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Summary. Several statistical techniques are proposed for economically ana-
lyzing large masses of data by means of punched-card equipment; most of these
techniques require only a counting sorter. The methods proposed are de-
signed especially for situations where data are inexpensive compared to the
cost of analysis by means of statistically ‘‘efficient” or “most powerful” pro-
cedures. The principal technique is the use of functions of order statistics,
which we call systematic statistics.

It is demonstrated that certain order statistics are asymptotically jointly
distributed according to the normal multivariate law.

For large samples drawn from normally distributed variables we describe
and give the efficiencies of rapid methods:

i) for estimating the mean by using 1, 2, ---, 10 suitably chosen order
statistics; (cf. p. 386)

ii) for estimating the standard deviation by using 2, 4, or 8 suitably chosen
order statistics; (cf. p. 389)

iii) for estimating the correlation coefficient whether other parameters of the
normal bivariate distribution are known or not (three sorting and three
counting operations are involved) (cf. p. 394).

The efficiencies of procedures ii) and iii) are compared with the efficiencies of
other estimates which do not involve sums of squares or products.

1. Introduction. The purpose of this paper is to contribute some results
concerning the use of order statistics in the statistical analysis of large masses
of data. The present results deal particularly with estimation when normally
distributed variables are present. Solutions to all problems considered have
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378 FREDERICK MOSTELLER

been especially designed for use with punched-card equipment although for
most of the results a counting sorter is adequate.

Until recently mathematical statisticians haye spent a great deal of effort
developing ‘‘efficient statistics’’ and ‘‘most powerful tests.”” This concentration
of effort has often led to neglect of questions of economy. Indeed some may
have confused the meaning of technical statistical terms ‘‘efficient” and ‘‘ef-
ficiency” with the layman’s concept of their meaning. No matter how much
energetic activity is put into analysis and computation, it seems reasonable to
inquire whether the output of information is comparable in value to the input
measured in dollars, man-hours, or otherwise. Alternatively we may inquire
whether comparable results could have been obtained by smaller expenditures.
In some fields where statistics is widely used, the collection of large masses of
data is inexpensive compared to the cost of analysis. Often the value of the
statistical information gleaned from the sample decreases rapidly as the time
between collection of data and action on their interpretation increases. Under
these conditions, it is important to have quick, inexpensive methods for analyzing
data, because economy demands militate against the use of lengthy, costly
(even if more precise) statistical methods. A good example of a practical
alternative is given by the control chart method in the field of industrial quality
control. The sample range rather than the sample standard deviation is used
almost invariably in spite of its larger variance. One reason is that, after brief
training, persons with slight arithmetical knowledge can compute the range
quickly and accurately, while the more complicated formula for the sample
standard deviation would create a permanent stumbling block. Largely as a
result of simplifying and routinizing statistical methods, industry now handles
large masses of data on production adequately and profitably. Although the
sample standard deviation can give a statistically more efficient estimate of the
population standard deviation, if collection of data is inexpensive compared to
cost of analysis and users can compute a dozen ranges to one standard deviation,
it is easy to see that economy lies with the less efficient statistic.

It should not be thought that inefficient statistics are being recommended for
all situations. There are many cases where observations are very expensive,
and obtaining a few more would entail great delay. Examples of this situation
arise in agricultural experiments, where it often takes a season to get a set of
observations, and where each observation is very expensive. In such cases the
experimenters want to squeeze every drop of information out of their data.
In these situations inefficient statistics would be uneconomical, and are not
recommended.

A situation that often arises is that data are acquired in the natural course of
administration of an organization. These data are filed away until the accumula-
tion becomes mountainous. From time to time questions arise which can be
answered by reference to the accumulated information. How much of these data
will be used in the construction of say, estimates of parameters, depends on the
precision desired for the answer. It will however often be less expensive to
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get the desired precision by increasing the sample size by dipping deeper into
the stock of data in the files, and using crude techniques of analysis, than to
attain the required precision by restricting the sample size to the minimum
necessary for use with “‘efficient’’ statistics.

It will often happen in other fields such as educational testing that it is less
expensive to gather enough data to make the analysis by crude methods suf-
ficiently precise, than to use the minimum sample sizes required by more refined
methods. In some cases, as a result of the type of operation being carried out
sample sizes are more than adequate for the purposes of estimation and testing
significance. The experimenters have little interest in milking the last drop of
information out of their data. Under these circumstances statistical workers
would be glad to forsake the usual methods of analysis for rapid, inexpensive
techniques that would offer adequate informationy but for many problems such
techniques are not available.

In the present paper several such techniques will be developed. For the
most part we shall consider statistical methods which are applicable to estimating
parameters. In a later paper we intend to consider some useful ‘‘inefficient’’
tests of significance.

2. Order statistics. If a sample O, = z1, 3, - - - , &y of size n is drawn from
a continuous probability density function f(x), we may rearrange and renumber
the observations within the sample so that

(1) 0 <X < 00 < Ty

(the occurrence of equalities is not considered because continuity implies zero
probability for such events). The zs are sometimes called order statistics.
On occasion we write x(¢) rather than z;. Throughout this paper the use of
primes on subscripted z’s indicates that the observations are taken without
regard to order, while unprimed subscripted z’s indicate that the_observations
are order statistics satisfying (1). Similarly x(n;) will represent the n;th order
statistic, while z’(n;) would represent the n;th observation, if the observations
were numbered in some random order. The notation here is essentially the
oppostte of usual usage, in which attention is called to the order statistics by
the device of primes or the introduction of a new letter. The present reversal
of usage seems justified by the viewpoint of the article—that in the problems
under consideration the use of order statistics is the natural procedure.

An example of a useful order statistic is the median; whenn = 2m + 1 (m =
0,1, -+ ), Tm+1is called the median and may be used to estimate the population
median, i.e. u defined by

f_:f(t) it = 3.

In the case of symmetric distributions, the population mean coincides with «
and Zm41 will be an unbiased estimate of it as well. Whenn = 2m (m = 1, 2,
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+++), the median is often defined as (xm + Zm41). The median so defined is
an unbiased estimate of the population median in the case of symmetric dis-
tributions; however for most asymmetric distributions % (Zm + ZTm+1) will only
be unbiased asymptotically, that is in the limit as n increases without bound.
For another definition of the sample median see Jackson [8, 1921]. When z is
distributed according to the normal distribution

2y 1 —(1/202) (z—a)2
N(x,a,a)—-\/gme ,
the variance of the median is well known to tend to m¢>/2n as n increases.

It is doubtful whether we can accurately credit anyone with the introduction
of the median. However for some of the results in the theory of order statistics
it is easier to give credit. Im this section we will restrict the discussion to the
order statistics themselves, as opposed to the general class of statistics, such as
the range (xr. — ), which are derived from order statistics. We shall call
the general class of statistics which are derived from order statistics, and use
the value ordering (1) in their construction, systematic statistics.

The large sample distribution of extreme values (examples x, , Zn—s41 for r, s
fixed and n — ) has been considered by Tippett [17, 1925] in connection with
the range of samples drawn from normal populations; by Fisher and Tippett
{3, 1928] in an attempt to close the gap between the limiting form of the dis-
tribution and results tabled by Tippett [17], by Gumbel [5, 1934] (and in many
other papers, a large bibliography is available in [6, Gumbel 1939]), who dealt
with the more general case r > 1, while the others mentioned considered the
special case of r = 1; and by Smirnoff who considers the general case of z,,
in [15, 1935] and also [16] the limiting form of the joint distribution of z, , z,,
for r and s fixed as n — .

