NOTES

This section is devoted to brief research and expository articles on methodology

and other short items.
e

A REMARK ON CHARACTERISTIC FUNCTIONS
By A. ZvaMmunp

University of Pennsylvania
1. Let F(z), —» < z < + =, be a distribution function, and

+0
o) = [ ¢ ar@)

its characteristic function. It is well known that the existence of ¢'(0) does
not imply the existence of the absolute moment

+o0
1) [ RELC)
A simple example is provided by the function
of) = C Z cos nt

= ntlogn’
where C is a positive constant. Since the series on the right differentiated term
by term converges uniformly (see [1]), ¢'(f) exists (and is continuous) for all
values of ¢, and in particular at the point ¢ = 0. Obviously o(¢) is the char-
acteristic function of the masses C/2n’logn concentrated at the points -£n
forn = 2,3, ---. The constant C is such that the sum of all the masses is 1.
The divergence of the series Z1/n logn implies that in this particular case the

moment (1) is infinite.
In a recent paper (see [2], esp. p. 120, footnote), Fortet raises the problem of
whether the existence of ¢’(0) implies the existence of the first algebraic moment

+o0 X
@) [ zdF(z) = lim z dF (z).
b X—rto0 V=X
The main purpose of this note is to show that this is so. We shall even prove
a slightly more general result.
A function y(¢) defined in the neighborhood of a point ¢ is said to be smooth
at this point if
lim
h—40
Clearly, if ¢ has a one-sided derivative at the point ¢, the derivative on the
other side also exists and has the same value. Thus the graph of ¥(¢) has no
angular point for { = {,, and this explains the terminology. If y/(f,) exists and
is finite, ¥(¢) is smooth for ¢ = . The converse is obviously false, since any
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function whoseé graph is symmetric with respect to t = # is smooth at that
point.

TuroreMm 1. If the characteristic function o(t) is smooth at the point 0, then
a necessary and sufficient condition for the existence of ¢'(0) is the existence of the
moment (2). The value of (2) 7s —ie’ (0).

In particular, the existence and finiteness of ¢'(0) implies the existence of (2).
That the converse is false, is obvious. For if ay, a1, @z, - - - are positive num-
bers and ap + 2a; + 202 + .-+ = 1, then ¢(f) = ap + 2Z7 a. cos nt is the
characteristic function of the distribution function F(z) corresponding to masses
concentrated at the integer points -n and having the values a, there. Owing
to the symmetry of the masses, the number (2) exists, and is zero even if (%)
is non-differentiable for ¢ = 0 (we may e.g. take for ¢(¢) the Weierstrass non-
differentiable function C Z7 a” cos b"t, where C is a suitable constant).

Proor. We may write

o(t) = jomcos ztdG(z) + i‘l)‘”sin ztdG(x) = Y1) + we(t)

where

Gix) = F@) — F(—z), H(z) = Fx) + F(—=z).
Thus
3) 0 <|AH| £ AG.

Since ¢(t) is smooth at the point 0, and since ¢, (t) is even, y¥2(f) odd,

0= hllr-rrlo h h
= —9 limf _I_Zﬂxda(x)
h—+0 Jo h
so that, replacing » by 2h,
@ . 2
[ 6@ —o as h 0.
Since the integrand is positive we obtain successively
Uh s 2
[ a6 = o),

[o " @—:ﬁ d0(x) = o(l),

/b
@ [ #a6@ = o0,

1/h
f 2 dQ(x) = o(h7Y),
1/2h

1k

) uzth (x) = o(h).
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Since y;(¢) is even, the smoothness of o(f), and so also of y(¢), at the point
t = 0 implies that ¥1(0) exists and is zero. If h — 40,

Yo () — 2(0) _ [“sin xh N N
OO [ - [ [ - g

oc: 2/h 4/h 8/h
IB,,lsh“f IdHISh"‘(f dd + | d@ + dG+--->
1/h 1/h 2/h 4/h
=K o(h + 1/2 + h/4 +---) = o(1),
by (8) and (5). Also

1/ 1/ . 1/k
_ _ sin hx _ _ 2 4 2
A, fo de_fo ( ] 1>de_fo 0" W)z dG

1/n

= 0(*h) dG = o(1),
by (3) and (4). Thus
Yo () — ¥2(0) _ H _ b
i () = 0 _ o +fo zdH = o(l) + LlhxdF,
and so /
1/h

) — e _ o) + if_”hx dr.

