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It may indeed be queried whether theoretically, with an indefinitely fine
network of points, we shall be led to a unique function k(s*, x) with the common
sense properties, which, from general statistical considerations, we know it
should have in order to be acceptable. As with integral equations of a simpler
character, the passage from a discrete network to a continuum may raise prob-
lems, but it is the author’s opinion that the infinite ranges of z and s’ give us the
freedom which we require in the solution.

The author, however, prefers to approach the problem from the numerical
behavior of the series, of which (15) gives the general terms. Here the practical
issue appears to be to investigate the relation between the magnitude of the last
term retained and the f;. The author hopes in a further paper to give some
results of an investigation of this character and also some tables facilitating the
calculation of h(s% ).
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PROBABILITY SCHEMES WITH CONTAGION IN SPACE AND TIME!
By Ffrix CERNUSCHI. AND Lours CASTAGNETTO

Harvard University

1. Summary. In many natural assemblies of elements, the probability of
an event for a given element depends not only on the intrinsic nature of that
particular element, but also on the states of some or all of the rest of the elements
belonging to the same assembly. On the basis of this general idea of “contagion”
some urn schemes are developed in this paper in which one has contagious
influence in space and time. The most interesting result found is that in general
the points of convergence of the probability of the assembly are given by some
of the roots of an equation p = f(p) and that some of these roots, between zero
and one, represent stable states of the assembly, or points of convergence, and
others represent unstable ones, or points of divergence. The two neighboring
roots, (if they are single), of a root representing a point of convergence are un-
stable values of the probability. Consequently, under certain conditions, the
limiting probability may be made to have a finite jump by changing the initial
probability by an arbitrarily small amount. The concrete cases developed in
this paper can be considerably extended by similar methods by assuming more
complicated and general assemblies and laws of contagion.

1On the suggestion of the referee, some parts of the original paper were deleted and
some mathematical simplifications were introduced.
2 Research Associate at Harvard Astronomical Observatory and Guggenheim Fellow.
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2. Introduction. In the known probability schemes of contagion of Eggen-
berger and Polya [1], Greenwood and Yule [2], Liiders [3], Neyman [4], Feller [5]
and others [6], as well as in Markoff chains different ways are considered in
which the previous results in a definite series of trials may influence the proba-
bilities of the future ones. All of these schemes consider possible influences of
the results of the different trials along the time axis; and consequently might
be called schemes of contagion in one dimension and one direction.

In many natural assemblies of individuals or elements, the probability of an
event per individual or element depends not only on the intrinsic nature of the
considered element but also on the states of the rest of the elements belonging
to the same assembly.

The purpose of this paper is to develop some simple schemes with urns in
which there is a contagious influence in space and time and to show some of their
consequences. The method which we have used to treat certain concrete cases
could be applied to more complicated assemblies and laws of influence in space
and time.

3. Scheme of a closed assembly of urns in two dimensions. Let us consider
a set of N urns arranged on a closed surface in such a way that each one of them
is surrounded by m others. Let each urn contain a finite number of black and
white balls. In this paper the probability associated with an urn will refer to
the probability of obtaining a white ball if a single ball is drawn at random from
the urn. We shall assume that the initial probabilities are equal for all of the
urns and that the following law of influence holds: When, after a collective
trial, one finds that the ball drawn from a certain arbitrary urn, taken as the
central one, is white and that the corresponding results 6f the m surrounding
urns give ! white and s black balls, one multiplies the probability of obtaining a
white ball out of the central urn by the factor ai yaf 5; if the ball drawn from the
central urn were black, without changing the given results of the surrounding
urns, one multiplies the considered probability by the factor ajsa3;. Under
the specified conditions, it is easily seen that the probability of obtaining a white
ball from a definite urn at the 7 + 1 trial will be, by considering all the possible
alternatives:
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where:
pi + ¢ = 1.