In the present paper we shall not usually be concerned with the distribution
of extreme values, but shall rather be considering the limiting form of the joint

distribution of z(n;), x(ng), - --, x(n), satisfying
ConbpiTioN 1. lim % = \;; 1=12,---, k;

M< A< s < N

In other words the proportion of observations less than or equal to z(n.) tends
to a fixed proportion which is bounded away from 0 and 1 as n increases. K.
Pearson [13, 1920] supplies the information necessary to obtain the limiting
distribution of x(n;), and limiting joint distribution of z(n;), z(ne). Smirnoff
gives more rigorous derivations of the limiting form of the marginal distribution
of the x(n;) [15, 1935] and the limiting form of the joint distribution of z(n:)
and z(n;) [16] under rather general conditions. Kendall [10, 1943, pp. 211-14]
gives a demonstration leading to the limiting form of the joint distribution.
Since we will be concerned with statements about the asymptotic properties
of the distributions of certain statistics, it may be useful to include a short dis-
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cussion of their implications both practical and theoretical. If we have a
statistic 6(0,) based on a sample O,: 21, ¥z, - - - , Zn drawn from a population
with cumulative distribution function F(x) it often happens that the function
(6 — 0)/6. = yn, where o, is a function of n is such that

. 1 Y
A) lim Plyn < 1) = /5= [+ aa.
When this condition (A) is satisfied we often say: § is asymptotically normally
distributed with mean 6 and variance o». We will not be in error if we use the
statement in italics provided we interpret it as synonymous with (A). How-
ever there are some pitfalls which must be avoided. In the first place condition
(A) may be true even if the distribution function of ¥, , or of 4, has no moments
even of fractional orders for any n. Consequently we do not imply by the itali-
cized statement that lim E[6(0.)] = 6, nor that lim {[E(") — [E@)T} =

o5, for, as mentioned, these expressions need not exist for (A) to be true. In-
deed we shall demonstrate that Condition (A) is satisfied for certain statistics
even if their distribution functions are as momentless as the startling distribu-
tions constructed by Brown and Tukey [1, 1946]. Of course it may be the case
that all moments of the distribution of § exist and converge as n — o« to the
moments of a normal distribution with mean 6 and variance o%. Since this
implies (A), but not conversely, this is a stronger convergence condition than
(A). (See for example J. H. Curtiss [2, 1942].) However the important im-
plication of (A) is that for sufficiently large n each percentage point of the
distribution of § will be as close as we please to the value which we would compute
from a normal distribution with mean 6 and variance ¢% , independent of whether
the distribution of 4 has these moments or not.

Similarly if we have several statistics 8, 8, - - -, 6, each depending upon
the sample O, : z1 , Tz, - -, T, we shall say that the 0; are asymptotically jointly
normally distributed with means 0, , variances a¥(n), and covariances p; ;oo ;, when

lim Plys < b1, %2 <o, -+, Y < k)

n—>00
ty pta t .
=Kf f f oo dzy dzs - - - day,
l—0  V—o0 — o0

where y; = (6 — 6:)/0:, and Q’ is the quadratic form associated with a set of
k jointly normally distributed variables with variances unity and covariances
pi, and K is a normalizing constant. Once again the statistics §; may not
have moments or product moments, the point that interests us is that the
probability that the point with coordinates (8:, 6;, - - -, ) falls in a certain
region in a k-dimensional space can be given as accurately as we please for
sufficiently large samples by the right side of (B).

Since the practicing statistician is very often really interested in the prob-
ability that a point will fall in a particular region, rather than in the variance

(B)
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or standard deviation of the distribution itself, the concepts of asymptotic
normality given in (A) and (B) will usually not have unfortunate consequences.
For example, the practicing statistician will usually be grateful that the sample
size can be made sufficiently large that the probability of a statistic falling into
a certain small interval can be made as near unity as he pleases, and will not
usually be concerned with the fact that, say, the variance of the statistic may
be unbounded.

Of course, a very real question may arise: how large must n be so that the
probability of a statistic falling within a particular interval can be sufficiently
closely approximated by the asymptotic formulas? If in any particular case
the sample size must be ridiculously large, asymptotic theory loses much of its
practical value. However for statistics of the type we shall usually discuss,
computation has indicated that in many cases the asymptotic theory holds
very well for quite small samples.

For the demonstration of the joint asymptotic normality of several order
statistics we shall use the following two lemmas.

LemMMA 1. If a random variable 6(0,) is asymptotically normally distributed
converging stochastically to 6, and has asymptotic variance o*(n) — .0, where n

18 the size of the sample O, : L1, Ty, -+, Tn, drawn from the probability density

Junction h(x), and g(0) is a single-valued function with a nonvanishing continuous

derivative g'() in the neighborhood of & = 6, then g() is asymptotically normally

distributed converging stochastically to g(6) with asymptotic variance o%[g'(0)]".
Proor. By the conditions of the lemma

. ] 1 f‘ —jut
71'1_1’1010P[ . < t:I = Var [ € du.
Now if te, = A8, A0 = 6 — 6, using the mean value theorem there is a 6, in

the interval [0, 6], such that
g8 = g(6) + (6 — 0)g'(61),

which implies
lim P(" — 0. t) — lim P(M < t), g'(8) = 0,

n—rw On n—0 On g'(01)

where 6, is a function of n. However lim ¢’(6;)) = ¢'(6) so we may write
A0—0

lim P(o—a < t) = limP(M < t), g7 (6) 0.
n—+0 On n—r0 ong (0)
where the form of the expression on the right is the one required to complete
the proof of the lemma.

Of course if we have several random variables 6, , 6;, ---, 6z, we can prove
by an almost identical argument that

LemMA 2. If the random variables 6;(0,) are asymptotically jointly normally
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distributed converging stochastically to 6; , and have asymptotic variances o* (n) —0,

and covariances p;joio ; , where n 1s the size of the sample O, : zy , xé , ++, Tn drawn
Jrom the probability density function h(z), and g;(6), ¢ = 1, 2 , k, are single-
valued functwns with nonvanishing continuous derivatives g; (0) in the neighbor-
hood of 6; = 6, , then the g.(o.) are jointly asymptotically normally distributed with
means g;(6;), variances o3lg:(6:)]* and covariances p; PETACAIACH)

The following condition represents restrictions on the probability density
function f(r) sufficient for the derivation of the limiting form of the joint dis-
tribution of the z(n;) satisfying Condition 1.

ConpirioN 2. The probability density function f(x) is continuous, and does not
vanish in the neighborhood of u; , where

f f@de =N, i=1,2--,k

If we recall the discussion of condition (B) above, the theorem of Pearson
and Smirnoff may be stated:

THEOREM 1. If a sample O, : 21, &2, -+, %, is drawn from f(x) satisfying
Condition 2, and if z(n1), (ns) satisfy Condition 1 as n — o, then z(ny), z(ns)
are asymptotically distributed according to the normal bivariate distribution with
means uy , U,

[ 1@ dz =,

and vartances
2 M@ =) .
T fmE . T L2

and covariance

sioe = NI — M)
PRAT T o) (u) "

Theorem 1 has an obvious generalization which seems not to have been carried
out in the literature. The generalization may be stated:

THEOREM 2. If a sample O, : x1, x2, * -+, T, is drawn from f(x) satisfying
Condition 2, and if x(n1), x(ns), - -+, z(ni) satisfy Condition 1 as n — o, then
the x(n), © = 1, 2, ---, k, are asymptotically distributed according to the nor-
mal multivariate distribution, with means u; ,

[ 1@ dz =,

and variances
2 _ N1 =)
T Taflu
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and covariances
M1 =) ..
PijOi0; = ———— 1<i<j<k.
T B )’ ’
Proor. We shall carry out the demonstration for the uniform distribution

,0<z<1,
f(x)={

0, elsewhere,

and then utilize the fact that by a suitable transformation of the uniform dis-
tribution we may get any f(z) satisfying Condition 2. Of course for the par-
ticular case of the uniform distribution all moments of the z(n;) exist and con-
verge to those of the asymptotic theory.
The joint probability density of the z(n,), satisfying Condition 1 and drawn
from f(z), is given by
n!

