A GENERALIZATION OF TSHEBYSHEV’S INEQUALITY TO TWO
DIMENSIONS

By Z. W. BirnBAUM, J. RayMOND, AND H. S. ZUCKERMAN
Unaversity of Washington
1. Let X,, X,, -+, X be independent random variables with expectations

E(X,) = e;j and variances ¢’(X;) = ¢; forj = 1, 2, -+- , n. The question
n X' —_ p.)2

may be asked: What is the upper bound for the probability P(E(—itge—') > 1)
=1 i

that the point (X;, X, ---,X,) does not fall inside of the ellipsoid
n X —_ p.)2
E( i . é;) = 17
pr= S 7
For n = 1 the answer to this question is given by Tshebyshev’s inequality
_ 2 2
(1.1) P[(X_M > 1:| < o (X)
t? 2
which can not be improved without further assumptions. By a trivial generali-
zation of the argument leading to (1.1) one can prove the inequality
2 (X — e)2 n g2
(1.2) P(Z(—#—z—q’—)- > 1) <>%
= S 71 i=lj
for any integer n. This inequality, however, can be improved for n > 2. In
particular, for n = 2, the following theorem will be proved:
TeEOREM 1.1. Let X and Y be independent random variables, with expectations
E(X) = X,, E(Y) = Y, and variances o , oy . Then, for any s > 0, t > 0
2 2

such that f;—f < ‘—;21 we have

_ 2 _ 2
13) p[E X0 o0 1] <160
where
2
g
1 1fb—x+—t7y_l
(B
O'X+U_§/ é 82 t2 Zf
s? {2 82 I_U?Y
(14) L(s, ) = yo
“§+?§ 1 1(é+z£’+ ox | 4oy
e =isi\g T p riay
2 2 2 2 2 1 i
ox 4 ov _ 0x0% .o (0x | 20¥ ox , 4oy
k 2Tz S2t21’2(>+t2+1/—87+7)31
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2

2
For any given ox, o5 ,s > 0,1 > 0 such that% < % there exist independent random

variables X and Y with the variances ox , oy , such that the equality sign is true in
(1.8).

This theorem is a special case of the more general statement:

TeEOREM 1.2. Let W, Z be independent random variables such that

(1.4) PW <0)=PZ<0 =0,

(15 E(W) =\, E2) = »,

(1.6) A<

Then, for any t > 0, we have

(1.7) PW+Z > 1t) < M@)

where
1 if t<N+u
Aw_ N 1—Q+p_ »

18) M) t t t— N\ t— M\

' ) A+ u << B0 2 VT AP

AEEM G b VY& <

Forany given X > 0, p > 0, N < p, and ¢t > 0, there exist independent variables
W, Z such that (1.4) and (1.5) are fulfilled and that the equality sign is true in (1.7).
Theorem 1.1 is obtained from Theorem 1.2 by writing

wo X=X, -y
s {2

2. Before proving Theorem 1.2 we shall derive two lemmas. The first of these
lemmas deals with more than one variable. Since its proof for general m does not
present any additional difficulties it will be stated and proven for any number
m 2> 1 of variables, although in the proof of Theorem 1.2 it will be used only
form = 1.

Lemma 1. Let U, Vi, Vi, - -+, V. be independent discrete random variables
with only non-negative possible values, and let U have a probability distribution
with the possible values 0 < U; < U, < -+ < U, and the probabilities P(U;) = r,
fori=1,2,--- ,n. We consider any three possible values U;, Uy, U; of U such
that

0<SU; LU < Uy,
with the corresponding probabilities r; , vy, vy . Then, for any t > 0, there exists a

random variable U’ with the same distribution as U except that the probabilities
ri, 1,1 0f U;, Us, Uy are replaced by r; , i, , r1 such that
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(2.1) EU") = EU)

(2.2) oneof r;, 71 is zero

23) PU + Vit -+ Va2 ) 2PU+Vi+ - + V>0,
Proor: let 7} ,7; , r; be written

(24) ri=ri+aBri=m— B, =1+ (1 — a)B.

For any «, 8 we then have

/ ’ ’
it rn=ri+rntn.

