NOTES

This section s devoted to brief research and expasitory articles on methodology
and other short items.
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ON THE STUDENTIZATION OF SEVERAL VARIANCES

By B. L. WeLCH
University of Leeds, England

1. Introduction. In a recent paper [1] the author considered the problem
of eliminating several variances simultaneously from probability statements
concerning the mean of a normally distributed variable. The general situation
envisaged was as follows. We supposed that we had an observed quantity y
which could be assumed to be normally distributed about a population mean

k
n with variance o: = 21 N , where the A; are known positive numbers and the
i=

o unknown population variances. It was supposed further that the data
provided estimates s; of the ¢} based on f; degrees of freedom, and having the
sampling distributions

1 Fis\ (L Fes\N (L 1t
1 p(sh) dst = a7y P {—% 02}(—%— . d\3 .

and that these estimates were distributed independently of each other and of y.
The problem was to make statements about the magnitude of the difference
y — = which would involve explicitly only the observed variances si. The
probability of the truth of the statements was also to be entirely independent
of the population values o7 .

The solution was given implicitly in a formal mathematical expression and a
general process of developing successive terms in a series expansion was de-
scribed. In the present communication a slightly different way of reaching this
development is provided.

2. General method. If the f; are large enough the ratio

Yy —n
2 . Vv = —F———
@ ’\/2 i -S‘%
can be taken to be normally distributed with mean zero and standard deviation

unity. This suggests that, when the f; are not necessarily large, we might
approach the matter by seeking some other function

(3) x=9{3¥,3§,"',82,y“7l}
which will still be normally distributed with the same mean and standard
deviation. We shall see that such a function can be found, although the method
to be followed leads us first to another expression
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(4) y"n=h(8§,sg,“',8§,w)

which is simply the transposed form of (3). Once we have obtained & we can
solve out from (4) to obtain z.
Since the distribution of y is independent of s} we have

1 @ —
5 2 R i — 1 ¥ N
(5) p(y|s)dy Noren g P { VP }dy-
Transforming therefore to the new variable 2 we have for given s}
' 1 f RA(s?, ) \ Oh(s®, x)
2 - — 1 ) )
(6) pils) dz V 272\ o} eXp\ ) W) dx de
= j{s’, z, Z\io7} dz (say).

The unrestricted distribution of « is then obtained by averaging over the joint
distribution of the s . In order that z should be a unit normal deviate we must
therefore have

1 )
) p(x) = f fj{sz, z, 2\ o7} H {p(s}) dsi} = \—/é—:—re"“.
s2
We have to substitute from (1) and (6) into (7) and then choose the function
h(s’, z) in such a manner that the equation is satisfied whatever may be the
values of the unknown ¢% . To evaluate the function by the methods of numeri-
cal integration is probably impracticable except perhaps in some simple special
cases. A series development is, however, quite feasible.
Symbolically we can write

(8) j {8 %, x, (2)\,0’3)} = ez(s‘fﬂ%)a; ]{’w, Zx, E)\,;O‘%}

where 9; denotes differentiation with respect to w; and subsequent equation to
o: . Equation (7) then integrates out to give

2 o\ ¥/
_”2655 — 20.': a': : . 2 = ——l_—_ _%12
(9) ];Ie {1 5 } 2w, z, Z\;o5} = N
le.
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(10) Qj{w, z, Z\; 05} = Vo e (say).

The operator ® must be expanded in powers of d; before it can be interpreted
When this is done we find

0id} oia? PAH
(1) ®=exp{2 }.'+%2—}?ﬁ+22_‘_3_‘+...}
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Our procedure now is to find successive approximations to A(s’, z). It will
be convenient to denote by k,(s’, ) an expression which equals A(s>, z) to terms
of order 1/f7. Further let ¢,,1(s*, ) be a corrective term which when added on
to h.(s’, z) will give a result correct to terms in 1/f;*'. Then to this order we
shall have from (6)

— 1 L hi(w, )\ oh.(w, )
vV 2rj{w, z, ;i o7} \/E)\, 2 exp{ Shio? } S

- exp { L\ (zx.w.)} {ac,+1(w, ) 2(ENW)Ca(w, x)}
'\/2)\17 Z}\’ g- ax EX, 0'%

remembering that the leading term in h(w, ) is 27/ Zhap; -
Hence from (10) we find

1 RE(w, )\ oh.(w, x)
—_— 1 e\, r\Ws
® Y Enot exP{ 2 It

(13)

o
s 1 2 [86,11(0%, 2)
—3z r+1(0 _ 2 — ket
+ Vanet e { Fy Zerya(o”, x)} €
ie.
9 —}a2 61-+1(0' x)} h (w x)} 1 ahr(w7 13) —3:7
(15) ax{ v T oD\ T S [ Vet oz ‘

Given A, we can therefore proceed directly to ¢, and hence to A4, .
3. Application to give terms in 1/f;. It will be sufficient illustration of the
method, if we show here how to obtain A, from h,. We have from (15)

