NOTES

This section is devoted to brief research expository articles on methodology
and other short items.
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ON SMALL-SAMPLE ESTIMATION

By Grorge W. BrRowN
Towa State College

1. Summary. This paper discusses some of the concepts underlying small
sample estimation and reexamines, in particular, the current notions on ‘‘un-
biased” estimation. Alternatives to the usual unbiased property are examined
with respect to invariance under simultaneous:one-to-one transformation of
paranieter and estimate; one of these alternatives, closely related to the maxi-
mum likelihood method, seems to be new. The property of being unbiased in
the likelihood sense is essentially equivalent to the statement that the estimate
is a maximum likelihood estimate based on some distribution derived by inte-
gration from the original sampling distribution, by virtue of a “hereditary”
property of maximum likelihood estimation. '

An exposition of maximum likelihood estimation is given in terms of optimum
pairwise selection with equal weights, providing a type of rationale for small
sample estimation by maximum likelihood.

2. Introduction. In large sample theory of estimation the problems are
generally formulated in terms of a random variable £ = (z,, 22, --- , 2,) and a
product distribution with, say, a density g(x|0) = f(z:|6)f(22]60) - - f(x.|6)
where 7 is permitted to increase without limit. For small sample theory it is
sufficient to consider an arbitrary distribution, not necessarily of product form,
depending on a parameter 6. For convenience we will assume a distribution
density of fixed form g(z|8), where z is in Euclidean n-space and 8 in Euclidean
k-space, k < n. Granting at the outset that a complete rationale for estimation
must be based on considerations like those of Wald [4, 1939] dealing with specified
risk functions, it is still a difficult process, in practice, to specify the risk functions
and solve the ensuing mathematics problems. It may still be to the point, then,
to consider general properties that estimates might be required to have in order
to be considered ‘‘acceptable”, or perhaps even ‘‘optimum’’, over a class of
“acceptable” estimates.

In large-sample theory the situation is fairly simple. Consistent estimates
have the property that the estimate converges in probability to the true param-
eter value. ‘‘Best” or “optimum’ estimates are defined in terms of the order
of convergence, or asymptotic variance. All reasonable definitions of ‘“‘optimum”
become asymptotically equivalent, since they all measure essentially the rate of
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convergence, so that one might ask for least variance, or least expected absolute
deviation, or least expected kth power, without affecting the optimum estimate,
in general. Moreover, the consistency property and the optimum properties
are in general invariant under simultaneous one-to-one transformation of the
parameter and its estimate, i.e., the square of an asymptotically optimum esti-
mate of ¢ will be an asymptotically optimum estimate of ¢*. Finally, a general
estimation method, the method of maximum likelihood, leads to optimum esti-
mates in large samples.

In small samples, on the other hand, the search for corresponding criteria has
led to the investigation of best ‘“‘unbiased’’ estimates, and. the like, where few,
if any, of the definitions discussed possess an invariance property under simul-
taneous one-to-one transformation of the parameter and its estimate.

3. Unbiased estimation. To ensure, in small-sample estimation, that an
estimate bears some relation to the parameter it is estimating, it has become the
custom to require that an estimate be unbiaséd, which means that the expected
value of the estimate agrees with the parameter value. This condition was sug-
gested by the consistency property which is required in large-sample estimation.
It ensures, moreover, that the average of a large number of independent estimates
made on the same basis will provide a consistent estimate, in the large sample
sense. While this consistency property of the average may at times be conveni-
ent in practical situations, the fact remains that the problem of estimation from
a number of such observations is a different estimation problem, the ‘“best”

. solution to which need not be the average of the ‘“best’’ solutions of the original -
problem corresponding to estimation of 6 from a single observation on z, where
z has a density g(x|0). More to the point, however, is the objection that an
unbiased estimate of a parameter does not in general transform into an unbiased
estimate when both estimate and parameter are subjected to the same one-to-one
transformation. Moreover, one can easily construct situations for which the
only acceptable unbiased estimates are clearly inferior from almost any point
of view, to estimates which are biased (Girshick, Mosteller and Savage, [1, 1946],
and Halmos [2, 1946]). ,

It may be of interest to consider a few reasonable alternatives to the lack of
bias requirement, which seem to accomplish as much as the conventional defini-
tion and which, in addition, have an invariance under one-to-one transformation
of the parameter and estimate. To avoid confusion, let us attach the qualifying
prefix “mean” to the usual unbiased property, so that an estimate will be said
to be mean-unbiased if its expected value agrees with the parameter value.