Choosing
258) a = (U, — Uy/(U, — U))
we obtain the equality

UJ"'; + Ui + Uiy = Ujr; + U, + Uy

so that (2.1) is true for any 8.
We obviously have

P(U+iv,2z)=§P<U= Ui)-P(iV.Zt— U.-)

8=1 s=1

= ir;P(iV.Z t— U.-).

i=1 s=1

(2.6)

The variable U’ has the same possible values U; as the variable U. Writing

P(U = U,) =ri,fori =1,2, ---,n, we also have
(2.7) P(U'+Zv,zz>=zr;P(ZV.zt—U.-).
s=1 =1 8=1

From (2.6), (2.7), and (2.4) we obtain

P+ Eve)-r(vrEr)

s=1 s=1

(2.8) =aBP<iV,2t——Ui)—BP<iV,Zt—Uk)

s=1 s=1

. a)ﬁP(‘;‘lv,z - Vz>.

For a determined by (2.5), the right-hand side of (2.8) is of the form Cg, and
will be positive if sign 8 = sign C. If sign C is positive, we choose 8 = r and
have, from (2.4), . = 0, and, from (2.8), the inequality (2.3). If sign C is
negative, we set 8 = Max —g, —1 fj a) which leads to either r; = Q or r; =
0, and again to (2.3). In both cases we have kept the probabilities r;, r¢, 7]
non-negative as they should be.
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LemMA 2. Let the discrete random variable U have only the two non-negative
values U, < U, , with the corresponding probabilities ry , r2 , and let t be a given
number such that

(2.9) EWU) <t< U,.

Then there exists a number a > 0 such that the random variable U’ with the possible
values

(2.91) Ui=Ui+a
‘ Us =t
and the corresponding probabilities 11, r2 , has the properties
(2.92) 0<UI<U;
(2.93) E(U") = E(U).
Proor: to have (2.91) and (2.93) it is sufficient to choose
_ ro(Us — 1) .

T
Then (2.92) is also fulfilled since, in view of (2.9), we have
- 7'1U1 + TzUz — 7ot - E(U) — 19l < {— ol
71 a1 - "
and obviously « > 0 and hence U; > U; > 0.

U; =t="U,,

3. Theorem 1 will first be proven under the assumption that W and Z are
discrete random variables, each with a finite number of non-negative possible
values. By repeatedly applying Lemma 1 with m = 1, U = W, V, = Z, we
reduce the number of possible values of W which have non-zero probabilities
to two, and denote those possible values by W; < W,, and their probabilities
by prand p, = 1 — p1. Then, applying Lemma 1 to the case m = 1, U = Z,
V1 = W, we similarly reduce the possible values of Z to the two non-negative
values Z; < Z, , and denote the corresponding probabilities by ¢;and ge = 1 — ¢;.
Throughout all these steps the expectations E(W) = A and E(Z) = p remain
unchanged, and P(W + Z > t) is not decreased.

For t < N\ + u, inequality (1.3) is obviously true, and equality is attained for
W having the only possible value A with probability 1 and Z having the only
possible value u with probability 1.

For the remainder of the proof we assume ¢ > N\ + p. We then have

t>AN+u>2A+Z1 > Wi+ Zy.

If W, > t, we may replace it by W, = ¢ according to Lemma 2. Similarly, if
Zy > t, we may replace it by Z, = ¢. The probability P(W + Z > ¢) is not
decreased in this process. We may thus assume, without loss of generality, that

W<t Z<t.
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The joint distribution of (W, Z) has now the possible values represented by the
four points (W1, Z1), W1, Z), (Wa, Z1), (W2, Z;). The coordinates of these
four points and their probabilities fulfill the following conditions

3.1) 0SWi SASW:LZt; 0LZ1<u<Z <t
(3.2) ntp=at+e=1
(3.3) W1+ pWe = A, @Zy + @2y = p.

In view of (3.1), the point (W1, Z;) always lies below theline W + Z = ¢. The
other points may or may not lie below that line. Accordingly, we distinguish
the cases listed in Table I. These clearly include all possible cases since (W , Z,)
can not be below the line W +4 Z = ¢ without all the other points being below
that line.

