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Therefore
(18) Sepia(e, @) = 0.

When 7 is an integer, either n + 1 or n + 2 is odd. Therefore when (15)
holds, one of either (7) or (8) will be satisfied identically if we take 8 = a. The
other may then be solved for a.

As an example, suppose one had the moments pg = 1, p1 = %, e = ', us = 3,
s = o, and wished to obtain an f(x) such that f(0) = 0, f(1) = 0. In this
case n = 2, and (15) is satisfied. It follows that (7) is satisfied identically when
B = «, and (8) gives

I‘(2a+5)+41‘(2a+6)( )+6P(2a+7)( )

T(a + 1) T(a + 2) T(a + 3)
Ia+8)( 3\, T@a+9)(31) _
T4 T To\ T +r<a+5)(274))‘°’

This easily reduces to
a4+ 5/2 47 (o + 5/2)(a + 3)
a-+1 (a +1)(a + 2)

6 @t 5/2@+7/2),, 31 (a+ 52+ 7/2)
@t Dat2 ' 20 (a+ it

which reduces to the quadratic
4" — 6a + 5 = 0,

1—-4

=0,

from which
19 a=p8=3/4+ (1/4)/117.
These may be substituted into (4)—(6) to complete the solution.
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CONSISTENCY OF SEQUENTIAL BINOMIAL ESTIMATES

By J. WOL;rowrrz

Columbia University

The notion of consistency of an estimate, introduced by R. A. Fisher, applies
to a sequence of estimates which converge stochastically, with boundlessly
increasing sample size, to the parameter (or parameters) being estimated. Each
estimate is a function of a sample of observations, the number in each sample
being determined independently of the observations themselves. In sequential
estimation, on the other hand, the number of observations is itself a chance
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variable, determined by the sequence of observations and the application to
them of a rule which may be part of a sequential test. In what follows we
shall consider that the operation of sequential estimation 7s associated with a
sequential test.'

The advantage of using consistent estimates is such as to suggest extension
of the idea of consistency to sequential estimation. In the present paper we
shall be concerned only with the estimation of a binomial probability (p, say).
The obvious extension is that a sequence of estimates, each with its associated
test, is consistent if the estimates converge stochastically to p.

Since the number of observations required by a sequential test is a chance
variable, a parallel to the classical sequence of samples of increasing size would
be a sequence of sequential tests whose average (in some sense) sample sizes
increase without limit. It seems reasonable to associate only such a sequence
of estimates with this sequence of tests as will converge stochastically to p,
i.e., be consistent.

Let z be a chance variable which takes the distinct values ¢; and ¢; with proba-
bilities p,0 < p < 1,and ¢ = 1 — p,respectively. Letz, ---,z.be asequence
of independent observations on z which terminates with the nth according to the
specific sequential test under consideration. Denote by x and y, respectively,
the number of observations ¢; and ¢; in this sequence. Thenz,yandn =z + y
are all chance variables. The couple ¢ = (z, y) is called a boundary point of
index n (see [1]). The sequence of observations which terminates at g is called a
path. Let k(g) denote the number of paths which terminate at g, and let k*(g)
denote the number of these paths whose first observation is ¢; . The “points”
on the various paths together with all the points g constitute the ‘“region’’ under
discussion.

Let P{n = j} denote the probability of the relation in braces. If

gpm=ﬁ=u

the region is called closed. Only closed regions will be considered below, so that
this assumption will henceforth be made without explicit formulation. It has
been shown by Girshick, Mosteller, and Savage [1], that p(g) = k*(g)/k(g)
is an unbiased estimate of p for any closed region R, i.e.,

2 p(9)k(9)p*q" = p,

where the summation takes place over all the boundary points ¢ of B. For
many important region§ this estimate is the unique unbiased estimate.

Let there be given an infinite sequence of sequential tests with each of which
we associate the estimate p(g). Consider the 7th one of these, and let my; be
the smallest number of observations required for a decision, i.e., 7; is the smallest

1 Really all that is required is a rule for terminating the observations such that its region
R is closed (see below). However, we defer to conventional statistical usage in referring
to ““tests.”
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value of j for which P{n = j; &= 0. The theorem proved below asserts that if
ne; approaches infinity with 7 the estimate p(g) converges stochastically to p.
To put it in other words: if T, Ty, - -+ is the sequence of tests, and ¢ and e,
are arbitrarily small positive numbers, there exists a positive number J (e , €)
such that, for all T'; such thatz > J,