Consequently p; either converges to a root of the equation p = f(p) or tends to
infinity. As a probability greater than one or smaller than zero has no meaning,
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we have to study the function y = f(p) between zero and one. In (1) we have
given an implicit form for y = f(p), corresponding to a particular case of influ-
ence; by changing the law of influence we change the function f(p). In general
one can find graphically the roots of equation p = f(p) by plotting ¥ = f(p) and
y = p and by determining the intersections of these two lines in the range
0 < p < 1. Later we shall give the values of these roots for seme concrete
examples. From what we have shown it follows that if, for the considered
assembly of urns and for especially chosen values of the parameters of inter-
connection and initial probabilities, the probability tends to some equilibrium
value, this must be a root of the equation p = f(p). As we shall see later, the
roots in the range 0 < p < 1.may represent stable or unstable states of the
assembly.

Let us consider now a general method for finding the explicit form of the
function f(p) corresponding to laws of influence similar to the one used by Polya..

Assume that the trial < results in the drawing of I white balls and s black balls
from the m urns surrounding the central one. Then we add lw, white and
sby black balls to the central urn if the result of the central urn was white, and
lws white and sbs black balls if it was black. It is easy to show that under these
conditions the probability in the trial s + 1 is related to the probability in
trial ¢ by the following formula:

1
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‘where W; and N; are the number of white balls and the total number of balls,
respectively, in the central urn before trial 7. Relation (2) permits us to study
several interesting schemes. It is easy to see that all the possible schemes which
can be represented by relations of type (2) give only values of the probability
in the interval zero and one; and consequently we do not need to make the
restriction in the analysis of the equation p = f(p) that was necessary in the

previous scheme, represented by equation (1).
For the case w; = b, = ¢;, w, = b, = ¢, , we obtain from (2)

o Wi 4 mpic _ oA Wi+ mep:
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If &1 = ¢, (3) gives
(4) Di+1 = Pi .
If one takes ¢, = kN, and ¢; = kN; (3) becomes

. pi + mhip; _ oD+ mkepi L
6) Pit1 = Di T by + (1 i) T ks T ks f(p:)

and the equation p = f(p) has, in this case, the roots 0 and 1.
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When wy = b, = N, and by = ws = kN, one has to replace ¢,(8/9¢) by
1,(8/d%,) in the second term of (2); then if we take m = 2,

i + 2k ( p: pi + ki p.+2kl_ .

In particular, if k; = %k, = k, one obtains

©) pin =

1+ 2K + 2k,
and the solutions of the equation p = f(p) are p = } and 1. By considering
the behavior of y = f(p) one finds that the stable solution is given by the root %
consequently if one starts with any value of 0 < p < 1 the probability tends
to the limiting value 3. If k; = 0, k. % 0, by simple calculations, one obtains
from (6) that the solutions of p = f(p), in this case, are zero and one.

The equation p = f(p), as given by (6), always has the solution 1. In order
to have the other two roots real, one has to satisfy:

B4 2k) (24 ki +3Ka) > 41 + oy + ko)
(s + ) + 2(k1 — k) — 4 K3,

A simple and interesting application of relation (2) is for the case of two urns,
characterized by m = 1. From (2) we obtain:

R | pi + ki _ pi + ks :
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where

(8)

wy = kN;, b =kN;, w =FkN;, b= kN;.

The equation p = f(p), as given by (9) has the roots 0 and 1; and one may fix
the value of the third root by conveniently choosing the values of the parameters.

Applying (2) for an arbitrary value of m and integrating by parts, it is seen
that in general the equation p = f(p) is of degree m + 2 and consequently, by
choosing appropriate values for the parameters & , k» , ks , k4 , each of which may
be between —1 and «, one can expect several roots in the range 0 < p < 1.
One can easily generalize our relation (2) for cases in which w,, w., by, b. are
given functions of the probability p;. Even in this most general case it is simple
to see that one would have a recursion formula of the type p;1: = f(p:) and, as
in the elementary cases which we have considered, the points of equilibrium of
the closed assembly of urns will be given by those solutions, in the range 0 < p
< 1, of the equation p = f(p), where the derivative of y = f(p) is negative.
Consequently the two neighboring roots, if they are single, of a root representing a
point of convergence are unstable values of the probability. Therefore, under
certain conditions, the limiting probability may take a finite jump if the initial
probability is changed by an arbitrarily small amount. This is, we think, the
most important consequence of the contagion schemes that we propose. We
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consider that many actual cases of contagion could be better understood by
schemes of the type that we are studying.
Let us consider now some simple cases of relation (1). If we take

