ON THE UNIQUENESS OF SIMILAR REGIONS

By PavuL G. HoeL
Unaversity of California at Los Angeles

1. Summary. Conditions are determined for insuring that Neyman’s method
of constructing similar regions by means of sufficient statistics will yield all such
regions when such statistics exist.

2. Introduction. In designing tests of composite hypotheses, one encounters
the problem of how to construct similar regions and whether the construction
process yields all possible similar regions. Neyman has derived methods for ob-
taining similar regions when the basic distribution function satisfies certain par-
tial differential equations [1] and also when a sufficient set of statistics exists for
the unknown parameters [2]. In the former case, the construction process gave
all such regions; however the question of whether certain subregions were inde-
pendent of the parameters was left unanswered. In the latter case, the indepen-
dence was obvious, but the question of uniqueness was not considered. In
obtaining sufficient conditions for the existence of a type B region, Scheffé [3]
employed Neyman’s differential equations assumptions and methods and demon-
strated that the subregions were independent of the parameters.

The method of constructing similar regions by means of sufficient statistics is
much simpler to demonstrate than is the method based on differential equations.
It also has the advantage that the independence of the subregions requires no
proof. It possesses the disadvantage that the question of uniqueness is not
answered. This question can be answered by showing that the assumption of a
sufficient set of statistics includes the differential equations assumption and then
employing methods based on the latter assumption. Such a procedure would
deprive the sufficiency method of its simplicity; consequently a relatively simple
direct proof of uniqueness has been constructed. The method of proof also shows
the equivalence of the two methods of constructing similar regions.

3. Sufficient conditions for uniqueness. Consider a distribution function,
f(z|61, ---, 6,), of the variable x that depends upon the » parameters 6, - - -,
6,. Letz,2, - ,2,denote a random sample from this distribution and let
f(@y, -+, Tal6, -+, 6,) denote the distribution function of such a sample. It
will be assumed that n > ». '

Suppose there exists a sufficient set of statistics Tozy, ++y Tn)y **<,
T,(z:, - - , €,) with respect to the parameters 6, -++, 6,. Koopman [4] has
shown that if the 7’s are continuous and if f(z 6,, -, 6,) is analytic, then
f(z|6,, -~ , 6,) must be a function of the form

(1) ‘(a:lol,o--;e,)=exp|:§1:9kX;,+6+X],
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where the ©; and © are single-valued analytic functions of the 6’s only, and the
X and X are single-valued analytic functions of z only. He has also shown that
if u assumes its smallest possible value, then

) 21 Xi(xs) = Vi(Te,y -+, TV,

where the V’s are single-valued functions of the T’s. If the preceding conditions
are satisfied, it follows from (1) and (2) that

3) flxy, <o+, 2a| 01, -+, 0,) =exp [“Vx: 0.V 4+ n6 + ilX(x;)].

Now it is known [2] that if the T’s possess continuous partial derivatives and
are such that it is possible to introduce additional functions 7,4, - - - , T\, which
will make the transformation

T, = Tl(fcx, ,-’cn)
)

To = Tal@i, ++, %n)
one-to-one, then f(z1, - - -, 24|01, -+, 6,) can be written in the form
f(xl’ ,xnlgl TN 6,)
=fi(Ty, =+, o6, -+, 0)fe(xe, - - y Ta|T1, -, T)),

where fi is the distribution function of the 7"s and f2 is the conditional distribution
function of the z’s for fixed values of the 7”s. The function f, does not depend
upon any of the parameters 6;,---, 6,.

For the purpose of constructing similar regions, it is desirable to work with f; .
By combining (3) and (5), fi may be expressed in the form

()

(6) fi(Ty, o=, Ty{6s,-++,0,) = exp [; 6.V + n6 + H],

where H = ZX(x;) — log f2 can be expressed as a function of 7y, ---, T, only,
and where it is assumed that f; > 0.

The method employed by Neyman to obtain a similar region of size « is to
build it up as the locus of subregions of size o on the “surfaces’ obtained by giving
the T's constant values. Since the size of such a subregion is obtained by inte-
grating f, over the subregion, it will depend only upon the 7’s; consequently a
subregion can be selected that will be of size a for every set of values of the T’s.

Now consider the construction of a similar region of size « by building up the
region as the locus of subregions of varying size rather than of constant size on
the surfaces that are obtained by giving the T"s constant values. Let w; and w,
be two regions of size « and let &y(7Ty, -+, T,) and a(Ty, -+, T,) denote the
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sizes of the surface subregions. It will be assumed that the regions under con-
sideration are such that a; and o, are obtainable from integrating f» over the sub-
region common to w; and w, respectively and the surface determined by fixing
the values of the 7’s. The problem then is to determine whether two different
functions, &; and a2, can yield similar regions of size « .

Since a critical region can be obtained as the locus of subregions, a; and «, will
yield similar regions of size « only if

o

- f-‘“fa;(Tl,-~-,T.)fl(T1,~--,Tyl01,---,0.)dT1--~dT,

(] =1, 2))

where the integration extends over the range of values of the T’s. By means of
(6), condition (7) may be written as

(8) f ce fa,-exp [Z 0: Vi1 + no + H] dTy---dT, = o« (7 =1,2).
1
If ¢ is factored out, it is clear that condition (8) will hold only if

I3
f...falexp[ZGka%-H]dTl-~-dT,
1
=f... fazexp[ZOka—l-H]de“'d'l',
1

is an identity in the 6#’s, and hence in the 6; for the region in the 6, space that
corresponds to the region in the parameter space for which the parameters 6; ,
«+-, 0, are defined.

