THE FACTORIAL APPROACH TO THE WEIGHING PROBLEM!

By O. KEMPTHORNE
Towa State College

1. Summary. The weighing problem is discussed from the point of view of
factorial experimentation. The paper contains a brief description of the frac-
tional replication of the 2" factorial system. It is shown that optimum designs
for the weighing problem may easily be obtained with this approach. This
approach is valuable in indicating the structure of weighing problem designs, and
the limited conditions under which such designs can give results of value.

2. Introduction. Considerable attention has been given recently to the
problem of weighing a number of light objects on a scale [1,2,3,6]. The problem
was originally proposed by Yates in his paper on complex experiments [4] as an
example of a factorial experiment in which interactions between the factors tested
would not be expected to exist: that is, the weight of say two objects could be
assumed to be the sum of the weights of the objects weighed separately, after
taking account of any necessary zero corrections. Such a situation is compara-
tively rare in biological research when, for example, the effect on yield of a parti-
cular crop from the joint application of two nutrients is usually different from the
sum of the effects of separate applications. In recent years attention has been
given to the use of fractional replication in factorial experiments [7, 8, 9] and it
is proposed in this paper to consider the weighing problem from this point of
view.

3. The 2" factorial system. A full description of the 2" factorial system was
given by Yates in his technical communication The Design and Analysis of
Factorial Experiments [5]. Yates was particularly concerned with the analysis
of such experiments and with the evolution of systems of confounding in order
to reduce the number of plots in each block. The following brief account is
given in order to facilitate the discussion of the weighing problem.

In a single replication of the 2" system all combinations of n factors each at
two levels are tested. With three factors, a, b, ¢, for example, the following
eight combinations are tested: (1) a, b, ab, ¢, ac, bc, and abc, where (1) denotes the
control, a the application of treatment a only, ab the application of treatments
a and b, and so on. A set of seven independent comparisons between the eight
test results is given formally by the expansion of the formula
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where at least one of the signs is negative. If, for instance the first sign only is
taken to be negative, a formal expansion gives the expression

llabc —bc+ab — b+ ac — ¢+ a — 1},

and this contrast of the observations gives the effect of the factor a averaged
over the presence and absence of the factors b and ¢, which is denoted by effect 4.
Similarly taking the negative sign in the second bracket only, we get the average
effect B,

B = {abc — ac + ab — a + bc —c + b — 1}.
Taking negative signs in the first and second brackets we obtain the interaction
AB
AB = abc + ¢ + ab + (1) — ac — bc — a — b}, and so on.

The definition of effects and interactions may be presented very simply in
geometrical terminology, by representing the treatment combinations as points
of an n-dimensional lattice, each axis of the lattice having two points at unit
distance apart. The control treatment will have coordinates (0,0,0, -+, -+,
0), the treatment consisting of a only will have co-ordinates (1, 0, 0, ---, 0)
and soon. The effect A is then the difference of the mean yield of the treatments
corresponding to the points lying on the hyperplane

xr = 0,
.and the mean yield of those represented by points lying on the hyperplane
T = 1.

The interaction of two factors a and b, represented by the axes z; and x, respec-
tively, will be .obtained from the difference of the mean yields of those plots for
which

z + 1 =0, orz + 1z = 2,
and those for which
X1 + X2 = 1.

The extensions to the above for three-factor and higher order interactions are
simple. The interaction of factors a, b, and ¢, which are represented by coordin-
ate axes 71, 22, and 23, is given by the difference between the mean of plots
represented by points for which

1+ 22+ 23 = 0or 2,
and those represented by points for which
21+ 22+ 23 = 1 or 3;

in other words, it is the difference of the mean yields of those plots for which
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71+ 22 + 23 = 0 (mod 2)
and of those for which
1+ 12+ 23 = 1 (mod 2).

Each effect or interaction is then defined as the mean difference of two sets of
plots, each set being represented by points on parallel hyperplanes, and the planes
of one set of parallel hyperplanes lying between the planes of the other set. It is
necessary- to specify only the direction cosines of the hyperplanes in order to
specify the effect or interaction, and the usual terminology for effects and interac-
tions follows, in that the interaction of factors a, b, ¢, for example may be repre-
sented by the symbol ABC.