(m — 1)!(n—m)!f12(n.- - niq — 1)!

z(ny) ny—1 n—ng k z(ng) ni—ni—1—1
([ )" (L) L ]
0 z(ng) =2 z(ng—1)

Performing the indicated integrations we get from the right of (2)

glz(ni), z(ma), - -+, z(m)] =
)

k
3) Cx(n)™™ E Z(n) — z(e—)]™ ™ — 2",

where C is the multinomial coefficient on the right of (2). It is well known
that for the uniform distribution E[z(n:)] =

+ 1’ or asymptotlcally i =

1,2, ---,k. We make the transformation y; = (x(n;) - —) v/n, leading to
E _?i!_ n—1 k& (n‘ Ni1 [ yg—ll)"l_"'—l_l
» T Vn I_Iz T n

@) <n —m Y \"™.

R

Using the usual technique of factoring out expressions like

ng—ng—1—1
ng — N\t !
n ?
ng

we rewrite (4) with C; as a new constant, and setting A\; = -
W

C: (1 + r n

s —yen) "”"“‘( Y

H (l + M — M)V 1 1 = Mn

ni—1

(8)



“INEFFICIENT’’ STATISTICS 385

1
Now taking the logarithm of (5), expanding, neglecting terms 0(7;) and higher,

collecting terms and taking the antilogarithm we get the approximate asymp-
totic distribution of the order statistics

g(x(n1), z(na), - -+, x(ng))
() [ 1 { & Nis1 = N Yy
— C e i 2 i1 1—1 -2 YilYi—1 }]
3 €Xp 2 .Z-; i g1 — M) (Ai — A1) -‘Ez No— Ai) L’
where:M = 0, M1 = 1. Now setting up the matrix of the coefficients of the
quadratic expression in the exponent
A1 — N 1
5 Aiig = Airs = —————
Mier — M) — Nim1) ! b A — Nit’
$i=1,2, -+ ,k;4;; =0,]%2 —3| > 1. To obtain the variances and covar-
iances we need

A =

A9 = cofactor of A;; in || 4i; ||
determinant A ;;

(see for example Wilks [18, p. 63 et seq.]). Now

k+1 1
(7) |A I = determinant A,',' = H X ""'_)‘—' H
1 § T Ni-1

cofactor of A = A1 — N)|A], 2 =1,2, ---, k.
Ai(l—)‘})lAI’ 7:<j

Nl =N 4, i<

This completes the proof for the uniform distribution.

If the uniform distribution is transformed into a probability density function
f(z) satisfying Condition 2, by an order preserving transformation, we appeal
to Lemma 2. We notice that the z(n:) are transformed into g[z(n)], and that
the probability that z(n) falls in the interval [u:, us + Aui] is transformed into
the probability that glz(n:)] falls in the interval [g(us), g(us + Au)]. Using
the mean value theorem we may write

g(us + Mug) = g(us) + Aug’(u3),
where u; lies in the interval [u;, u; + Aw;]. However
lim ¢ (u) = ¢'(w)-

Aug—

cofactor of 4;; = {

The density for the uniform distribution in the interval [u;, w; + Au] is just
Au;, and this same density will tend to f(u;)Ausg’(u:). Therefore ¢'(u:) =
1/f(u;), which completes the proof of Theorem 2.

It would often be useful to know the small sample distribution of the order
statistics, particularly in the case where the sample is drawn from a normal.
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Fisher and Yates’ tables [4] give the expected values of the order statistics up
to samples of size 50. However it would be very useful in the development
of certain small sample statistics to have further information. It is perhaps too
much to expect tabulated distribution functions, but at least the variances
and covariances would be useful. A joint effort has resulted in the calculation
for samples n = 2, 3, ---, 10 of the expected values to five decimal places,
the variances to four decimal places, and the covariances to nearly two decimal
places. It is expected that these tables will be published shortly.

3. Estimates of the mean of a normal distribution. It will be important
in what follows to define efficiency and to indicate its interpretation. Then we
shall construct some estimates of the means of certain distributions and compute
their efficiencies. Except for the tables given, the discussion is applicable to
the estimation of the mean of any symmetric distribution; and, of course, the
concept of efficiency is still more general in its application. A statistic 6(0.),
where O, is the sample, is said to be an efficient estimate of 6 if

i) v/n (6 — ) is asymptotically normally distributed with zero mean and
finite variance, ¢°(§), and

ii) for any other statistic § with v/n(§’ — 6) asymptotically normally dis-
tributed with zero mean and variance o*(#"), ¢°(0) < o (&').

The ratio o°(8)/o’(@’) is termed the efficiency of ¢’ if § is an efficient estimate
of 9. For discussion see Wilks [18, 1943]. The concepts of efficient statistic
or estimate and of efficiency were introduced by R. A. Fisher. They serve as
one measure of the amount of information a statistic draws from a sample.
It is also common practice to speak of relative efficiencies, for example, of the
statistics & and &’ described in ii) above, we say if ¢°(§') < o°(§"") that the
efficiency of 6" relative to # is the ratio of the smaller variance to the larger.
This concept of efficiency has sometimes been used when the normality assump-
tion has been violated by one or both statistics, when one or both are biased,
and when small samples are considered. When used under these conditions
the concept of efficiency becomes more difficult to interpret, although a compari-
son of the variation of two statistics about the value they are commonly esti-
mating is often of value.

In the case of estimates of the mean a of a variable which is normally dis-
tributed according to N(z, a, ¢°) from a sample of n, we can often express the
variance of an asymptotically unbiased estimate as ¢”(8;) = kic’/n. The sample
mean § = Zz./n is an efficient estimate of a with variance ¢°/n. Then in such
cases the efficiency of 4; in estimating a is 1/k;. The interpretation is merely
that to obtain the same precision using 6; as is possible with , one must use
a sample k; times as large.

Bearing in mind that we are at present searching for economical methods
for analyzing large samples, it is clear that the concept of efficiency offers us a
practical way of comparing cost of information with cost of obtaining it.
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In the present section and in sections 4 and 5 we shall develop certain sys-
tematic estimates of parameters of normally distributed variables. Our pro-
cedure then will be to compare the efficiency of the systematic estimates with
the efficient statistic for estimating the parameter in question, and also in sec-
tions 4 and 5 we compare our estimates with a statistic not involving squares
or products. Of course the efficient statistic for estimating the mean of a normal
is the sample mean, therefore in this section we will only compare our estimates
with the sample mean.

We can construct unbiased estimates of the mean of a normal distribution
from linear combinations of suitably chosen order statistics. These systematic
statistics will be asymptotically normally distributed if the order statistics
from which they are derived satisfy Condition 1. We will restrict ourselves to
a useful practical case where equal weights are used. In other words the esti-
mate discussed is just the average of k order statistics k¥ 'Zx(n;). Suppose
z(n:), 1 = 1, 2, - - -, k satisfy Condition 1, that E[zx(n;)] = E[x(ng—i41)], so that
E[Zx(n;)] = a. An important unsolved question is to discover what spacing
of the z(n;) will yield minimum variance, and thereafter at what rate does the
efficiency of this optimumly spaced estimate increase with k. Computational
methods bog down rapidly after & = 3. Because so little is known about this
problem it seems worthwhile to offer some results for three arbitrary spacings
(these results are of course useful in analyzing data).

If the x(n;) satisfy Theorem 2 we may approximate the variance of the sys-
tematic statistic 8, = Zx(n:)/k by the usual formula

® o'(B) = E[Zz(n:)/kI' — [E(Zz(n)/k)]'".

