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the same transformation gives

M@) = fA*x*xAp{x'} dx’,

= A*M@)A
which for A = & leaves us with
, ‘ M@) = @)
because M(1) =
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THE DISTRIBUTION OF A DEFINITE QUADRATIC FORM

By HErRBERT ROBBINS
University of North Carolina

Let X;, ---, X, be independent normal variates with zero means and unit
variances, let a;, - - - , a, be positive constants and define

=%y, .. 4%
(1) Un 2 X 1 + + 2 X ny
@) Far) =Pr(U. <2], falz) = Fu(2).
Setting
(&) a= (0 a)"
and using the convolution formula we may show by induction that for z > 0,
—;n e Ck(—x)k
@ fola) = kgo TGn + 5’
® Fe) = g 35 o=a)

=IrEn+Ek+1)°
where fork =0,1, ---
T + 1) I‘(z,. + %)

C1e s o ip=k 11! z,.'a a,.

(6) Cr = W_é”
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In particular, if ; = -+ = @, = 2, then using the known distribution of x* with
n degrees of freedom we have
1}n —~1 —-]z én—l 0 in-—l [ = k
—x —
falz) = (—2)" 3 ol=2)

2inT(§n) 2*"I‘(v;n) & R T om o I'(dn + k)’
so that

G = ————— = —
* 2¥kIT(3n) 2% o Rin=t !l 7,]

IGGn + k) _ i Z (s, + %) -T(. + %)

and therefore

) 5 Da+d - Th+d _«"Tln+k)

S otig=k 7! 2,! k!I‘(%n)

Now in the general case let

(8) a=min{a17"'7aﬂ};
then from (6) and (7) we deduce that

cr(—x)F (x/a)"
© TG+ 0| = TGoR

with a similar inequality for the general term of (5).

It is difficult to evaluate numerically the coefficient ¢; by a direct application
of the definition (6). We shall therefore give a method by which the ¢, may be
computed easily. We shall assume in what follows that the a; are distinct.

Let Y, .-+, Y, be another set of variates with the same joint distribution
as the X; and independent of the X, and set

(10) Vzn=%X§+---+%‘Xﬁ+321Y§+ g Lo =Y,
@11) Gin(z) = Pr[Van < 2],  gunlz) = Gzn(x)-

Then by the convolution formula,

(12)  gm(2) = fo e = ) dy = a7 l; {g c.ck_.} P(,: _T_)n)

But we may show directly that, setting

(13) ¢ =1l -a)” G=1--,n),
we have

0 0@ = (<0 E grare = = 5 5 qeare} G2
Equating coefficients in (12) and (14) we derive the fundamental formula

(15) E CiCis = a" E gia; &P (k=0,1,---).

=0 =1
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Thus, defining

(16) 2P, = " Z g:a7 %

i=1

we may write

k
(17) Z CiCp—i = 2Pk .

1=0

From (6) or (17) it follows that
(18) C = 1.

Thus we may solve«(17) successively for the ¢ in terms of the P;: forj = 0,1, - - -

2
c.
(19) Coyj = Pzi - {0102;;_1 + ccej2 + - +Ci—10i+1 + 5’},

Cit1 = Pojy1 — {e1ce; + cotajmr + -+ + cicinl}.

When the n constants ¢1, - -+, ¢. have been computed we may compute the
P; by (16) and then the c; by (19) successively as far as desired. The inequality
(9) gives an indication of the number of terms of the alternating series (4) or (5)
which are necessary to secure a desired accuracy. A sharper result than (9)
should certainly be possible when the a; are well separated.

The foregoing method may be modified to cover cases in which some of the
a; are equal, the formulas (16) being replaced by the appropriate limits as the
a; approach equality.

We shall now derive an expansion of f,(x) and F,(z) in terms of x* distribu-
tions. Let us set for z > 0,

int+k—1 e-—zl a

Y (= S
(20) fal@) = k-zo (=1)"ds attT(An + k)’

or, equivalently,

a Z 4}n+k—-l —-}z
25 (2 ) DY A S

(21) .
_ e Z (—1D*d, ()" T(3n)
2 (in) =0 rGn k)’
where the di are to be determined. It follows, after some reduction, that
0 k k
_ -, n—1 _—z/a . . (—x)
(22) g2a(x) = a2 e lé { Z—; didk-*} aTGEn + k)

But we may write (14) in the form

)+l
@) o) = a0 Y, { 2 agiai e — @ } a—-(‘r?‘(ﬂ*ﬁ '

k=0 =1
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Equating coefficients in (22) and (23) and setting
(24) 20k =a 21 q:a;** (a — a)"™ !,
we obtain the relations dy =‘ 1 and
(25) g d;di—; = 20, k=01,--),

from which the di may be computed as in (19). Equation (20) or (21) then
gives the expansion of f.(z) in a series of x* frequency functions. The corre-
sponding expansion of F,(z) is then

/ _ 0 R z t1n+k—l —t/a
(26) F@) = 3 (=1 ds fo P L
or
a _ © R x t%n+k‘—1 e—t/2
@) r(3e) - S va [ mirgr @

By direct comparison of (4) and (20) we may establish the following relations
among the ¢; and d;:

a= 3 oy (M FE ),

28) ’”Z in +k —1
=g * n b
et (M)

These may be used if both the power series and the x” series are desired.
From (6) we see directly that

(29) c = 'é — a; |,

and from (28) it follows that
(30) di = $anb, ,

where we have set

(31) b = i > -ﬁ — (e @)

i=1

Since by a well known inequality b, > 0 it follows that d; > 0, with equality only
if all the a; are equal. If we denote by h.(xr) the frequency function of
1a(X; + -+ + X2) then

a a e
(32) g hn (é “) TG0’
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and hence (21) becomes

@) _
(33) h,.(:c) =1 bl:c + ,

which is significant for z near 0.
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EXACT LOWER MOMENTS OF ORDER STATISTICS IN SMALL SAMPLES
FROM A NORMAL DISTRIBUTON

By Howarp L. JoNEs
Illinois Bell Telephone Company
1. Summary. Exact means in samples of size < 3, and exact second moments
and product-moments in samples of size < 4, are given in Table 1 in terms of

« for order statistics selected from the normal distribution N(0, 1). The deriva-
tion employs multiple integration and some general properties of the moments.

TABLE 1

Expected values of lower moments of order statistics, t: > Zi1,
in samples of size n from the normal distribution N (0, 1).

Moment n=2 } n=3 n=4
Elz] v | 3/2V7)

Blz1] 1 -1+ +/3/(2n) 1+ /3/x
Elz3] 1 — 3/ 1 - V3/x
Elz\z,] 0 \/§/ (2m) '\/3/ ™

E[J’z‘ws] - \/§/7l' - (2\/:9; - 3) /1r
Elz174] -3/

Elzo5) (23 = 3)/x
o 1—1/r | 1—(9—2v3)/(4n)

P 1 — \/5/ T

12 1/ m ! \/g/ (27" )

013 i (9 - 4\/5)/(477)

2. Introduction. The usefulness of the lower moments of order statistics for
determining the moments of the range and for other purposes is well established.
In small samples, however, computation of the moments by quadrature is labori-
ous [1]. The values shown in Table 1 should therefore be helpful in problems
requiring the use of these moments for samples of size < 4, since the constant =
has been evaluated to several hundred decimal places. Some of the methods
used to obtain these results may also be useful in approximating or verifying
the moments in larger samples.