In the same way as effects and interactions are defined in terms of the yields
of the several treatment combinations, the expected yield from each treatment
combination may be expressed in terms of the mean level of yield and the true
effects and interactions. If the full set of combinations of the factorial scheme
is tested, the best estimate of each true effect and interaction is the same func-
tion of the observed yields that the true effect or interaction is of the true yields.
This fact is one of the advantages which follow from the use of the full factorial
scheme.

‘We are not concerned here with factorial experiments in which the factors have
more than two levels, but when the number of levels of each factor is the same
prime number, effects and interactions may be represented by products of powers
of the symbols for the factors. In the case of two factors (a, b) at three levels,
for example, the main effects may be represented by A, B, and the interactions
by AB and AB’, each symbol referring to the two independent contrasts between
three sets, each of three plots.

As an example of the use of the above representation, we may consider con-
founding, that is, the arrangement of the treatment combinations in blocks in
order to reduce the experimental error. Suitable arrangements are such that
contrasts between the blocks represent high order interactions which the experi-
menter is confident will be of negligible size.

If treatment combinations for which

a1+ s+ o+ + anzs = 0 (mod 2)
and for which
Bixs+ Boze + - + Bnz, = 0 (mod 2)

are arranged in a particular block, then the coordinates of the treatment combina-
tions in this block also lie on the hyperplane

(or + Bz + (02 + Be)za + -+ + (an + Ba)zn = 0 (mod 2),

where the coefficients (e; + ;) must be reduced modulo two. If, therefore, the
treatments are arranged in blocks so that two comparisons are block contrasts,
then the generalised interaction of these contrasts is also a block contrast.
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4. Fractional replication. The principle of fractional replication follows
very simply. Suppose only those treatment combinations whose yields all occur
either in the positive or the negative part of a particular contrast are represented
in the experiment, that is only those combinations represented by the points of
the lattice for which say

an+ o+ - + a2 = 0 (mod 2).
Then the comparison between the yields of those plots represented by

Biz + G222+ -+ + Bazn = 0 (mod 2)
and by
ﬁlxl + Bzxz—l_ M +ann =1 (m0d2)

will be identical with the comparison between the yields of plots represented
by

(en + Bz + (02 + Bo)xz + -+ + (an + Ba)rn = 0 (mod 2)
and by
(o1 + Bz + (a2 + Bo)as + -+ + (@ + Bu)zn = 1 (mod 2).

The former of these two comparisons may be represented by the symbol
a2 -+ 2fr, and the latter by zf'*Pzget® ... zo e where a4, -+, z,
are no longer coordinates but symbols for the n factors, which satisfy the relations,
zi = 1,if « = 0 (mod 2). The equivalence of the two comparisons may be
obtained by the use of an identity relationship in the symbols for the factors

I = z{'25%--- 2"

where I is interpreted as unity, and only those combinations whose coordinates
(@1, 2, -+, ) satisfy one of the equations

i+ e+ o+ anzn =0, or = 1 (mod 2),

are represented in the experiment. If this identity relationship is multiplied
by the symbol z5'z5? - - - 2% by ,ordinary commutative algebra, reducing the
powers modulo 2 where necessary, we obtain

xl:lxgz e x’i" = x§a1+ﬁl)x§a2+ﬁz) .. x’('an"’ﬂn) .

It is more convenient to revert to the cornmon use of capital letters 4, B, C, etc.
for effects corresponding to small letters a, b, ¢, etc. for the factors tested. An
experiment in half-replicate is then represented forma'ly by an equation of the
type

I=A"B%C"-..

n—1

In such an experiment on n factors only 2" treatment combinations will be
tested. Of the 2" — 1 independent comparisons in a fully replicated experi-
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ment, information on one comparison is lost completely since only those treat-
ments which appear in the comparison with the same sign are represented:
the remaining 2" — 2 independent comparisons of a fully replicated experiment
are identical in pairs giving 2" — 1 independent comparisons. Each com-
parison is then said to have two aliases and measures the sum (or difference,
depending on which half of the treatment combinations are used) of two effects,
an effect and an interaction, or two interactions.

