lengthy. The present proof was sug-
gested by T. E. Harris.
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THEOREM 4.1. It follows from Assumption 1 that (¢, 6) is continuous in t and
0 jointly and all moments of z are continuous functions of 6.

Proor: First we show that ¢(¢, 6) is a bounded function of ¢ and @ in the
domain | t| £ {, for any finite positive value £, . ‘Clearly,

(4.1) < e, 0)]| £ 2[e(t, 0) + o(—t, 0)]

for all values ¢ for which | ¢] < 4. The boundedness of (¢, 8) and o(—1t, 6)
follows from Assumption 1. Hence ¢(¢, 6) is a bounded function of 4 and ¢
over any bounded {-domain.

Let {tw, 0.} (m = 1,2, ---, ad inf.) be a sequence of pairs converging to
the pair (¢, ). We have

(4.2)  @tm, 0m) — o(t', 6) = [p(tn , 0m) — o(t', 6m)] + [o(t', 0m) — (', 6)].

The second expression in brackets converges to zero by continuity in 8. Thus
the first part of Theorem 4.1 is proved if we show that
(4'3) lim [¢(tm ’ ) - ¢(t' m) =0.

It follows from Assumption 1 that for any given 6, o(¢, 6) is an analytic func-
tion with no singularities in any finite {-domain. Hence we can expand ¢(tn ,
0.) in a Taylor series around ¢ = ¢/, i.e.

) (tn — )"
tamt’

=1 (8% p(t, 6m)
(44) ﬁp(tm’ 0m) ‘P(t ) gm) ’; ]C! ( T
Let r be a given positive value. Because of the boundedness of ¢(¢, 8) in any
finite {-domain, there exists a constant M such that | ¢(¢, ) | < M for all ¢
and for all ¢ in the domain |t — ¢ | < r. From the Cauchy integral formula
for an analytic function it follows that

* o(t, 0.) <M
(4.5) wil | | S
From (4.4) and (4.5) we obtain
) ¢ k
(46) PONSEPASIESTS s =i

Equation (4.3) is an immediate consequence of (4.6). This proves the first
half of Theorem 4.1.

Let C be a circle in the complex {-plane with finite radius and center at the
origin. According to the Cauchy integral formula we have

o(t, 0) 13,0 _ 150
(4.7) 2m ¢ d =2 —ap t-o"sz"(z)’

Since (¢, 6) is continuous in ¢ and 6 jointly, the integral on the left hand side of
(4.7) is a continuous function of §. This proves the second half of Theorem 4.1.
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6. Some lemmas. In this section we shall prove several lemmas which will
then be used to derive the results contained in sections 6 and 8.

Lemma 5.1. It follows from assumptions 1 and 2 that for any given 0 the equa-
tion in ¢

(6.1) ot, 6 =1

has exactly two real roots, one of which is zero. The other real root is different from
zero if Eo(z) #= 0. If Ee(z) = 0, both roots are equal to zero, i.e., zero is a double
root of (5.1).

This lemma is essentially the same as Lemma 2 in [2] and the proof is therefore
omitted.?

Let h(6) denote the non-zero root of (5.1), if Ee(z) % 0. If Eu(z) = 0, we
put h(6) = 0.

In what follows the variable ¢ will be restricted to real values, unless the
contrary is explicitly stated.

Lemma 5.2. It follows from assumptions 1 and 2 that h(6) is @ continuous
Sfunction of 6.

Proor: It follows from assumption 2 that
(5.2) lim ¢(t, 0) = +«

t—too
uniformly in 6. Hence, since by definition
olh(6), 6] = 1

identically in 6, h(6) must be a bounded function of 6.
Let {6} be a sequence of parameter values which converges to 6*. From
Theorem 4.1 it follows that

(6.3) lim [e(t, 6,) — ¢(t, 6%)] =0

uniformly in ¢ over any finite interval. Since h(6) is bounded, we obtain from
(5.3)

(5.4) lim {¢[h(6), Om] — lh(0.), 6*]} = 0.

m—+0

Since ¢[h(0.), 0] = 1, it follows from (5.4) that
lim ¢[h(6s), 6*] = 1.