Ry 61(02,50)} { 6%0%} { z (E)\iwi)} Chaw;) _ a2
16) — -2 =
a6 9z {e VE\o? ), t i P 2 (Shid}) (Shic) ¢

ie.
9 | 42 cio®7) (ENai/fs)
17) — {e Mt SN Le \/u _
oz '\/2)\{02& (E)\to't) P
where d now denotes differentiation with respect to » and subsequent equation
to unity

ie.
9 | _1,2 aa(e?, ) (E)\‘a./f.) 1 g
(8 2L \/z“:r} Dty 47 4T =)
_ 1 (3N\ied/f) 9 { g2 3 }
(19) i a0z e (z+ )
whence
1 ZNios
(20) cl(a T) = :1:\/2)\,0'. l:( I L ) ((E)\c:a{{ )] .
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Hence to the terms in 1/f; we have

—— 1 + 2% (ENisi/f))
21 — =k ) =2V ,?[l—l—( .
(21) y—n=h(s,z) =cVINs: 4 hes))?
Solving this out for « we obtain to the same order

(22) o= [1 @+ (Zxﬁs‘i/fi)]
4 (E)\,'Szi)z ’

where v equals (y — )/ V4 =\ist . To order 1/f; we may regard z as a unit normal
deviate and hence determine the probability level corresponding to the observed
ratio . On the other hand if we wish to determine the value of ¥y — » which
will lie on a given percentage level the expression (21) is the appropriate one
to use.

4. Further discussion. The present development is of course basically
equivalent to that given in the previous paper. Indeed if we integrate (10) or
(15) out with respect to x we arrive immediately at the formulae which were then
obtained and which were illustrated by calculating terms to order 1/f%. In
fact when calculating higher order terms it seems best to do this integration
before carrying out the operation ®. The object of the present note is really to
stress the fact that we are simply finding a function of the observations and of
y — 7 which is distributed as a unit normal deviate, whatever the values the
true o may chance to possess.

Finally, the remarks following equation (7) above should be somewhat ampli-
fied. The equation asserts that the distribution of any arbitrary function z,
defined by (3), is

II {p(s}) ds3,

1 R, 2)\ 9h(s?, x)
Jox s

1
@23)  p) = f " f Vorznet P T 2 et

where h(s , z) is the function obtained by solving out (3) for y — . On carrying
out the integrations in (23) we shall in general obtain p(z) as a function of z and
o%. Our argument is that if h be chosen properly the ¢ will disappear from
p(x), and z will appear only in the form of the unit normal probability function.
To find h(s, x) by a direct process of numerical integration would appear to
involve in the first instance the choice of a net-work of points for = and s}.
Suppose the range of z is covered by n, points and the range of s; by n; points.
We may then as an approximation look on our task as that of finding the (n.mn;)
values of h(s?, x) corresponding to this network. Since (23) is to be true for all z
and o7, we can take in turn n; values of ¢%, and then (23) can be replaced by
(n.wm;) simultaneous equations (it would be necessary to use some formula
expressing oh(s®, x)/dz in terms of values of h(s?, x) at discrete values of z or
conceivably this may be avoided if we work with the integrated form). With
a proper choice of the points for z, s5, and o5, we might expect to evaluate the
series h(s’, z) to any required degree of accuracy, but clearly as a general process
to be used over a whole range of values f; this approach would be too laborious.
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It may indeed be queried whether theoretically, with an indefinitely fine
network of points, we shall be led to a unique function k(s*, x) with the common
sense properties, which, from general statistical considerations, we know it
should have in order to be acceptable. As with integral equations of a simpler
character, the passage from a discrete network to a continuum may raise prob-
lems, but it is the author’s opinion that the infinite ranges of x and s’ give us the
freedom which we require in the solution.

The author, however, prefers to approach the problem from the numerical
behavior of the series, of which (15) gives the general terms. Here the practical
issue appears to be to investigate the relation between the magnitude of the last
term retained and the f;. The author hopes in a further paper to give some
results of an investigation of this character and also some tables facilitating the
calculation of h(s% ).
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PROBABILITY SCHEMES WITH CONTAGION IN SPACE AND TIME!
By FfLix CERNUSCHI. AND LouUrs CASTAGNETTO

Harvard University

1. Summary. In many natural assemblies of elements, the probability of
an event for a given element depends not only on the intrinsic nature of that
particular element, but also on the states of some or all of the rest of the elements
belonging to the same assembly. On the basis of this general idea of “contagion”
some urn schemes are developed in this paper in which one has contagious
influence in space and time. The most interesting result found is that in general
the points of convergence of the probability of the assembly are given by some
of the roots of an equation p = f(p) and that some of these roots, between zero
and one, represent stable states of the assembly, or points of convergence, and
others represent unstable ones, or points of divergence. The two neighboring
roots, (if they are single), of a root representing a point of convergence are un-
stable values of the probability. Consequently, under certain conditions, the
limiting probability may be made to have a finite jump by changing the initial
probability by an arbitrarily small amount. The concrete cases developed in
this paper can be considerably extended by similar methods by assuming more
complicated and general assemblies and laws of contagion.

1On the suggestion of the referee, some parts of the original paper were deleted and
some mathematical simplifications were introduced.
2 Research Associate at Harvard Astronomical Observatory and Guggenheim Fellow.