In case Vwehave PIW 4+ Z > ¢t) = 0.

For the discussion of the remaining cases we note the following relationships
which follow from (3.2) and (3.3).

TABLE I
c Points below line Points not below line
ase WH+Z=t WHZ=t
I Wy, Z) W, Z), Wy, Z,), (W2, 2Z,)
1I W, Zv), (W2, Z1) (Wi, Z3), (W2, Z»)
III W, Zz)), W,,Z,) We, Z), (W., Z))
IV Wy, 2, W., Z), Wi, Z5) (W2, Zy)
\' (W1, 20, W2, Z)), Wi, Z), (Wi, Z2) none
gy = 1= A=W
! - Wy’ T W, — W
_Zy— _ k=7
ql— _Zl’ q2_Z2_Z1'

In case I we have
(3.41) Wit Zi<t, Wot2Z12t, Wi+ 2,2t Woet 2y 214,
P=PW+Z208 =00+ 2@+ 00=1—pa
_ W= ) Zo — u ,
We— W, Zy— 7’
Since P is a decreasing function of Wy and Z;, we replace W and Z, by the

smallest values compatible with (3.41), namely W1 =t — Zs, Zy = ¢ — W,,
and obtain

=1

— (W2 — MN(Zy; — ) _
PS1= Sy = RO, 2.
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For fixed Z,, R(W,, Z,) has a minimum at W, = Z, + 2\ — t and no other
extremum, hence it assumes its maximum at one or both of the end-points of the
interval for W, which, by (3.1) and (3.41), is

t—Z < W, <t
In view of (3.1) we also have t — u < ¢ — Z;, and hence
P S Max [R(t ) Z2)’ R(ty ZZ)]
We find
t—u=N_, _t=u=XA_

RU— p,Zs) =1 —
(t — n, Zy) S — rp—

and

R(t, ZQ) =1— (t‘——X)}Zz_;u) — R(l)(Zz).

This last expression has a minimum for Z; = 2 and no other extremum, hence it
assumes its maximum at the ends of the interval for Z, which, by (3.41) and
(3.1), is

t— Wi < Z, <t
From (3.1) we also have t — A < ¢ — Wy and thus

R(;, Wo) < Max [RV(t — N, R®()] = Max [t Lo, e 3};]

Finally, we obtain

A 7 A p M
PSMaX[t_#, =’ 7 Ej'

Each of the values P = ; _>: ey f < A -It- B % can be attained in case I,

as is shown by the probability distributions
Wl‘—-_—O, I/V2=t—‘l£, Z1=/,L, Z2=t,

(3.42) \ N
pl:l—t——, P2 = —, n=1, q2 = 0;
— K . t—
W1=>\, I’V2=t, ‘ Z1=0, Z2=t—)\,
(3.43) . .
=1L =0 q=l-— &= —;
Wl = 0, I’V2= t, Z1=0, Z2= t,
(3.44) A A 4 i
P1=1—'z» p2='t‘: (11=1"z, q2='t"
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In case II we have
Wi+ Z; < &, Ws + Z; < t, Wi+ Zy > ¢, We+ Zo > 8,
(3.51) —7z
P=PW+Z>)=pg+pp=0=o—2~.
Zy — Zy

This is a decreasing function of Z; as well as of Z; and hence takes its maximum
for the smallest values of Z; and Z, compatible with (3.1) and (3.5), that is for
Zy=0,Zy, =t — X. We thus obtain

< _* .
Psi=

This upper bound can be attained in case II, as may be seen from the distribution
W1=>\, W2=)\, Z1=O, Z2=t'—)\,

(3.52) y7i 13

S s S =

(S

D1 =

(S

) D =

Case III is symmetrical with case IT and leads to the inequality

p< M.
<=

In case IV we have
Wit Zi<t, WotZi<t, Wi+2Z.<t, WatZy>t,

(3.61) W —
PRI A0 = ne = g = gy

The right hand side is a decreasing function of each of the variables Wy, W,,
Zy, Z» , and hence is increased by chosing for these variables the smallest values
compatible with (3.61), i.e.