It follows from assumption 1 that for any limit point h of the bounded se-
quence {h(6n)} (m = 1,2, ---, ad inf.) we have

3 Condition IV of Lemma 2 in [2] is not postulated here, since the validity of this con-
dition is implied by assumption 1. Condition IV could have been omitted also in [2],
since it follows from condition III.
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(5-5) ¢(h’ ) =1

If h(6*) = 0, then equation (¢, 6*) = 1 has the only root £ = 0. Conse-
quently, all limit points of {£(6.)} must be equal to zero, that is
(5.6) lim 2(6,) = 0 if A(6*) = 0.

Now let us assume that h(6*) ¢ 0. Since the second derivative of o(t, 6)
with respect to ¢ is positive, it can be seen that ¢(Z, 6) < 1for values ¢ in the open
interval (0, h(6)), and ¢(¢, 6) > 1 for any ¢ outside the closed interval [0, h(6)].
Hence, ¢(¢, 6) < 1 implies that |h(8) | > | ¢| and h(6) and ¢ have the same
sign. Now let &, be a value in the open interval (0, h(6*)). Then we have

(5.7) o(to, 6%) < 1
It follows from assumption 1 that
(5.8) ot bm) < 1
for sufficiently large m. Hence h(0,,) and %, have the same sign and
(5.9) | R(6m) | > | o |

Inequality (5.9) implies that zero cannot be a limit point of the sequence
{h(6.)}. Since o(t, 6*) = 1 has only the roots = 0 and ¢ = h(6*), it follows
from (5.5) that the sequence {h(6,)} cannot have a limit point different from
h(6*). Thus,

(5.10) lim A(6.) = h(6*)

and Lemma 5.2 is proved.

Lemma 5.3. It follows from assumption 1 that for any given t, Ey(e'""") is
a bounded function of 6.

Proor: We have

(5.11) Eo(e"™!) < Bo(e" + ¢7) = o(t, 6) + o(—t, 6)

It follows from assumption 1 that ¢(t, 6) and o(—¢, 6) are bounded functions
of 6. Hence Lemma 5.3 is proved.

LeMMA 5.4. Let ¢ be a value of 0 such that Es.(2) = 0, but Ey(2) 5= 0 for all
0 7 6’ in an open interval containing ¢'. It follows from assumptions 1 and 2
that

; 2E,() _ 2
o m(E)-me
Proor: We have
(5.13) &P =1 + h(o)z + [h(;)]2 2+ [h(g)]3 ERIOE

where0 < u < 1. Hence
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[h’(o)]2 E( ) + [h(0)] o(zteuh(O)S).

(5.14) Ey(e"”) = 1+ hOE:) + —5—
Since Ey(¢"®*) = 1, we obtain from (5.14)
(5.15) h(O)Eo(z) + Q‘—(;l]z Eo(2") + [-h—(g)—]s Eo(2*¢™®) = 0.

We shall consider only values 9 for which h(6) ¢ 0. For such values of 6,
also E,(_z) # 0. Dividing (5.15) by h(6) Ee(z), we obtain

h h

Let ¢ be an upper bound of | A(6) | with respect to 6. Then for a suitably
chosen constant C' we have

(5'17) ,zseuh(ﬂ)zi < CG' tozl

From this and Lemma 5.3 it follows that Ey(z*¢"*®*) is a bounded function
of 8.

Because of the continuity of 4(6) we have
(5.18) lim A(6) = 0.

60’

(5.16) 145775

Lemma 5.4 follows from (5.16), (5.18), the boundedness of Ey(z’%*"®*) and
the fact that Es(2%) is a continuous function of 8 and E,.(2%) > 0.