Consider as one alternative the following property. An estimate of a one-
dimensional parameter § will be said to be median-unbiased, if for fixed 6, the
median of the distribution of the estimate is at the value 0, i.e., the estimate
underestimates just as often as it overestimates. This requirement seems for
most purposes to accomplish as much as the mean-unbiased requirement and
has the additional property that it is invariant under one-to-one transformation.
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A different alternative requirement which is invariant under transformations
is suggested by the definition of unbiased tests of significance (Neyman and
Pearson [3, 1936]). Let us say that an estimate is likelshood-unbiased if h(0|6) <
h(6 | 6), where the estimate § has probability density h(§]6). In other words, an
estimation method is likelihood-unbiased if estimates in the neighborhood of a
given paraméter value 8 would occur more frequently when the true value is
itself # than when it differs from §: On intuitive grounds this seems to be an
acceptable kind of requirement, applicable to a very general class of estimation
problems. It is-evident that the assumption of a density plays no important
role here; the situation is analogous to the maximum likelihood situation. The
property itself is invariant under simultaneous one-to-one transformations of
parameter and estimate for the same reason that maximum likelihood estimates
are invariant under such transformations, in fact one can readily see that the
likelihood-unbiased condition is equivalent to requiring that § have such a
distribution, as a function of 6, that the maximum likelihood estimate of 6
based on 6§ will be actually equal to 8. The obvious implication of this fact is
that if a function ¢(x) is given (possibly a sufficient statistic for ) then there is
an essentially unique likelihood-unbiased estimate 8 based on ¢, obtained by
finding the maximum likelihood estimate of 6 in the distribution of ¢ as a function
of 6.

As an example, consider the estimation of ¢ from a sample of 7 observatlons
from a normal dlstmbutlon Let S be the usual sum of squares, where S*/¢"
is distributed like x* on n — 1 degrees of freedom. Then the only likelihood—
unbiased estimate of ¢* based on S is §*/(n — 1). In this case S*/(n — 1) is
also mean-unbiased, a fact which is normally quoted as justification for the
division by » — 1. Curiously enough, it is customary to éstimate o by
v/ 8%/ (n — 1), even though this is a biased estimate of s, according to the usual
notion of “unbiased’’, referred to here as ‘“‘méan-unbiased”. On the other hand,
V/8%/(n — 1) is a perfectly good likelihood-unbiased estimate of s, by virtue
of the invariance under transformations. It might be pointed out, in passing,
that the estimate $2/(n — 1) does not have minimum mean square about. o*,
but that the optimum divisor for minimizing the mean square error about a
isn+ 1.

The fact that a likelihood-unbiased estimate is the maximum likelihood-esti-
mate based on the distribution of the estimate itself suggest further examination
of maximum likelihood estimates. If we define a simple estimate as one which
completely determines a probability distribution for x, then we have as a theorem,
the following:

A szmple maximum likelihood estimate 6(x) is likelihood-unbiased. What this
means is essentially that maximum-likelihood is “hereditary”, i.e. if 8(z) maxi-
mizes g(z | 6) in a space of n dimensions, and § has a derived density h(d | 6)
in a space of k < n dimensions, then § = d maximizes (d | §). The proof follows
readily from the fact that (4 | 6) is obtained by integration of g(x | 6) over all
x such that d(x) = 8.
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The example of estimating ¢*, quoted above, shows that the word “simple”
cannot be omitted from the statement above. For example, the simple estimate
in the parent distribution is the joint estimate (x, 8*/n) of (m, ¢°) and in fact the
joint estimate is likelihood-unbiased. On the other hand, S*/n is not a simple
maximum likelihood estimate, and we observe that S?/n is not likelihood-un-
biased. 8%/(n — 1) is a simple maximum likelihood estimate of ¢* based on
the distribution of S?itself, so that S*/(n — 1)1is, as a result, likelihood unbiased.

One can exhibit situations in which the conventional mean-unbiased property
is very unnatural, while the likelihood-unbiased property may be quite natural.
Consider, for example, the case where o’ is to be estimated by use of a x’-dis-
tributed S* with n — 1 degrees of freedom, but subject to the condition o* > o} ,
where o7 is known in advance. Then the estimate 6> = max [S*/(n — 1), 03] is
certainly biased according to conventional definitions, but is nevertheless, likeli-
hood unbiased. To get a mean-unbiased estimate when ¢* is near to o} is im-
possible except by admitting estimates less than o , which is clearly foolish if it is
known that ¢* > of .

It may be of interest to include a brief discussion of maximum likelihood esti-
mation in terms of pairwise selection of alternatives, providing a sort of optimum
property for maximum likelihood estimation in small samples, in addition to the
likelihood-unbiased property. Consider a choice to be made between only two
alternative values of 6, say 6, and 6., by dividing the sample space into two
regions S, and S; , such that 8, is accepted when « falls in S, and 6, is accepted
when z fallsin S;. Then

Pyy(80) + Po..(Sl) = Py, (So) + P5,(S) = 1.

Py, (S,) is the probability of making the error of accepting 6, when § = 6, and
1 — Py, (8So) is the probability of making the error of accepting 6; when 6 = 6,.
If the two errors are weighted equally, it is evident that a “best” test will choose
S so as to minimize Py, (S)) + 1 — Pg,(So). It is well known that S, will
minimize the indicated quantity if Sy consists of all points z such that g(x | 6)) >
g(z | 6. Thus we may speak of the region S, defined by g(z | 6) > g(z | 61)
as an optimum equal risk acceptance region for 6, against 6, . Now if we transfer
our attention to the general estimation problem we see that the maximum
likelihood estimate 8(x) is that value of § which would be accepted by the op-
timum equal risk acceptance procedure against all other 6’s.
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