A quarter-replicated experiment can by the same process be represented by an
identity relationship of the form

I = AMBAC™ ... = A2BP0m ... = glatedpGith)ontr) |

It is useful in the evolution of fractional designs to note that the elements in the
identity relationship form an Abelian group.

Fractionally replicated experiments are formally identical with confounded
experiments in that block differences may be regarded as additional factors in the
confounded experiment. A 2" experiment arranged in 2” blocks, for example,
may be regarded as a 1 in 2” design of a 2"*” experiment. Considerable care
needs to be exercised in the use of fractionally replicated designs, but they have
been found to be very useful in agricultural and biological research.

5. The weighing problem. The problem of weighing a number of objects
may be regarded as the problem of the estimation of the effects of a number of
factors which do not interact. To take a simple case, consider the estimation of
the effects of factors a, b, and ¢ for which one complete replicate would consist
of the combinations

(1) a, b, ad, ¢, ac, be, and abe.

Suppose a half replicate design is used, based on the identity relationship
I = ABC.

The combinations tested would then consist of either the set {a, b, ¢, abc} or the
set {(1), ab, ac, be}. If the former set were chosen, the comparison estimating
the effect A could also be ascribed to the interaction BC, that estimating effect
B also to the interaction AB, and that estimating effect C to the interaction AC,
as can be observed by multiplying the identity relationship by 4, B, and C in
turn. If the experimenter is confident that the two-factor interactions are
negligible, then any effect given by each comparison would be ascribed to the
main effect.

6. Discussion of a particular case. We give the derivation of a design for
weighing a particular number of objects, say ten. Let the objects be denoted
by a,b,¢c,d, e, f, g, h, k,I. Then the total number of combinations which could
be tested is 2, that is 1024, but as we are confident that interactions are negligi-
ble, it is necessary only to estimate main effects.

A fractionally replicated design must consist of a number 2” of combinations
and this will be a 1 in 2"°7” design. A suitable fractionally replicated design
consisting of 16 combinations will exist if it is possible to evolve an identity
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relationship for a 1 in 64 design, such that each term in the relationship involves
at least three letters. A possible identity relationship for such a design contains
the numbers of the Abelian group obtained from all combinations of the elements
1, ABC,CDE, EFG,GHK, ADL, and AFH, with the rule that the square of each
letter is to be equated to unity. Each possible comparison may then be due to
any of the 64 effects or interactions which may be derived from this identity
relationship. In other words, each comparison has 64 aliases: in the case of ten
of the comparisons, only one of the aliases is a main effect, and for the remaining
five comparisons the aliases are all interactions of at least two factors. The
actual design may be written down by finding combinations of the letters which
have the same number of letters in common with the unit element and the six
three-factor interactions. These are themselves a group consisting of all com-
binations of unity and four combinations of letters. The sixteen combinations
with an even number of letters in common with all the members of the identity
group are found to be the following:

(1 abdef, acefl, bedl,
abfgkl, degkl, beegk, acdfgk,
fah, abdegh, aceghl, bedefghl,
abhkl, defhkl, beefhk, acdhk

The estimation of effects from the results of the sixteen weighings is particu-
larly easy; the weight of object a will be one-eighth of the difference between
those weighings containing @ and those not containing a. There are ten such
contrasts which estimate the effects, and the remaining five contrasts may be
used to obtain an estimate of the experimental error. If ¢ is the variance of
each weighing, the variance of the weight of a, that is, the effect A will be (1/8 +
1/8)¢* = (1/4)s”. The precision can be increased fourfold in the weighing prob-
lem with a chemical balance by interpreting the absence of each letter as the
placing of the object in the left hand pan and the presence as the placing of the
object in the right hand pan. Each effect will then measure twice the weight
of the corresponding object and the estimated weight of each object will have a
variance of ¢°/16, that is, the same precision as if each had been weighed by itself
eight times in each pan, or sixteen times in all.