LemMA 5.5.  From assumptions 1 and 2 it follows that for any given t, Ey(e'*?)
extsts and 1s a bounded function of 6.

Proor: It is sufficient to show that Ej(e*?*) is a bounded function of 6 for
any ¢, since

(519) ”zn' < e‘Zn_I_ —tZy

Clearly, e‘” lies between ¢ and ¢*'**** Hence Lemma 5.5 is proved if

we show that E,(e**’) is a bounded function of 6.
It follows from Assumption 2 that there exists a positive integer ¥ and a
positive constant g such that

(5.20) Plzs+ -~ +z|Z2a—-DblO) 2¢
for all 6. For any positive integer m apd for any real values A; < A2 we have

Pl(m — )k < n =< mk|6]
P[(m — 1)k < n|6]

bttznt

(5.21) g (m=1,2, -, ad inf.)

v

and

Pllm — )k < n S mk &N\ < 24 < A2|6]
(5.22) Pl(m — 1)k < n|6]

S1—[1—-PM\ = z< M0
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Hence

Pllm — Dk <n < mk &M S 2, < N2|0]
P{(m — 1)k < n < mk| 6]

(5.23)

1= =P sz < M0
g
Multiplying (5.23) by P{(m — 1)k < n < mk| 6] and summing with respect
to m we obtain
1—[1—PM=z<X|Of
g

(524) PO Sz < Me|0) =

From (5.24) it follows readily that
P\ =Sz, < A2|0)

POn =2 < M|0)

is a bounded function of A\;, Nz and 8. Let A be an upper bound of the ratio
(5.25). Then

(5.26) Ey(e"™) = AEs(e”) = Ao(t, 0).

Because of Assumption 1, ¢(Z, 6) is a bounded function of 6. Hence also
Es(e*™) is bounded and Lemma 5.5 is proved.

(5.25)

6. The limiting value of Ey(n) when ¢ approaches a value ¢’ for which
Ey(z2) = 0. In this section we shall prove the following theorem:

TeEOREM 6.1. Let 0 be a value of 0 such that Ey(2) = 0, but E¢(2) # O for
all 0 = 6 in an open interval containing 0’. If assumptions 1 and 2 hold, we have

(6.1) lim | Eo(n) — E'(an)] =0.

6-+0" Eo'(zz)

Proor: Consider the Taylor expansion

2 3
(6-2) eh(O)Zn =1 + h(O)Z,. + [h(g)] ZE; + [h(g)] Z:e)\h(a)za

where 0 < A < 1. It was shown in [2] (p. 286) that
(6.3) By @ = 1,

Hence, taking expected values on both sides of (6.2), we obtain

2 3
6.4) h®)Eo(Z2) + [h(z")] By(Z%) + [-hi(?—] Ey(Z, &%) = 0.

We consider only values of 6 for which Ey(z) # 0. For such values, also
h(8) ¢ 0. Thus, we can divide both sides of (6.4) by h(6)Es(2). We then
obtain
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(6.5) %(Zz—)) + 2’%) [E0Z2n + ’%”) Ey(Z, e”‘“’”")] = 0.
It was shown in [1] (p. 142) that

(6.6) Eo(n) = Eéﬁ(zz)) .

Hence

(6.7)  Eon) + 2—"];%) [E,(zi.) + ’%ﬂ) Ey(Z, e“"”")] = 0.

Let 4% be an upper bound of | A(6) |. Then for a properly chosen constant C
we have

(6.8) | Z% MO | < Ce'to2n!

From this and Lemma 5.5 it follows that Es(Z%¢"® 7" is a bounded function
of 8. Since lim A(8) = 0 and E,(Z2) has a positive lower hound, Theorem
0—0’

6.1 follows from 6.7, Lemma 5.4 and Theorem 4.1.