We lose no generality by assuming the mean and variance of the underlying
normal to be 0 and 1 respectively. Then using the fact that Zu; = 0, and
the result of Theorem 1 we rewrite (8) as

2,5 2 _ 1 A1 = \) NI —N)
9 o (6x) = E[Z(x(n) u.)/k] = m[‘z_: f + 2‘<EJ fifi ]1
where fr = f(Um).

Using the symmetry which makes \i = 1 — Me—ij1, fi = fi—it1, and the fact
that for k = 2r + 1, fra = 1//27, A1 = %, we may simplify the right side
of equation (9) with the following results fork = 1, 2, ---, 7. The factor 1/k*
has not been disturbed. We also write the general formulas for the simplified
form of (9), but we omit a rather lengthy combinatorial argument which es-
tablishes the generalization.

. T
k=1: 2
2

k=2 —

: m
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k= 3: §?-[’l‘+x——“/§'+’—']

fi S 4
(10) k=4:%'m fﬁﬁ-x]
b= gl st vE(E )+
k=6:&% ﬂ+ 2t z+f21)}:+zfs+f2:}i]
k=7:4—§-n z+z+z+§?l+§§l+§§i

ey

2 [¢ A
k= 2r: (2r)”n[22+2 . f.f,]’ rz1

i=1J ¢ 1gi<igr JiJi

2 r
k=2r+41: & f 1)%[(2"2)"::”(62,) + \/2w§’:: + g] r>1.

In addition to the possibility of minimizing the equations of (10) by numerical
methods, three other procedures suggest themselves: i) to space the order
statistics uniformly in probability; ii) to choose those k order statistics whose
expected values are equal to the expected values of the order statistics in a
sample of size k drawn from a unit normal; iii) to choose A\; = (¢ — 1)/k. The
following table lists for & = 1, 2, and 3 the expected values u; of the order sta-
tistics and the probability to the left of the expected values A; for each of the
procedures. The chosen order statistics are counted from left to right. It
will be noticed that the third method gives very good results, and has the value
of simplicity of formula. The following table gives a comparison between the
efficiencies resulting from spacing by the three methods. The three optimum
cases are included for completeness.

Statisticians planning to use the method of expected values suggested above
will find Fisher and Yates [4, 1943] table of the expected values of the order
statistics in samples of size k drawn from a unit normal helpful for computing
the A\;. Alternatively the following table of A; might be used.

As an example of the use of Table III, suppose we are using the expected
value method for estimating the mean of a large sample drawn from a normal
distribution N(z, a, ¢*). If we are willing to use 6 observations out of 1000 for
this purpose Table III indicates the selection of i3, 21, Taz1 , Tss0, Tra0 , Tass -
Furthermore Table II indicates that the variance of the estimate of a based
on the average of these six observations will be approximately ¢*/.948n, n = 1000.
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Comparison of the order statistics which would be chosen according to each of the
four procedures for subsamples of k = 1, 2, 3

. Order Optimum Prﬁ‘m}ity Expected Values| A= (i—1)/k
Statistic
Ui s Ui N Ui s Ui N
1 First .0000| .5000] .0000| .5000{ .0000| .5000{ .0000|.5000
2 First —.6121| .2702{—.4307| .3333|—.5642| .2863| — .6745|.2500
Second .6121} .7298| .4307| .6667| .5642| .7137| .6745|.7500
3 First —.9056| .1826|—.6745| .2500|—.8463| .1967|—.9674|.1667
Second .0000| .5000/ .0000] .5000{ .0000| .5000{ .0000|.5000
Third L9056 .8174| .6745| .7500[ .8463| .8033| .9674|.8333
TABLE 1II

Compartison of the efficiencies of four methods of spacing k order statistics used
in the construction of an estimate of the mean

k N=i/(k+1) Expected Ne=(i—1)/k Optimum
1 637 637 637 637
2 793 .809 .808 810
3 .860 878 878 879
4 .896 914 913

5 918 .933 1934

6 .933 948 948

7 944 956 957

8 952 .963 .963

9 957 .968 .969

10 .962 972 973

* The u; are chosen equal to the expected values of the order statistics of a sample of

gize k.

where & = Y7 z;/n-is well known to be an unbiased estimate of the popula-
tion variance ¢’, for n > 1. However s is not in general an unbiased estimate

of o.

We are not interested here in the question of when we should estimate o

and when it is more advantageous to estimate ¢*. All we want is to have an
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unbiased estimate of ¢, based on sums of squares, to compare with another
unbiased estimate based on order statistics. In the case of observations drawn
from a normal distribution

, GGl — 1) | /3@ — 2
o v = O g2

is an unbiased estimate of o (see for example Kenney [11], with variance

(12) . o (s) = {% [%TLD] (n—1) — 1}02.

TABLE III*
Plx < uir) X 104 e = E(xi), Tigx 1 the ith order statistic in a sample of
size k drawn from a normal distribution N (z, 0, 1)

N 1 2 3 4 5 6 7 8 9 10
5000
2863 | 7137

1987 | 5000 | 8013
1516 | 3832 | 6168 | 8484
1224 | 3103 | 5000 | 6897 | 8776
1025 | 2605 | 4201 | 5799 | 7395 | 8975
0881 | 2244 | 3622 | 5000 | 6378 | 7756 | 9119
0773 | 1971 | 3182 | 4394 | 5606 | 6818 | 8030 | 9227
0688 | 1756 | 2837 | 3919 | 5000 | 6082 | 7163 | 8244 | 9312
10 | 0619 | 1584 | 2559 | 3536 | 4512 | 5488 | 6464 | 7441 | 7416 | 9381

© WO WN

* The table is given to more places than necessary for the purpose suggested because it
may be of interest in other applications. The E(z:x) from which the table was derived
were computed to five decimal places.

For most practical purposes however, when n > 10, the bias in s is negligible.
For large samples ¢°(s’) approaches ¢*/2n.

4A. The range as an estimate of s. As mentioned in the Introduction,
section 1, it is now common practice in industry to estimate the standard devia-
tion by means of a multiple of the range R’ = c.(x, — 1), for small samples,
where ¢, = 1/[E(y.) — E(y1)], ¥, and y, being the greatest and least observations
drawn from a sample of size n from a normal distribution N(y, a, 1). Although
we are principally interested in large sample statistics, for the sake of complete-
ness, we shall include a few remarks about the use of the range in small samples.

Now R’ is an unbiased estimate of o, and its variance may be computed for
small samples, see for example Hartley [7, 1942]. In the present case, although
both R’ and s’ are unbiased estimates of ¢, they are not normally distributed,
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nor are we considering their asymptotic properties; therefore the previously
defined concept of efficiency does not apply. We may however use the ratio
of the variances as an arbitrary measure of the relative precision of the two
statistics. The following table lists the ratio of the variances of the two sta-
tistics, as well as the variances themselves expressed as a multiple of the popu-
lation variance for samples of sizen = 2,3, - - -, 10.

4B. Quasi ranges for estimating o. The fact that the ratio o’(s')/¢’(R’)
falls off in Table IV as n increases makes it reasonable to inquire whether it
might not be worthwhile to change the systematic estimate slightly by using
the statistic ¢ijs[€,—1 — 22|, or more generally ¢,.[xn—r — Z.41] Where ¢, is the
multiplicative constant which makes the expression an unbiased estimate of o
(in particular ¢, is the constant to be used when we count in r 4+ 1 observations
from each end of a sample of size n, thus ¢;j» = 1/[E(¥n—r — ¥r+1)] where the

TABLE IV

Relative prectsion of s’ and R’, and their variances expressed as a multiple of o2,
the population variance

n a*(s")/e*(R') o*(s’)/a* o*(R')/o*
2 1.000 .570 .570
3 .990 .273 .276
4 977 .178 .182
5 .962 .132 137
6 .932 .104 112
7 .910 .0864 .0949
8 .889 .0738 .0830
9 .869 .0643 .0740

10 .851 .0570 .0670

y’s are drawn from N(y, a, 1)). This is certainly the case for large values of =,
but with the aid of the unpublished tables mentioned at the close of section 2,
we can say that it seems not to be advantageous to use ¢ja[t,—1 — x2] for n < 10.
Indeed the variance cij[zs — ], for the unit normal seems to be about .10,
as compared with ¢’(R’)/¢* = .067 as given by Table IV, for n = 10. The
uncertainty in the above statements is due to a question of significant figures.