7. General case. The rules by which fractional designs may be constructed
have been exemplified above and the procedure is simple, though laborious in the
case of a large number of objects. It does not, therefore, seem worth while to
enumerate particular designs for the weighing of particular numbers of objects.
A general procedure in considering the design for a particular problem is as
follows. Taking the case of a number n of objects, the experimenter should
form a rough idea of the order of magnitude of the experimental error, ¢ say, and
decide what accuracy he requires for his estimates of the weights, a standard
error say of s. Then if he weighs 2° combinations of the objects, the standard
error of the estimate of each weight will be 277"%s in the case of the chemical
balance. This serves to determine 27" and therefore p, and it is then necessary
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to design a 2" experiment of fraction 2"77. Alternatively, a design of higher
fraction which can provide estimates may be replicated the corresponding number
of times. In the case of the spring balance the corresponding standard error is
27" D%; necessitating a design of higher fraction.

Designs of the type described above have some useful properties:

(1) the design automatically takes care of any bias in the balance,

(2) the effects or weights may be computed easily as indicated above,

(3) the effects or weights are uncorrelated,

(4) all the effects are measured with the same precision, and

(5) an estimate of the experimental error which is independent of the effects

may be computed from the results.

In considering the use for a particular problem of a design like the one discussed,
it is important to understand completely the structure of the design. Such
designs may well have real value for the weighing problem, but it is not easy to
visualize other problems for which they would not give results capable of various
interpretations. The use of the above designs depends on an assumption that
interactions between pairs of factors are negligible, and this is generally not the
case, for example, in biological research work, in which the experimenter may well
be confident that interactions between three or more factors are negligible. In
the particular case described in detail, there are only fifteen independent com-
parisons between the sixteen results which will be obtained, and it follows from
the identity relationship that the comparison giving the effect 4, also measures
the two factor interactions BC, DL, and FH. If therefore the factor a has no
effect and there is an interaction between factors b and ¢ or the other two pairs
of factors, the experimenter will conclude that the factor a has an effect. It is
clear that under these circumstances the experimental results are worthless.

8. Efficiency of designs. In [2], Mood states for optimum designs such that
when N weighings are made, the variance of the estimates of the weights are of

2
the order of :/U—N in the case of the chemical balance and \/(;—V. in the case of the

spring balance, where ¢* is the variance of a single weighing. ~As indicated above,
when N is a power of 2, the fractional factorial designs result in the same
variances. These designs are similar to those proposed by Kishen [6].

Mood dealt with the case in which the number of weighings was restricted,
for example to be equal to the number of objects, and defined a best design as that
which gave the smallest confidence region in the p-dimensional space for the
estimates of the p-weights.

To take an example for the weighings of 3 objects with a spring balance with
no bias he suggests the following design:

110
X=[1 01
011

where the rows of the array refer to weighing operations and the columns refer
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to objects. If the results of the weighings are y;, ¥, and y; respectively, the
estimates of the weights b, , b2, and b; are given by the equation

b 1/2 1/2 —-1/2\ /[
b | = 1/2 —-1/2 1/2 Ya

If ¢* is the variance of a single weighing, then the variance of each estimate will
be [(1/2)* + (1/2)* + (—1/2)%6* = (3/4)¢”: or if N (= 0(mod 3)) weighings are
made by replicating the above system N/3 times, the variance of each estimate
will be 96*/4N. The covariance of any two estimates is (—1/4)s” so that the
square of the correlation between any two estimates is —1/9. The fractional
factorial design will yield estimates which have a somewhat higher variance,
namely 4¢°/N. This increase in precision obtained in Mood’s design has been
obtained at the expense of obtaining correlated estimates which in addition are
subject to any bias which the measuring instrument may have. It is doubted
whether the use of such designs for any practical problem can be justified.

It is of interest to note that the concept of fractional replication may be ex-
tended to give designs requiring a number of weighings other than a power or
two. For the weighing of 3 objects for example, a factorial design of fraction
3/4 could be used: it could consist of a half-replicate based on the identity I =
ABC, and a quarter replicate based on the identity

I =4 =BC = ABC.

There 18, however, little point in discussing such designs for the weighing problem,
as their efficiency as measured by the total number of weighings needed to achieve
a particular degree of accuracy is lower than for the designs described in this

paper.
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