If lim EyZ% = E4Z% , Theorem 6.1 gives"

0—6"

Ey(Z%)
Eo'(zz) )

Limits for Es(n) can be obtained by computing limits for Ey(Z%). In the
next section we shall give a general method for obtaining limits for Eqy(Z,)],
where ¥(Z,) is any function of Z,, .

(6.9 Eo.(n) =

7. Determination of lower and upper limits for the expected value of any
function of Z,. Let ¢(Z.) be a function of Z,. Limits for Efy(Z,)] may be
determined as follows: First we determine limits for Eely(Z,) | Z, = a]. Letr
be a positive variable. Clearly, for any given value r we have

(71)  E~WZ) |Zns = a —rand Z, = a] = Eoldla — r+ 2) [z = o]
From (7.1) we obtain the limits

glb. Ey(a —r+2) |2 =1 < ElY(Z,) | Z, = al
0L r<a—b

(7.2) < lub. Efpla —r+2)|z 2 1.

0<r<a—b

Limits for E¢¢(Z,) | Z. =< b] can be obtained in a similar way. Again, let
r be a positive variable. For any value of r we have

(7.3)  Edy(Z.) | Zo < band Zoy = b+ 1] = Efy(b + 7+ 2) [z < —r

Hence we obtain the limits

4 The validity of (6.9) was shown by the author [3] using an entirely different method.
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. §'1;b;b By +r+2) |2 = —1] < EY(Z,) | Zn < b]
= lub. Efyd+r+2)|z= -1l

0<r<a—b

(7.4)

Since
(7.5)  EoY(Za)] = P(Za = 0)Eol¥(Z,) | Z, = o]l + P(Z. < b)Ee[Y(Z,) | Z, < B]

a lower (upper) limit for Es[¢(Z.)] can be obtained, by replacing the condi-
tional expected values on the right hand side of (7.5) by their lower (upper)
limits given in (7.2) and (7.4).

8. Limits for Ey(n) when h(6) is near but unequal to zero. Let ¢’ be a value
of 6 for which k(6’) = 0. In this section we shall derive limits for Ey(n) which
will generally be close to each other for values 0 in a small neighborhood of 6.

From equation (6.7) we obtain

8.1) Ey(n) = 227(‘?) [E, Zw + ’—’g’) Ey(Z, e“""’z")]
where 0 < A < 1. Thus, limits for E¢(n) can be obtained by deriving limits
for E,Z% and Eo(Z%6"® 7). Limits for EeZ% can be obtained by using the
method described in section 7.

If 6 is near ¢, any crude limits for Ey(Z%¢™® %) will serve the purpose, since,
as has been shown in section 6, Es(Z%¢"*® ?*) is bounded and }inol'h(O) = 0.

Limits for Ey(Z%¢"®?*) can be obtained as follows: For simplicity, let us
assume that #(6) > 0. Then

(8-2) Z3 S Z3 AR (0) Z,, S Z3 h(8) 2, (h(0) > 0)

Thus, to determine limits for Ey(Z5¢™® %), it is sufficient to determine a lower
limit for Ey(Z%) and an upper limit for Ey(Z%¢*®?*). The latter limits may be
derived by using the method given in section 7.

If h(6) < 0, we have

(8.3) 78 > 7R MO > g8 O Za

and a similar procedure will yield the desired limits for Ey(Z5¢™® ).

It should be emphasized that the limits of Ey(n), as given in this section,
can be expected to be close only if /(6) is near zero. For values of 4 for which
R(6) is not near zero, the limits of Es(n) given in [1] can be used.

REFERENCES

[1] A. WaLp, ““Sequential tests of statistical hypotheses,” Annals of Math. Stat., Vol. 186,
(1945), pp. 117-186.

[2] A. WaLD, ““On cumulative sums of random variables,”” Annals of Math. Stat., Vol. 15,
(1944), pp. 283-296.

[3] A. WaLp, “Differentiation under the expected sign in the fundamental identity of
sequential analysis,” Annals of Math. Stat., Vol. 17 (1946), pp. 493-497.