Considerations which suggest constructing a statistic based on the difference
of two order statistics which are not extreme values in small samples, weigh
even more heavily in large samples. A reasonable estimate of o for normal
distributions, which could be calculated rapidly by means of punched-card
equipment is

(13) ¢ = - [z(ng) — x(ny)],

Q| =
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where the x(n;) satisfy Condition 1, and where ¢ = u; — u1, u; and u; are the
expected values of the n; and n, order statistics of a sample of size n drawn from
a unit normal. Without loss of generality we shall assume the z; are drawn
from a unit normal. Furthermore we let % =X=1-N=1- 1—3 of

course ¢ will be asymptotically normally distributed, with variance

20— 2 [MA =2N) L X =) 201 — M)
(14 c@® = mﬂ[ FaE T UF  fufe) ]

Because of symmetry f(u1) = f(u,); using this and the fact that \; = 1 — A,
we can reduce (14) to

(15) a(8) =

2 M1 = 20)
ne®  [fw)P

We are interested in optimum spacing in the minimum variance sense. The
minimum for ¢°(4) occurs when \; = 0694, and for that value of \;, ¢*(6) =
767 o’/n. Asymptotically ' is also normally distributed, with o*(s') = ¢*/2n.
Therefore we may speak of the efficiency of ¢ as an estimate of o as .652. It is
useful ‘to know that the graph of o”(4) is very flat in the neighborhood of the
minimum, and therefore varying A; by .01 or .02 will make little difference in
the efficiency of the estimate & (providing of course that ¢ is appropriately
adjusted). K. Pearson [13] suggested this estimate in 1920. It is amazing that
with punched-card equipment available it is practically never used when the
appropriate conditions described in the Introduction are present.

The occasionally used semi-interquartile range, defined by A\, = .25 has an
efficiency of only .37 and an efficiency relative to & of only .56.

As in the case of the estimate of the mean by systematic statistics, it is per-
tinent to inquire what advantage may be gained by using more order statistics
in the construction of the estimate of ¢. If we construct an estimate based on
four order statistics, and then minimize the variance, it is clear that the extreme
pair of observations will be pushed still further out into the tails of the dis-
tribution. This is unsatisfactory from two pdints of view in practice: i) we will
not actually have an infinite number of observations, therefore the approxima-
tion concerning the normality of the order statistics may not be adequate if A\
is too small, even in the presence of truly normal data; ii) the distribution
functions met in practice often do not satisfy the required assumption of norm-
ality, although over the central portion of the function containing most of the
probability, say except for the 5%, in each tail normality may be a good approxi-
mation. In view of these two points it seems preferable to change the question
slightly and ask what advantage will accrue from holding two observations at
the optimum values just discussed (say A, = .07, \; = .93) and introducing
two additional observations more centrally located.

We define a new statistic

(16) & = 2 ) + alm) — zm) — alm)],
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¢ = Elx(ng) + x(ng) — x(ng) — x(m1)], where the observations are drawn from
aunit normal. Wetake\; =1 — N\, Ne =1 — A3, N = .07. It turns out that
¢’(8") is minimized for \; in the neighborhood of .20, and that the efficiency com-
pared with ¢’ is a little more than .75. Thus an increase of two observations in
the construction of our estimate of ¢ increases the efficiency from .65 to .75.
We get practically the same result for .16 < A, < .22,

Furthermore, it turns out that using \; = .02, \: = .08, As = .15, Ay = .25,
X = .75, A¢ = .85, My = .92, \s = .98, one can get an estimate of ¢ based on
eight order statistics which has an efficiency of .896. This estimate is more
efficient than either the mean deviation about the mean or median for esti-
mating ¢. The estimate is of course

& = [x(ng) + z(ng) + z(ne) + x(ng) — 2(ng) — 2(ng) — z(ng) — x(m)1/C,

where C = 10.34.
To summarize: in estimating the standard deviation o of a normal distribution
from a large sample of size n, an unbiased estimate of o s

A

1
o= E (Zpsrpr — Tr),

where ¢ = EYn—ry1 — Yr) where the y’s are drawn from N(y, a, 1). The estimate
¢ 1is asymptotically normally distributed with variance

24 _ 2 M1 — 2)N)
*® =26 ~Hwr
where \; = r/n, f(u) = N(E(z,), 0, ¢”). We minimize o"(6) for large samples
when Ny = .0694, and for that value of A,
7674

a'gpt(&) = n "

The unbiased estimate of o

1
¢ = g (@n—rs1 F Tnstr — To — Ty)

may be used in liew of 6. If \y = r/n, N2 = 8/n we find

2
A M= 07, N = 20) = '62" :

4C. The mean deviations about the mean and median. The next level of
computational difficulty we might consider for the construction of an estimate
of ¢ is the process of addition. The mean deviation about the mean is a well
known, but not often used statistic. It is defined by

an md. = 3 |7} — £ |/n.

EE)
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For large samples from a normal distribution the expected value of m.d. is

1—?: a, therefore to obtain an unbiased estimate of ¢ we define the new statistic

A = ,‘/g m.d. Now for large samples A has variance o’[4(x — 2)]/n, or an

efficiency of .884. However there are slight awkwardnesses in the computation
of A which the mean deviation about the median does not have.

It turns out that for samples of size n = 2m + 1 drawn from a normal dis-
tribution N(y, a, 0) the statistic

r 1E|xe—xm+1|
(18) M ,‘/; =

asymptotically has mean ¢ and variance
2o 1 (1r — 2\ .
19) (M) am\— 5 )7 -

Thus in estimating the standard deviation of a normal distribution from
large samples we can get an efficiency of .65 by the judicious selection of two
observations from the sample, an efficiency of .75 by using four observations,
and an efficiency of .88 by using the mean deviation of all the observations from
either the mean or the median of the sample, and an efficiency of .90 by using
eight order statistics.

5. Estimation of the correlation coefficient. In the present section we con-
sider the estimation of the correlation coefficient of a normal bivariate population:
o) = e

HY) = 2""‘720'1/\/1 -0

(20)
ol L (@=ar  G=b %o -b
Pl720-\ o o Ge0y '
The efficient estimate of p in a sample O, : (21 , y1), (@3, ¥2), - - -, (T , yo) drawn
from the density (20) is
L — 7
@1) DY A A )

B oA
There are numerous other techniques in the literature for estimating p, among
them i) the tetrachoric correlation coefficient which depends on a four-fold table,
ii) the adjusted rank correlation coefficient which depends on assigning ranks to
the x and y observations. These and other estimates of the correlation co-
efficient are discussed by Kendall [10].