ag=ome=a oqa=o;=a and m=2
representing a closed ring of urns, one obtains:
Pirt = Pileps + @g:)’ + pigi(eps + oag)’
= pi + (0% — pY) [(a + )’ — 4 o] = f(p).

The equation p = f(p), corresponding to this recursion formula, always has the
solution p = 0. The other two solutions are given by

(10)

= 4 - (a; + a2)2 ]
a1 Pa=if1x /i@ tal ]
These roots will be between 0 and 1 when

2< o+ o 2> 0+ o
12) T ar2) P,

1>m <o 1<au>a
We would have P, > 0 and P, < 0 if

2<a+ a 2> o+ o
(13) or (13"

1<uy<oao 1> 0 > o,
and P; = Ps; when
(14) ag + ag = 2, a1 # 1.

Let us now study the general behavior of (10). For the conditions (12') we
have:

(15) Pin1 — Pi = &’pi(pi — P1) (pi — Po)
where d=4a — (& + )’ >0.
If 0 < P, < Ps, one obtains from (15) by use of elementary algebra:

Dit1 — Di| _ 2 a’P i
-5 —“Pil(Pz“Pi)ISTSI-

P, — p;

(16)

Consequently if p; > P, the sequence p; increases monotonically. Otherwise
piy1 will lie between P; and p; and will tend to Py without ever reaching the other
side of this point. In a similar way it is possible to prove the convergence to a
constant for the most general equations of the type p = f(p) when they have
roots between zero and one.

Let us give some numerical results. For oy = 0.95 and o = 1.1, from (10)
one obtains: P; = 0.1 and P, = 0.9. It is easily seen that, in this case, if
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0 < p1 < 0.1, the limiting value of p; will be zero; if p; > 0.1, the limiting value
will be 0.9. The interesting point is that if the initial probability is in the
neighborhood of 0.1, an infinitesimal change in its value may produce a finite
change in the stable limiting probabilities; and that for the initial probability
equal 0.1 one would have an unstable equilibrium of the system. This con-
sideration shows why it is important to know how the probability p; converges
towards a certain point. As we have previously shown, the points of con-
vergence are roots of the eq. p = f(p) but there roots which are not points of
convergence.

Similar reasoning could be applied to more complicated systems belonging to
our general scheme of contagion. Consequently, the most important result is
not that the considered assembly may have a probability tending to some value
in the range 0 < p <1, but that under certain conditions the limiting probability
may jump from one value to another by changing the initial probability by an
arbitrarily small amount.
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FITTING CURVES WITH ZERO OR INFINITE END POINTS

By EpmunDp PINNEY
Oregon State College

The problem of determining a suitable equation to fit an empirically deter-
mined curve over a given interval has been of great importance in statistical
work, in experimental science, and in engineering technology. Since infinitely
many types of equations may be made to fit the data with required accuracy,
the choice of a “suitable’” type of equation depends on the qualitative nature
of the empirical curve, on the use to which the equation is to be put, and upon
considerations of simplicity.

As a function type, the polynomial has, because of its simplicity, been enor-
mously useful. The function type studied here is a little more general than the
polynomial type, being particularly useful in the case of empirical curves that
become zero or infinity at one or both ends of the interval.

Without loss of generality the interval in which the equation is to fit the curve
may be taken as 0 < z < 1. Itis asstllmed that, by numerical means or other-

wise, a finite set of moment u, = f yz™ dxr may be computed, y being the
o

ordinate of the empirical curve.