It follows that the existence of (2) is equivalent to the existence of the right-
hand side derivative of ¢(¢) at the point ¢ = 0, or, on account of smoothness,
to the existence of ¢’(0). Moreover, the value of (2) is —i¢’(0). This com-
pletes the proof of Theorem 1.

2. Suppose that a function y(f) defined near the point f satisfies for A — 0
a relation
Y(to+ h) = a0 + ath/11 4+ -+ + o4 1h* 7/ (k — 1! + [ar + o(D)IR" /K1,

where ay, o, -+, oy are constants. Then oy is called the kth generalized de-
rivative of ¢ at the point & . It will be denoted by ¥u)(f). The existence
and finiteness of ¥ (&) implies the existence of ¥ (%) and both numbers

are equal. ’
Another generalization of higher derivatives is based on the consideration of

the symmetric differences
A(te) = Yo + h) — ¥l — h),
M(t) = Ylbo + 20) — 2¢(h) + Y(t — 2h),
Aid(to) = Yt + 3h) — 3¢(to + h) + 3¢(te — h) — ¥t — 3R).
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If Al (t)/(2h)* tends to a limit as b — -0, this limit is called the kth sym-
metric derivative of ¢ at the point ;. We shall denote it by D (). Clearly,
D (ty) exists and equals Y, (f), if the latter number exists.

It is a simple matter to prove (see [3]) that if k£ is a positive even integer,
and if the characteristic function ¢(¢) has at ¢ = 0 a finite symmetric derivative

40
Dip(0), then the kth moment f z* dF (z) exists, and its value is (—1)*2Dwp(0).

+0
Conversely, the existence of f «*dF(z) obviously implies (for % even) the

existence and continuity of ¢ (¢) for all £, and in particular at the point ¢ = 0.

In order to obtain an extension of Theorem 1 to the case of derivatives of
odd order, we have to generalize the notion of smoothness. We shall say that
a function ¢ () satisfies for ¢ = £ condition S;, (k = 1,2, ---),if

AT () = oY) as b — +0.

For k = 1, condition S is identical with smoothness at ¢, . Clearly, if Y,y (t)
exists, ¥ satisfies condition S; at ¢ .

TuroreM 2. Suppose that k s a positive odd integer, and let o(f) be the char-
acteristic function of a distribution function F(x). If ¢ satisfies condition S,
at the point 0, a necessary and sufficient condition for the existence of Dip(0) s
the existence of the symmelric moment

(6) j: ) 2*dF(z) = lm i 2 dF (z)

X—otoo J—

whose value s then equal to i *Dip(0). In particular, the existence of oy (0)
implies that of (6).

The proof of Theorem 2 is analogous to that of Theorem 1. Let G(z) and
H(z) have the same meaning as before. Since k¥ + 1 is even, condition S;
at the point ¢{ = 0 gives

o0 R i +o0
A (0) = f_ (6 — T GR(E) = (1) *HOR f (sin zh)*" dF(z)

— 2k+l(_1)(fc+l)/2/ (sin .’Iih)k+l dG’(a:) - O(hk),
)
so that
1/h
f (sin zh)* dG(x) = o(h¥)
)

1/h
) l:ﬂww:mﬂ

1/h
®) ﬁ dG@) = o(hY).
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On the other hand,

2 Bhe(0) [T [sin xh)k % _ [*(sin xh)'“ k
“ oy - L Cr) oo = [(57) #

- follh+fl;=Ah+Bh,

say. Here

) 2/h 4/h
. -k — —k RS
|Bul < b ~/;/h dG@) = h [jllh +-[z/h + :|
—_— _k k h k RS —l =
by (8). Since
. k
(24 = 11+ 0a)* = (1 + 0@ = 1+ 0@)
for small », we immediately obtain
1k 1/h
ay= [ oFaH@ = [ 00a* d6G) = o),
0 0
by (7). Collecting the results, we see that

x Uk k 1/h
o 432%0?) - [ e - Aéﬁ?‘ = [, v = o,

which completes the proof of Theorem 2.
One more remark. By Theorem 2, the existence of the first moment is equiv-
alent to the existence of the first symmetric derivative

Dye(0) = lima [p(k) — o(—h)]/2h.
In Theorem 1 we have a corresponding result for ordinary first derivative

¢ (0) = limusofe(h) — ¢(0)]/h.

There is no discrepancy here since at every point where ¢ is smooth the two no-
tions of derivative are equivalent.
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