We shall be concerned with the construction of some estimates of the cor-
relation coefficient which are particularly adapted for use with punched-card
equipment. A counting sorter is adequate for the first two cases discussed;
in line with our previous development we shall then consider a technique which
uses simple addition of the observed values, but does not require sums of squares
or products (in the special case where variances of x and y are equal).
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5A. Estimation of p when means and standard deviations are known. Let
us suppose that the means and variances of the variables z and .y, distributed
according to (20) are given, and consider the problem of estimating the cor-
relation coefficient p from a sample of size n. There will be no generality lost
by assuming @ = b = 0, 02 = o2 = 1. The technique used will be to construct
lines y = 0, £ = =k, which cut the zy-plane into six parts. We will form an
estimate of p based upon the number of observations falling in the four corners.
Figure 1 represents the lines laid out in the manner suggested in connection with
a scatter diagram of 25 observations; naturally the method is recommended for

| | .
° I
I [ 0 n=4
n,=2 I
4]
° °
| o
[ o I
o 0 I
]
o 0 I .
ng=13 y=
o o ° I
I °
o
o o I
o
|- |
0 n,=56 I l ne=1
Xm a-koy. x=a x=a+koy

F16. 1. D1iacrAM OoF THE CONSTRUCTION DESCRIBED IN PARAGRAPH 5A WITH A SAMPLE OF
25 OBSERVATIONS SUPERIMPOSED

use only with large samples, the 25 observations are for purposes of illustration
only. More specifically after assigning the special values mentioned immedi-
ately above to the means and variances in (20), we define

n=[[revaa n=[ [ ey
e m=[ [ tevea w=[ [ e

P = [ : [ :f(:c, y) dz dy = [:N(x, 0, 1) da.



396 FREDERICK MOSTELLER
We denote by n, the number of observations falling into the region containing

probability density p; . Of course )41 7: = n. Now we may write the joint
probability distribution of the n; as

n! o
(23) g(nlx N2, Na, n4) = —__|Hp:l‘ .

5
172 51
4
remembering that ng = n — Zn; .
1

We shall now derive the maximum likelihood estimate of p from (23). Taking
the logarithm of (23) we have

5
(24) logg = log ¢ + En; log p:,
=1

where ¢ is the multinomial coefficient on the right of (23). Differentiating (24)
with respect to p gives

d(logg) _ <~ mip
2 = ==,
(25) dp i=1 Di
P dp.' . dps _ . . .
where p; = e of course a 0 because ps is functionally independent of p.
P

To get p, the maximum likelihood estimate of p, under our restrictions, wemust
equate the right of (25) to zero and solve for p. Before proceeding it will be
useful to note the following relations:

D1 = P3;P2 = D4
(26) Pr= —Ds;P2= —Ps;P1 = Ps; P2 = Pa
—%

p1+p4=j;N(x,0,1)d:c=)\; mtm= [ NGO iz =)

If after making appropriate substitutions from (26) we set the right of (25)

equal to zero we get
mP1 _ MePr n3Pr _ P -
2l A—m 2 A—m

’

and since in general p; # 0, the condition is that

(27) ny + ng — D1

Ng + Ny k—pl'

Unless all four of the n; are zero (which is unlikely for reasonable values of A
because n is large), it is possible to find a value of p which will make the right
side of (27) equal to the ratio formed from the observations on the left, and
the value of p so determined is the maximum likelihood estimate p under the
restrictions we have imposed. In practice this equation may be solved by con-
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sulting a table of the bivariate normal distribution—see for example K. Pearson
[14]. Alternatively [27] may be solved by referring to Figure 3. Truman Kelley
[9, 1939] has considered a closely related problem in connection with the valida-
tion of test items.

It may be inquired whether it would not be preferable to reduce the present
design to a tetrachoric case by using only the cutting linesz = 0, y = 0. An
investigation of the variance of s reveals that such is not the case. We proceed
to determine the asymptotic variance by means of the usual maximum likelihood
technique. Differentiating (25) once more we have

d'(log 9) _ ~mi(pid: — B1)
@) dpt .Z; i ’
2
where p, = (—id—’; . We note that E(n;) = np;, therefore
p
d*(log g)) _ (" 5 zﬁ)
(29) E( i =n gp. ga .

but since the derivative of a sum is equal to the sum of its derivatives, and
p1 + pa = N\, p2 + ps = A, the first sum in the square brackets vanishes. Suit-
able substitutions from (26) will reduce the second sum so that we get

Cd’(log g)] 2npin
—E = .
(30) [ dp? pi(A — p1)
Therefore asymptotically 5 is normally distributed with variance
20\ _ (A — 1)

In general the optimum value (in the minimum variance sense) of X\ which deter-
mines the cutting lines = =k will depend on the true value of p. To carry
out the minimization process in general will require fairly extensive computa-
tions, which we feel would be justified. For the present we shall restrict our-
selves to minimizing ¢*(p) for the case p = 0.

We have

A | T R
P = g-exp [—3k] = 5= f(k).
when p = 0, and p; = 3X. This gives

A
n[f(k)}2"

We wish to minimize the expression on the right. We recall that a similar
expression \;/fi was to be minimized in section 3 when the optimum pair of

(32) dBle=10) =
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observations for estimating the mean of a normal distribution was found.
Using the previous results we have A = .2702, £ = .6121; which gives us finally

1.
(33) o (] p = 0) = 129,

To summarize: if a sample of size n is drawn from a normal bivariate popula-
tion with known means a., a, and variances o= and o5 , but unknown correlation p, the
mazximum likelshood estimate of p based on the number of observations falling in
the four corners of the plane determined by the lines ¢ = a, & ko, ,y = ay s found
by solving for p the equation

n1 + N _;
n+ ne 4+ ns + m A

where n, s the number of observations falling in the upper right, n, in the upper
left, ns in the lower left, ny in the lower right hand corner, and p; is the probability
density in the region into which the n; fall, N = p1 + ps. The variance of this
estimate p 1s given by

2(_) — 1A — p1)
? 2nap?  ?

which is minimized for p = 0 by setiing k = .6121, \ = .2702, giving

ngt(i’lp =0) = 1‘9‘§?
n

On the other hand if the usual tetrachoric estimate is used withz =0,y =0
as the cutting lines we get o%(p | p = 0) = n°/4n. The relative efficiency of
the tetrachoric compared with the optimum statistic is therefore .787. The
variance of the efficient estimate r given in (25) when p = 0is1/n. Consequently
the efficiency of our estimate p compared to that of ris about .515 for the special
case p = 0 under consideration. This means about twice as large a sample is
required to get the same precision with p as with ». Doubling the sample and
using the cruder statistic  may often be an economical procedure.

It may be surmised that a still better estimate of p could be constructed by
employing four cutting lines, say ¢ = =k, y = k. The simplifications which
we used to obtain the estimate 5 no longer hold when we use this new construc-
tion. However, it is still possible to compute the minimum variance of the
new estimate which we will call p’, for the special case p = 0. It again turns
out that £ = .6121 minimizes and we get

, 1.52
(34) oot | p = 0) = !
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which makes the efficiency of 3’ (compared with r) about .66 as compared with
.515 for p. 'This suggests that if some very simple technique can be found for
obtaining ', 3° would be worth using. Unfortunately the author has ‘not
been able to construct a rapid way of finding 7.

5B. Estimation of p when the parameters are unknown. A more practical
situation than the case treated in paragraph 5A, is the case in which all param-
eters of (20) are unknown. This case will be treated by means of order sta-
tistics. . We construct an order statistic analogue of the estimate p which we
will call 5*. In general the procedure will be as follows: Each of the N observa-
tions in the sample has an z coordinate and a y coordinate

i) order the observations with respect to the z coordinate;

ii) discard all observations except the n with the largest = coordinates called
the right set and the n with the smallest x coordinates called the left set, retain-
ing, therefore, 2n observations;

iii) order the pooled 2n observations with respect to the ¥ coordinate;

iv) break the 2n observations into two sets of n observations each; the upper
set containing the m observations with the greatest y coordinates, and the
lower set containing the n observations with the smallest y coordinates;

v) reorder the upper set of observations with respect to the x coordinate; the
n observations will be divided into those whose z coordinates belong to the
right set and those whose x coordinates belong to the left set;

vi) the estimate 3* will be obtained by solving the equation

* *
(35) m - Y4

* * * °
n—n )\1—'?1

where nf is the number of observations in the upper set which are also numbers

of the right set and py is f f f(z, y)dx dy, while f(x, y) is the bivariate
0 Vi

normal (20) with ¢, = ¢,, = 1,4 = b = 0, and f N(z,0,1)dx = ]% =\,
k‘

Figure 2 represents graphically the construction described above for a scatter
diagram composed of 25 observations. Of course the number 25 is only for
purposes of illustration, as the method is only proposed for use withlarge samples.