(362) W1 = Z1 = 0, W2 + Z2 =1

for which we obtain

p<X _#

_ p®
"—W;t—Wz_R (W).

Since R®(W,) has a minimum at W, = % and no other extremum, it attains its

largest value at one of the end points of the interval for W, which, by (3.1),
(3.61) and (3.62), is

AN Wy <t —p
This leads to

P < Max [R®(\), Rwa—yﬂ:hhx[’iq A ]
t— N t — u



TSHEBYSHEV’S INEQUALITY 77

The upper bounds

t— At
probability distribution

W1=0, W2=>\, Z1=0, Z2=t—)\,

i _3"—u , respectively, are attained in case IV for the

(3.63)
n =0, P =1, @n=1-

and

>
>

P1=1—'—_—u, p2=t—_—#, @ =0, ¢ = 1.

o~

" From the preceding discussion we conclude that P = P(W + Z > ¢) always
fulfills the inequality

A s A u M
< -2l =
P_Ma,xl:t_”, T : 7 U@®)
for t > A 4+ u. Since we have assumed A < u, we have e < ; f 5 for
t > N 4+ u, and therefore
“ A u M
U =Max|:t_)\, ; _752—] for t > XN+ pu.

It is easily verified that

t—%;\ﬁx'l‘#—%zﬁ for N+ <t <3O+ 2+ VN F42)
and
P <A M e p 0o+ VR AR <

so that we have U(f) = M(¢) as defined in (1.8). For given A\, u and any ¢ > A
+ u, the equality P = K )\ is fulfilled for the distributions (3.43), (3.52) and

t —
(3.63), while the equality P = A _i_ i - %25
This completes the proof of Theorem 1.2 for discrete random variables. If
W and Z are independent random variables with the cumulative probability
functions P(W < w) = F(w) and P(Z < z) = G(2), then each of these cumulative
probability functions can be uniformly approximated by a step function with a
finite number of steps, that is by the cumulative probability function of a discrete
random variable with a finite number of possible values. Since for such variables
Theorem 1.2 is proven, it also is true for the general random variables W and Z.

is true for the distribution (3.44).
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4. An attempt to extend the method used in proving Theorem 1.2 to more
than two variables leads to arguments of a prohibitive length. It is possible,
however, to obtain corollaries of Theorems 1.1 and 1.2 which lead to an improve-

ment of inequality (1.2) for n variables.
CoroLLARY 2.1 Let Xy, X,, -+, X, be independent random variables with

expectations E(X}) = e; and variances ¢°(X;) = o;. Then, for any t; > 0,
j=1L12 .- n,and any m such that

m 2 n 2
g (]
=24 < 2 =3,
i=1 ¢; j=m+1 {;
we have the inequality
[

A

n . — p.)2 _— .
P(Zw 2 1> < j=1 t? ! t— 2
d if 2+ 2 <t <3[E4+25+ V3 4 45l

n 2
DH=n i d[E42m 4 Ve r g <t

=1

This corollary is a special case of the following corollary to Theorem 1.2
CoroLLARY 2.2. Let Wi, Wy, ---, W, be independent random variables
such that P(W; < 0) = 0forj = 1,2, ---, n, and let m be any inieger such that

,Z:IE(W") =\ > EW)=p N<np

j=m+1

Then, for any ¢ > 0, we have
P(Z:W,- > t) < M®
7=1

where M (t) is defined by (1.8).
This corollary follows immediately from Theorem 1.2 by writing

W= W; Z= > W,
=1 7=m+1
To obtain Corollary 2.1, one only has to write in Corollary 2.2
X; = 6’:‘)2

t

W, =

If some additional assumptions are made on the expectations E(W ;) or on the
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variances o; , the upper bounds in Corollaries 2.1 and 2.2 may be minimized by
For example, if all the variances are equal

proper choice of m or of the ¢;.
2 2 2 2
0’1 = 0'2 F— I == o’" == a'

and 7 is even, one obtains the inequality
(1 if £ < no’
2

P[é (Xi —e) > t2:| <