Now assume that 4 = » and that the transformation

Vl = VI(T1)°"7T7)

(9)

(10)

V'= Vr(Tl"“,TP)

is one-to-one. From the preceding assumptions that gave rise to (2) and (4), it
may be shown that the V’s are continuous and possess continuous partial deriva-
tives. In terms of the V’s, (9) may therefore be written as

f"' fexp[ZGka]KldVl e dV,,
1
- f fexp[ZGka]szV1~-dV,,
1

where K; = aze has been expressed in terms of the V’s.
Since the parameters will be defined over intervals and 6, is an analytic func-
tion of those parameters, to every region in the parameter space determined by

(11)
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intervals of the 6’s there will correspond an interval for 6 throughout which 6
will be defined; consequently (11) will be an identity in the ©; for intervals of
values. For every point within regions determined by O, intervals, the partial
derivatives of the two sides of (11) must therefore be equal, provided the deriva-
tives exist and provided the 6, are functionally independent.

If the conditions to be imposed shortly are satisfied, it can easily be shown that
it is permissible to differentiate (11) repeatedly under the integral signs with re-
spect to the ;. As a consequence, (11) implies that for all sets of non-negative
integersk,, --- , k.,

f fV’{‘---l'ff' exp[z 0.V Kl] AV .- dv,
2) ‘
= f e [ | 1IN exp [Z 0.V K2:| dVy---dV,
1

will be an identity in the 6, for almost all values of the ©, . But (12) is equivalent
to requiring that

(1

[ Vi Vi, o vy avieay,
(13)
= f f Vi VR (Ve e, V) AV, -1 dY,
shall hold for all sets of non-negative integers ky, - -« , k,, where g, and g» are

the integrands of (11) after they have been divided by the function of the 6, ob-
tained from integrating (11). Since g; and g. will then be non-negative functions
of the V’s whose integrals over all values of the V’s is one, they are distribution
functions of the V’s. If g, and g, possess moments of all orders and are such that
they are uniquely determined by their moments, then condition (13) implies that

(14) gl(Vl y "y VV) = gZ(Vl y*°*° Vv)'

This identity will hold for almost all values of the parameters. If the conditions
necessary to justify (14) are satisfied, it therefore follows that

oar(Thy oo, T, = ay(Ty, =ee s T),

and that Neyman’s method of constructing similar regions by choosing
a(T,, ---, T,) = «a yields all possible similar regions of the class of regions
being considered.

The conditions that were imposed on f(x|6:1, ---, 6,) in order to establish
uniqueness may be summarized as follows: The distribution function
f(z|6,, - - -, 6,) is analytic and possesses a set of sufficient statistics, T, ---, T, ,
with respect to the parameters 6, , - - - , 6, , that are continuous and possess con-
tinuous partial derivatives. There exist one-to-one transformations of the types
(4) and (10). The function ce®®*"**¥ | treated as a distribution function of the
V’s, possesses moments of all orders and is uniquely determined by its moments.
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Finally, the 6, are functionally independent with the smallest possible value of
p equal to ».

If the assumption that the 6, are independent is not realized, the distribution
function (1) could be expressed in terms of fewer than v parameters. This is
also true if p < ». The two assumptions that ¢ = » and that the 6 are indepen-
dent will therefore be satisfied if (1) is expressed in terms of the minimum number
of parameters. The remaining assumptions can often be checked quite easily
whenever a particular distribution function is given.

In deriving tests of hypotheses for certain parameters, the distribution function
f(z|61, - -+, 6) will of course contain those parameters in addition to the param-
eters 6,, - - - , 6, , but since they will have fixed values, it was not necessary to
introduce them into the discussion.

4. Equivalence of methods. Although the equivalence of the two methods
of constructing similar regions has been implied in the literature [1], no simple
demonstration seems to be available. Such a demonstration is easily given by
means of (3). Let

dlogf
Pi 0; ’

where f is given by (3) with p = », and let

dp;

©ij = '(%;

Differentiation of (3) yields

¢;—Eae"V 4 g 90

601 601 ’
(15) ERe) 8
— k
i Z 30; 96r Vit o a6;"

The differential equations that are assumed to hold in the other method of con-
struction [1] may be written in the form

(16) e = Ay + Zl Biir e (5,7 = 1,00, V)’

where the A;; and B;; are functions of the 6’s only. Upon substituting the
values given by (15), it will be found that (16) will be satisfied if

8°0, 4 90y,
—— —3 B'o;r —— k —3 1 o e o 5
(7) aas, ~ 2B gy =Ly
and
2, 12
n Ay +n B %
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Since (17) represents a set of » equations in the B;;’s, whose coefficient matrix is
non-singular because of the functional independence of the 6y, it follows that
sets of A’s and B’s can be found to satisfy equations (16). This shows that the
sufficiency assumption includes the differential equations assumption.

Now the method of constructing similar regions here consists in building them
upras the locus of subregions of size a on the surfaces obtained by giving the ¢;
constant values. But from (15) it follows that the surface g; = c;(z = 1, --: , »)
is equivalent to the surface

~ 90, 20 .
21:6—(),ka+"%‘=€" GC=1,-+,»)
which may be written in the form

v

96, .
(18) ;a—ifjtfk:c:’ (1'=1’°"7”)1

because O is a function of the parameters only. Since the coefficient matrix of the
V’s in (18) is nonsingular, (18) may be solved for the V’s; consequently the sur-

face: = ¢i, (i = 1, -+, ») is equivalent to the surface V; = ¢/, (¢ = 1, .-,
But from the assumption concerning the transformation (10), the surface
Vi=c/,({=1,---, ) is equivalent to the surface 7 = c¢; , (i = 1, ---, ).
Thus, the two surfaces o; = ¢; (i = 1, -+, »)and Ts = ¢’ , (G =1, ---,») are

equivalent and hence the two methods of constructing similar regions are
equivalent.
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