The procedure of ordering the z’s and choosing the right and left sets of ob-
servations is analogous to cutting the bivariate distribution by the two lines
z = =k as described in paragraph 54, indeed * = z,,; and z = zy_, are the
corresponding lines, but they vary from sample to sample. To continue the
analogy, ordering the remaining observations with respect to y and dividing
them into upper and lower sets of equal size is like cutting the plane with the
line y = 0. Finally formula (35) is analogous to formula (27). Another similar
change is that where formerly we had among relations (26) the equalities p; =
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Ps, P2 = Ps, we now have the corresponding relations amongst the number of
observations in the four corners of the plane, namely nt = n3 ,n; = ng which

(4]
0 ° °
n,*=2 0 n'=4
[
o ° [ n-n,"#n,:O
o 0 o
[+]
J/J///7f///“/7/////ﬁ///////// I/ LL
o

o

n= n,‘#n,“: 6

]

-]

n,*=Ne2n-2=11

Xy=X

.,
n=n, +n, =6

o *
Ny =2

.
n=n,*sn,* =0

FiG. 2. D1AGRAM OF THE CONSTRUCTION DESCRIBED IN PARAGRAPH 5B oN THE Basis oF 25

OBSERVATIONS 1 = 6

can readily be seen by inspection of the fourfold table we have constructed below
(omitting all reference to N — 2n pairs of observations we have discarded).

Left set Right set Totals
Upperset........................ ny ny n
* *
Lowerset........................ Ng N n
Totals......................... n n 2n

We have dwelt at length upon the analogy between the two constructions
because one of the principal difficulties in working with order statistics is to

design a mathematically workable model.

The author has found it fruitful

when constructing systematic statistics to study a workable analogy which does
not involve the order statistics directly, and then to build upon correspondences

such as those described.
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Some may not wish to read further in this paragraph when they are informed
that asymptotically the variance of p* is essentially the same as that of 5. They
should proceed to page 404. For the others we proceed to the demonstration.

Suppose we draw a sample of N pairs of observations (z;, y:) from the bi-
variate normal (20). If we discard from these all pairs except those with the
n largest x; and the n smallest x; , we are left with the right set and the left set.
We shall need the joint distribution of x,,; and zy_,

@6)  J (Znt1, Ta—m) = T -]_V '2n — ( '[:n+1 g9(z) dx>n

(fN-g(x) dx)N_%—z(j;:—,,g(x) dw>n 9(@n41))g(@x—n).-

where g(z) is the marginal distribution of x obtained from (20), N(zx, a, ¢2).
We assume Zni1, Ta—n satisfy Condition 1. Considering .41, Tv—n as fixed
and given for the moment we wish to look at the distribution of the y coordinates.
We may consider the y coordinates of the observations in the right set as drawn
from the distribution of y

f, :_nf(x, y) dx f, :_nf(x, y) dx

(y) = = _ ter
¢y [—w ‘/;N_nf(x, y) dz dy fm_” g(z) dz

Similarly the y coordinates of the observations belonging to the left set may be
considered as independently drawn from

f_:ﬂ f(z, y) dz ~ f_:mf(x, y) dx
[[Trepaa [

To prevent confusion, in considering the y order statistics of the two sets, we
shall designate those of the observations which are members of the right set
by %1, u2, - -+, u, ; while those observations belonging to the left set will have
their ordered y coordinates designated vy, vs, - - -, v, . Of course the u’s and v’s
separately satisfy an order relation like that given in (1).

The first question we answer is: given .41, Zx—n, what is the probability
that when we collate the u’s and »’s and split the observations into the upper
set and lower set (see iv). there will be exactly ¢ observations in the lower set
whose y coordinates are designated by u’s? In other words what is the prob-
ability that exactly ¢ members of the lower set belong to the right set? An
example for small values of n may clarify the problem. Suppose n = 4, and
we observe w3 < v < 93 < 13 < U < Uz < vy < Uy ; the y coordinates of
the lower set of observations are u;, v1, v2, v3, and only the observation with u;
for its y coordinate belongs to the right set, so for this case ¢ = 1. To return

V(y) =
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to our general problem, the probability that there are exactly ¢ observations
which are members of both the right set and the lower set is

(37) P(C I Tnt1, Ty—m) = 1 — p(vn—c > Uep1) — P(uc > vn—c-l—l))

where p(w > 2) is the probability that w is greater than z. Now writing ¢(z) =

f_ o' (Ddt; Y(z) = [ Y/ (t)dt we may rewrite (37) as

P(c | Tnil, TN-n)

=1 n! © n—c—1 c g7
(38) - - m ‘/-uc-n ['l'(vn—c)] [1 - \b(vn—c)] 'p (vﬂ—c) dvn—c
- (;t———_c{'%:_—T)' f [Y(@net]" "1 — '/’(nn—c+1)]c_l'// (Vn—ct1) QVp—cy1.

After integrating the first integral of (38) by parts and simplifying we can rewrite
(38) as

[W(uer)" (1 — Y(uer)]

n! ¥(uc+1) e —1
(n—c)'(c— 1)'[(%) o« (1 = @) da.

We approximate the integral term of (39) by

P(c I Tngl, Tn—n) = C'(—C)'
(39) '

(o) — PP @er)]* ™11 — Y(tter)

n!
(n —¢)l(c — 1)!
which leads us to the approximation

P(c| Zny1, Tu—n)
(40) _ ;
[ (uer)] ™1 — Y(uer) I 1 4 (¢ — D¢ (etr) — cp(uc)l.

(n —c ) le!
The joint distribution of u., u.41 is given by
Q(uc y Uec+1 I xN—n)

(41) _ n!
T (e—=DI(n—c

) ‘P(uc)c_l(l - ‘P(uc-fl))n et I(uc)‘/’ (uc+l)

Next we multiply P as given by (40) by @ from (41) and integrate out u.. This
gives us except for terms of O —1— and higher
nln!
(42) cl(n —c¢— Dlecl(n — ¢)!
- [1 - ‘P(uc+1)]"—c—l[\l/(uc+1)]n—c[l — Y(Ues) ] @' (Ueya).

[o(ues)]
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When expression (42) is multiplied by (36), we finally get the approximate joint
distribution of Cy Tnt1y TNon y Uctl -
Before proceeding further we let

Uect+1

T tevaay

p— ZN—-n

P(Uer) = 1 — N =1z N’

(43) Ul [pETatl
_[ [ J(=z, y) dx dy o
L L) 3
#’(u0+1) = A\ = Xl;’
* Znt+1 % ZN—n *

where \; = ‘[ g(x)dx, Ny = f g(x)dr. If we alsolet p; = 1 —

A — pi,P: = AN — p: we can write
R(c, Tnt1, Tv—n, Uct1)
— K()\z _ k )N—2n—2 *n—c—lp p;xkﬂ—n:p4 P4'A1')\

where the primes indicate derivatives of p1 , AT, A; with respect to the appro-
priate suppressed variables, 4.1, Zni1, Ty—n , respectively.