Pllplg —p| > &} <e,

when ny; — . An important example of such a sequence is that of the Wald
sequential binomial tests [2] obtained as follows: Let o1, a2, +-, a; -+- and
Bi, B2, ,B: -+ ,be two sequences of positive numbers all of which are less
than } and which approach zero as 7 — «. Let ppand p1,0 < po < p1 <1,
be two fixed numbers,

D1 (1= p) .
¢ = log —, ¢ = log =——~=, Z; = 2.
' gpo : g( - Do) ! lgk

Finally let the rule for terminating the process of drawing observations be as
follows for the sth test T'; : The process of drawing observations terminates at
the smallest integer n for which either

Z,.Zlogl_ﬁi or Z, < log B

ag 1 — ag

Since (1 — B;)/a; — « and B8;/(1 — «;) — 0 while ¢; and ¢, are constant, it is -
evident that the hypothesis of the theorem is satisfied.

The property of being unbiased is not generally considered an indispensable
characteristic of an optimum estimate, while consistency is generally so regarded.
Our theorem shows that p(g) enjoys the latter property with respect to important
sequences of sequential tests.

TuaroreM: Let Ty, -+, T, --- be a sequence of sequential binomial tests.
For the ith test T; let no; be the smallest integer such that P{n = ng;} = 0. Finally
let ng; — o as 1 — . Then p(g) converges stochastically to p as 1 — .

Proor: For typographic simplicity we shall use no as the designation of the
generic element of the sequence mgi, 7, ---. No confusion will be caused
thereby.

Let n’ = ng — 1, and & > 0 and & > 0 be arbitrarily small fixed numbers.
Let k'(g) be the number of paths which end at the point ¢ and are such that
|y'/n’ — p| < 8, where y’ is the number of observations ¢, among the first n’
observations. We then have ‘

Lemma 1. For ng sufficiently large
) 2K @p'e > 1~ 6

geB

where B 1s the set of boundary points of R.

Proor: Consider the totality {h} of all points b = (/, y'), with 2’ 4 3" = n'.
Here 2’ and 3’ denote, respectively, the number of observations c; and c¢; in the
sequence of the first n’ observations on z. Let ko(h) denote the number of paths
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to h. Let C denote the set of points & such that | y’/n’ — p| < 8. Ifnyis
large enough we have, by the law of large numbers,

Z ko(R)p¥'¢" > 1 — &,.

Let k(h, ¢) be the number of paths from h to g. From Theorem 2’ of [3] it
follows that
(A) Z k(h, 9)p"0" = p*'¢".

geB

Also from the definitions of the various symbols involved it readily follows that
k'(g) = ;2; ko(W)k(h, g).

Hence

2 E@p'e = 2 (2 kWhk(h, )p'a” = 2 (2 kalh)k(h, 9)p"0")
= 2 Wk, 9p'0) = 2 WP > 1 = .

This proves Lemma 1.

Let £(g) = [k(g) — k'(9)lk(g). Thus £(g) is a chance variable, being a function
of the chance point g.

LeMMA 2. Let 63 and 84 be arbitrarily small posttive numbers.  For no sufficiently
large

2 Plt(g) < 6} > 1 — 6.

Proor: If (2) were not true, we would have

@  EED = 3k < (- 00+ (=8 =1 b

Choose the 8, of Lemma 1 so that 6; < 808;. For some large value of n, we

would then have a contradiction between (1) and (3)., This proves the lemma.
Let g be any boundary point. Consider any path whose y’ is such that

| y'/n’ — p| < & ;let us call such a path one of type T. Consider the terminal

sequence S of this path,

St 2Zng s Zng+ls s 20

This sequence, together with ¢ = (z, y), uniquely determines ’. Any permuta-
tion of %’ elements ¢; and n’ — y’ = 2’ elements c; may serve as the initial sequence
of n’ observations of a path which terminates at g and has the terminal sequence
S. TFor no boundary point is of index smaller than n, , so that under permuta-
tion of the first n’ observations a path remains a path, i.e., the process of taking
observations will not terminate prematurely as a result of the permuting of the
elements. Of these permutations a proportion y’/n’ begin with the element ¢; .
We deal in this manner with all the different terminal sequences of the paths of
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type T which end at g. Let ¥*'(g) be the number of these which begin with ¢; .
We obtain
Lemma 3. For all g such that k'(g) == 0

K (g) _
k'(g)

Putting Lemmas 2 and 3 together we have

LemMA 4. As ny — «, k¥(g)/k(g) converges stochastically to p.

Now it follows in a manner similar to that of Lemma 2 that, as ny — =,
k*'(g)/k*(g) converges stochastically to one. This, together with Lemma 4,
proves the theorem.

p. < 51.
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