We now proceed to the maximum likelihood estimate of p. We take the log-
arithm of (44) and then take partial derivatives with respect to a the mean of
z, b the mean of y, and p the correlation coefficient. After equating these
partial derivatives to zero we have the following three maximum likelihood equa-
tions which must be solved simultaneously to obtain the estimates 4*, b*, and *:

_1_[N—2n—26()\2 -\
N

(44)

)+n—c—1<31£
AT — N da ¥ da

+cap2+n—c<2ﬁ+ca&]__0
p: da p¥ da  pf da ’

1[n—c—1dpf , ¢ ops — cap; cap4]__
(46) N[ R St - &

1[n—c—10pr capz n — caps cap4]
47) =| ———— - == 0.
“7) N [ ot ap ' pf op + p¥ dp  pf dp

(45)

1
where terms O (]7) have been neglected. Equations (45) and (46) are satisfied,

1 ' .
again except for terms O (ﬁ) , when ¢* = {(xn11 + ZTy-n), b* = Ucq41. Using
this information we examine (47) and find it satisfied when
n—c pl
[ - )\ - pl

(48)

Whmh is directly analogous to equa,tlon (27), and is the form promised in (35),
if nf = n — c. The estimate p* is obtained by solving (48) for p, where py =
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./; f f(z, y) dz dy, and f(z, y) is given by (20) with variances equal unity and
k*

means equal zero, andf g(z)dz =N =1— A =n/N.
k*

We shall not go through the derivation of ¢°(5*) here. The usual maximum
likelihood technique may be used. It turns out that the covariances between

. 1
d* and p* and between b* and p* are O <]Vi> . Neglecting such terms we find that

the variance is

(49) 02(5*) - P;k()\r - pf)
2N\ pi2
To summarize: if a sample of size N is drawn from a normal bivariate popula-
tion with unknown parameters, the maximum likelithood estimate of p based on the

2n observations composed of those observations with the n largest x coordinates and
the n smallest x coordinates, may be obtained by solving for p the equation

*
n—c_p1
n A\*

where%>)\*=n/N>O,pf=f f fl,y|o: =1,a, = a, = 0) dx dy,
0 k*

f N(z, 0, 1) dz = M\*, and n — c is the number of the 2n observations with
k'

largest y coordinates, which also have largest x coordinates. The variance of this
estimate p* is given by

2.5 _p;k()\r—pf)
() = SonnegEr

and for p = 0 the variance ts minimized by choosing \* = .2702, that is by choosing
that 27 per cent of the observations with largest x coordinates, and that 27 per cent
with smallest x coordinates, and for this value of \*

1.939
Uzom (ﬁ*lp =0) = T

Equation (49) is of course exactly analogous to the expression given in (31)
for the case of known means and variances. Therefore if the variance minimiza-
tion problem is solved in general for the case of paragraph 5A, the large sample
solution of the problem for unknown means and variances will also be solved.

Figure 3 may be used to obtain the estimates p or p* in case the methods of
paragraphs 5A or 5B are used. Essentially the figure solves equations (27)
and (48). The procedure for the problem of paragraph 5A is

n + ns

i) when n > valuate the ratio = 1z, and
1) when n; + ns n2 + n4 evaluate the rati o 72 & s + 7 0
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find the intersection of the line # = x, with the curve for the particular A being
used;

ii) through the point of intersection of the vertical line z;, = z and the A
curve draw a horizontal line;

iii) the value of j is indicated on the vertical axis at the point of intersection
of the horizontal line and the vertical axis;

1o

Y
A Vo
: 794

%o

v

o
n

o
ES

ESTIMATE OF

0.3

0.2

N
N
DANS
N\

0 6 07 0.8 09 1o
R

Fic. 3. Curves FOoR ESTIMATING THE CORRELATION COEFFICIENT p
iv) when n; + ns < mg + n4 use the ratio z, = I :Z -l-l-_ Z: ey and follow
the same procedure, 5 will be the negative of the number appearing on the
vertical axis.
Ezample. Suppose a sample of 1000 is drawn from a normal bivariate popula-
tion for which the mean of z is a, and the mean of y is b, and the variance of
z is of , all three parameters known (it is not necessary to know o). The zy
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plane is cut by the three lines 2 = a & ko., y = a, where, say, k = .612, so
that A = .27. Suppose we find the observations are distributed as follows:

in the upper right-hand corner: 160 = n,
in the lower left-hand corner: 170 = n,3

in the upper left-hand corner: 110 = n,
in the lower right-hand corner: 110 = n, .

To estimate p we set up o = (n1 + n3)/(m + nz + ns + ny) = 330/550 = .6.
Referring to Figure 3 we find that the estimate of p, 5 = .20.
In using Figure 3 for this case it is useful to know that for

A= .50 k = 0.000 A= .27 k= 0612
A= 40 k= 0.253 A=.20 k= 0841
A= 30 k=0.524 A=.10 k= 1282

If the means and variances of the variables are unknown, we may use the
method of paragraph 5B:

i) when n — ¢ > ¢ evaluate the ratio (n — ¢)/n = 2y, and find the inter-
section of the line z = z, with the curve for the particular \; being used;

ii) through the point of intersection of the vertical line z; = z and the A\,
curve draw a horizontal line;

iii) the value of p* is indicated on the vertical axis at the point of intersection
of the horizontal line and the vertical axis;

iv) when n — ¢ < ¢, use the ratio ¢/n = x, and follow the same procedure,
p* will be the negative of the number appearing on the vertical axis.

Ezample: Suppose a sample of 1000 is drawn from a normal bivariate popu-
lation with all parameters unknown. Suppose we set n = 200, and follow
the procedure given in paragraph 5B of this section, and suppose we find the
observations are distributed as follows:

in the upper right-hand corner: 50 = n — ¢
then of course
in the lower left-hand corner: 50 = n — ¢
in the upper left-hand corner: 150 = ¢
in the lower right-hand corner: 150 = ¢
The estimate this time is clearly negative, so we set -, = ¢/n = 150/200 = .75.

Referring to Figure 3 we find using the curve corresponding to A = .20 that
the estimate of p, p = —.44.

6C. The use of averages for estimating p when the variance ratio is known.
Nair and Shrivastava [12, 1942] have considered the use of means for estimating
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regression coefficients when one observation is taken at each of n equally spaced
fixed variates, z; (z = 1, 2, -+, n), and y is normally distributed. Their pro-
cedure was essentially to consider the ordered fixed variates, and to discard a
group of observations in the interior, much as we discarded the set of observa-
vations whose x coordinates were Z,41, Tat2, - -+, Tv—n in paragraph 5B. The
resulting estimates depended essentially on the averages of the y’s on the right
and left sets of observations, and on the averages of the fixed z’s in the two
sets.

In an unpublished manuscript George Brown has considered a problem even
more closely related to the one considered in paragraph 5A. Suppose x and y
normally distributed according to (20) with equal variances ¢, and means
equal to zero. (The ratio of variances must be known, equality is unnecessary.)
Retain only those observations for which | z;| > ko, and from them form the
statistic

_ Y+ Y-
(50) e — 3’
where 7, and Z, are the average of the n; «’s and y’s for which z; > k¢ and
j.. and Z_ are similarly defined for the n. observations for which z; < —ko.
Then ps is an unbiased estimate of p. Regarding the z’s as fixed variates it
turns out that

(51) on = g2 (o + )

E — 3)*\m | 1
If we approximate by substituting expected values for observed values(55)

turns out to be (1 — p?)o*A/2N[g(k))’, where X = [ g(x) dz, g(x) = N(z,

0,1). The value of k which minimizes this expression is our old friend k = .6121,
which gives A = .2702. Therefore for p = 0 and large samples, the minimum
variance is approximately 1.23 o*/N, for an efficiency of about .81. The relative
efficiency of the methods of paragraphs 5A and 5B are .635 compared with the
present technique.

We presume that the analogous order statistics construction would produce
much the same result. Our interest in the present technique is to supply an
approximate answer to the question of what is to be gained by going from the
counting technique proposed in paragraph 5B to the next level of computa-
tional difficulty—addition.
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